M. Schneider, Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: Results from the international consortium on brain and behavior in 22q11.2 deletion syndrome, Am. J. Psychiatry, vol.171, pp.627-639, 2014.

D. Gothelf, Genetic, developmental, and physical factors associated with attention deficit hyperactivity disorder in patients with velocardiofacial syndrome, Am. J. Med Genet, vol.126, pp.116-121, 2004.

L. Niklasson, P. Rasmussen, S. Oskarsdottir, and C. Gillberg, Neuropsychiatric disorders in the 22q11 deletion syndrome, Genet Med, vol.3, pp.79-84, 2001.

N. Philip, A. Bassett, and . Cognitive, behavioural and psychiatric phenotype in 22q11.2 deletion syndrome, Behav. Genet, vol.41, pp.403-412, 2011.

T. Robbins, The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry, Psychopharmacology, vol.163, pp.362-380, 2002.

L. J. Seidman, Factor structure and heritability of endophenotypes in schizophrenia: findings from the Consortium on the Genetics of Schizophrenia (COGS-1), Schizophr. Res, vol.163, pp.73-79, 2015.

S. R. Hooper, A longitudinal examination of the psychoeducational, neurocognitive, and psychiatric functioning in children with 22q11.2 deletion syndrome, Res Dev. Disabil, vol.34, pp.1758-1769, 2013.

F. M. Filbey, Selective attention deficits reflect increased genetic vulnerability to schizophrenia, Schizophr. Res, vol.101, pp.169-175, 2008.

K. E. Lewandowski, V. Shashi, P. M. Berry, and T. R. Kwapil, Schizophrenic-like neurocognitive deficits in children and adolescents with 22q11 deletion syndrome, Am. J. Med Genet, vol.144, pp.27-36, 2006.

V. Shashi, Evidence of gray matter reduction and dysfunction in chromosome 22q11.2 deletion syndrome, Psychiatry Res Neuroimaging, vol.181, pp.1-8, 2010.

K. M. Antshel, Cognitive and psychiatric predictors to psychosis in velocardiofacial syndrome: a 3-year follow-up study, J. Am. Acad. Child Adolesc. Psychiatry, vol.49, pp.333-344, 2010.

V. Shashi, Altered development of the dorsolateral prefrontal cortex in chromosome 22q11.2 deletion syndrome: an in vivo proton spectroscopy study, Biol. Psychiat, vol.72, pp.684-691, 2012.

M. F. Green, What are the functional consequences of neurocognitive deficits in schizophrenia?, Am. J. Psychiatry, vol.153, pp.321-330, 1996.

K. H. Nuechterlein, Attention/vigilance in schizophrenia: Performance results from a large multi-site study of the Consortium on the Genetics of Schizophrenia (COGS), Schizophr. Res, vol.163, pp.38-46, 2015.

E. A. Lindsay, Congenital heart disease in mice deficient for the DiGeorge syndrome region, Nature, vol.401, pp.379-383, 1999.

S. Merscher, TBX1 is responsible for cardiovascular defects in Velo-CardioFacial/DiGeorge syndrome, Cell, vol.104, pp.619-629, 2001.

A. Puech, Normal cardiovascular development in mice deficient for 16 genes in 550 kb of the velocardiofacial/DiGeorge syndrome region, Proc. Natl. Acad. Sci. USA, vol.97, pp.10090-10095, 2000.

W. L. Kimber, Deletion of 150 kb in the minimal DiGeorge/velocardiofacial syndrome critical region in mouse, Human. Mol. Genet, vol.8, pp.2229-2237, 1999.

K. L. Stark, Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model, Nat. Genet, vol.40, pp.751-760, 2008.

T. Sigurdsson, K. L. Stark, M. Karayiorgou, J. A. Gogos, and J. A. Gordon, Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia, Nature, vol.464, pp.763-767, 2010.

L. R. Earls, Age-dependent microRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia, J. Neurosci, vol.32, pp.14132-14144, 2012.

D. W. Meechan, Cognitive ability is associated with altered medial frontal cortical circuits in the LgDel mouse model of 22q11, 2DS. Cereb. Cortex, vol.25, pp.1143-1151, 2015.

S. R. Nilsson, Assessing the cognitive translational potential of a mouse model of the 22q11.2 microdeletion syndrome, Cereb. Cortex, vol.26, pp.3991-4003, 2016.

M. Tamura, J. Mukai, J. A. Gordon, and J. A. Gogos, Developmental inhibition of Gsk3 rescues behavioral and neurophysiological deficits in a mouse model of schizophrenia predisposition, Neuron, vol.89, pp.1100-1109, 2016.

A. Diamantopoulou, Loss-of-function mutation in Mirta22/Emc10rescues specific schizophrenia-related phenotypes in a mouse model of the 22q11.2 deletion, Proc. Natl. Acad. Sci. USA, vol.114, pp.6127-6136, 2017.

M. W. Jones and M. A. Wilson, Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task, PLoS Biol, vol.3, pp.402-413, 2005.

K. Benchenane, P. H. Tiesinga, and F. P. Battaglia, Oscillations in the prefrontal cortex: a gateway to memory and attention, Curr. Opin. Neurobiol, vol.21, pp.475-485, 2011.

J. M. Hyman, M. E. Hasselmo, and J. K. Seamans, What is the functional relevance of prefrontal cortex entrainment to hippocampal theta rhythms? Front Neurosci, vol.5, p.24, 2011.

M. Karayiorgou, T. J. Simon, and J. A. Gogos, 2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia, Nat. Rev. Neurosci, vol.11, pp.402-416, 2010.

C. H. Kim, The continuous performance test (rCPT) for mice: a novel operant touchscreen test of attentional function, Psychopharmacology, vol.232, pp.3947-3966, 2015.

A. C. Mar, MAM-E17 rat model impairments on a novel continuous performance task: effects of potential cognitive enhancing drugs, Psychopharmacology, vol.234, pp.2837-2857, 2017.

F. Bähner and A. Meyer-lindenberg, Hippocampal-prefrontal connectivity as a translational phenotype for schizophrenia, Eur. Neuropsychopharm, vol.27, pp.93-106, 2017.

C. W. Berridge and A. F. Arnsten, Psychostimulants and motivated behavior: Arousal and cognition, Neurosci. Biobehav Rev, vol.37, pp.1976-1984, 2013.

L. Scoriels, J. H. Barnett, P. K. Soma, B. J. Sahakian, and P. B. Jones, Effects of modafinil on cognitive functions in first episode psychosis, Psychopharmacology, vol.220, pp.249-258, 2011.

Y. Chudasama, Animal models of prefrontal-executive function, Behav. Neurosci, vol.125, pp.327-343, 2011.

M. Hvoslef-eide, The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia, Psychopharmacology, vol.232, pp.3853-3872, 2015.

T. Green, The effect of methylphenidate on prefrontal cognitive functioning, inattention, and hyperactivity in velocardiofacial syndrome, J. Child Adolesc. Psychopharmacol, vol.21, pp.589-595, 2011.

D. Gothelf, Methylphenidate treatment for attention-deficit/hyperactivity disorder in children and adolescents with velocardiofacial syndrome: an openlabel study, J. Clin. Psychiatry, vol.64, pp.1163-1169, 2003.

M. Didriksen, Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 microdeletion syndrome: a study in male mice, J. Psychiatry Neurosci, vol.42, pp.48-58, 2017.

A. C. Mar, The touchscreen operant platform for assessing executive function in rats and mice, Nat. Protoc, vol.8, 1985.

C. J. Heath, T. J. Bussey, and L. M. Saksida, Motivational assessment of mice using the touchscreen operant testing system: effects of dopaminergic drugs, Psychopharmacology, vol.232, pp.4043-4057, 2015.

A. Tomlinson, Pay attention to impulsivity: modelling low attentive and high impulsive subtypes of adult ADHD in the 5-choice continuous performance task (5C-CPT) in female rats, Eur. Neuropsychopharm, vol.24, pp.1371-1380, 2014.

D. M. Eagle, M. R. Tufft, H. L. Goodchild, and T. W. Robbins, Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cisflupenthixol, Psychopharmacology, vol.192, pp.193-206, 2007.

S. Takillah, Acute stress affects the expression of hippocampal mu oscillations in an age-dependent manner, Front Aging Neurosci, vol.9, p.295, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613163

C. H. Vanderwolf, Hippocampal electrical activity and voluntary movement in the rat, Electroencephalogr. Clin. Neurophysiol, vol.26, pp.407-418, 1969.

H. Bokil, P. Andrews, J. E. Kulkarni, S. Mehta, and P. P. Mitra, Chronux: a platform for analyzing neural signals, J. Neurosci. Methods, vol.192, pp.146-151, 2010.

J. A. Swets, Measuring the Accuracy of Diagnostic Systems, Science, vol.240, pp.1285-1293, 1988.

N. A. Macmillan and C. D. Creelman, Detection Theory: a User's Guide, 2004.

M. Niarchou, Attention Deficit Hyperactivity Disorder symptoms and psychosis in 22q11.2 deletion syndrome

K. Schoch, Applicability of the nonverbal learning disability paradigm for children with 22q11.2 deletion syndrome, J. Learn Disabil, vol.47, pp.153-166, 2012.

S. P. Woods, D. W. Lovejoy, and J. D. Ball, Neuropsychological characteristics of adults with ADHD: a comprehensive review of initial studies, Clin. Neuropsychol, vol.16, pp.12-34, 2002.

B. A. Cornblatt and J. G. Keilp, Impaired attention, genetics, and the pathophysiology of schizophrenia, Schizophr. Bull, vol.20, pp.31-46, 1994.

K. H. Nuechterlein, Developmental processes in schizophrenic disorders: longitudinal studies of vulnerability and stress, Schizophr. Bull, vol.18, pp.387-425, 1992.

A. J. Vaughn, Relation between outcomes on a continuous performance test and ADHD symptoms over time, J. Abnorm Child Psychol, vol.39, pp.853-864, 2011.

C. Sobin, Networks of attention in children with the 22q11 deletion syndrome, Dev. Neuropsychol, vol.26, pp.611-626, 2004.

B. A. Cornblatt and A. K. Malhotra, Impaired attention as an endophenotype for molecular genetic studies of schizophrenia, Am. J. Med Genet, vol.105, pp.11-15, 2001.

M. Niarchou, Psychopathology and cognition in children with 22q11.2 deletion syndrome, Br. J. Psychiatry, vol.204, pp.46-54, 2014.

E. A. Beaton and T. J. Simon, How might stress contribute to increased risk for schizophrenia in children with chromosome 22q11.2 deletion syndrome?, J. Neurodev. Disord, vol.3, pp.68-75, 2010.

Y. Ayhan, R. Mcfarland, and M. V. Pletnikov, Animal models of gene-environment interaction in schizophrenia: a dimensional perspective, Prog. Neurobiol, vol.136, pp.1-27, 2016.

S. Eliez, J. E. Schmitt, C. D. White, and A. L. Reiss, Children and adolescents with velocardiofacial syndrome: a volumetric MRI study, Am. J. Psychiatry, vol.157, pp.409-415, 2000.

N. Barnea-goraly, Investigation of white matter structure in velocardiofacial syndrome: A diffusion tensor imaging study, Am. J. Psychiatry, vol.160, pp.1863-1869, 2003.

M. Ottet, Reduced fronto-temporal and limbic connectivity in the 22q11.2 deletion syndrome: Vulnerability markers for developing schizophrenia? PLoS One, vol.8, pp.58429-58437, 2013.

J. Ellegood, Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion, Mol. Psychiatry, vol.19, pp.99-107, 2014.

B. Xu, of a neuronal inhibitor due to mirna dysregulation in a schizophrenia-related microdeletion, Cell, vol.152, pp.262-275, 2013.

K. Fenelon, The pattern of cortical dysfunction in a mouse model of a schizophrenia-related microdeletion, J. Neurosci, vol.33, pp.14825-14839, 2013.

T. W. Robbins and A. F. Arnsten, The neuropsychopharmacology of frontoexecutive function: Monoaminergic modulation, Annu Rev. Neurosci, vol.32, pp.267-287, 2009.

J. Lindenmayer, H. Nasrallah, M. Pucci, S. James, and L. Citrome, A systematic review of psychostimulant treatment of negative symptoms of schizophrenia: Challenges and therapeutic opportunities, Schizophr. Res, vol.147, pp.241-252, 2013.

L. Scoriels, P. B. Jones, and B. J. Sahakian, Modafinil effects on cognition and emotion in schizophrenia and its neurochemical modulation in the brain, Neuropharmacology, vol.64, pp.168-184, 2013.

L. Bizarro, S. Patel, C. Murtagh, and I. P. Stolerman, Differential effects of psychomotor stimulants on attentional performance in rats: nicotine, amphetamine, caffeine and methylphenidate, Behav. Pharmacol, vol.15, pp.195-206, 2004.

A. Grottick and G. Higgins, Assessing a vigilance decrement in aged rats: effects of pre-feeding, task manipulation, and psychostimulants, Psychopharmacology, vol.164, pp.33-41, 2002.

R. E. Morgan, J. M. Crowley, R. H. Smith, R. B. Laroche, and M. M. Dopheide, Modafinil improves attention, inhibitory control, and reaction time in healthy, middle-aged rats, Pharmacol. Biochem Behav, vol.86, pp.531-541, 2007.

M. Caballero-puntiverio, C. M. Fitzpatrick, D. P. Woldbye, and J. T. Andreasen, Effects of amphetamine and methylphenidate on attentional performance and impulsivity in the mouse 5-Choice Serial Reaction Time Task, J. Psychopharmacol, vol.31, pp.272-283, 2017.

Y. Liu, C. Tung, Y. Lin, and C. Chuang, Wake-promoting agent modafinil worsened attentional performance following REM sleep deprivation in a young-adult rat model of 5-choice serial reaction time task, Psychopharmacology, vol.213, pp.155-166, 2010.

K. A. Waters, K. E. Burnham, D. O'connor, G. R. Dawson, and R. Dias, Assessment of modafinil on attentional processes in a five-choice serial reaction time test in the rat, J. Psychopharmacol, vol.19, pp.149-158, 2016.

D. C. Turner, Modafinil improves cognition and attentional set shifting in patients with chronic schizophrenia, Neuropsychopharm, vol.29, pp.1363-1373, 2004.

N. L. Marchant, Modafinil improves rapid shifts of attention, Psychopharmacology, vol.202, pp.487-495, 2008.

D. C. Turner, Cognitive enhancing effects of modafinil in healthy volunteers, Psychopharmacology, vol.165, pp.260-269, 2003.

M. J. Minzenberg and C. S. Carter, Modafinil: a review of neurochemical actions and effects on cognition, vol.33, pp.1477-1502, 2007.

L. Ferraro, Amplification of cortical serotonin release: a further neurochemical action of the vigilance-promoting drug modafinil, Neuropharmacology, vol.39, 1974.

R. D. Oades, Differential measures of 'sustained attention' in children with attention-deficit/hyperactivity or tic disorders: relations to monoamine metabolism, Psychiatry Res, vol.93, pp.165-178, 2000.

S. M. Groman, Monoamine levels within the orbitofrontal cortex and putamen interact to predict reversal learning performance, Biol. Psychiat, vol.73, pp.756-762, 2013.

K. Rubia, Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naIve children with ADHD during a rewarded continuous performance task, Neuropharmacology, vol.57, pp.640-652, 2009.

R. H. Pietrzak, P. J. Snyder, and P. Maruff, Use of an acute challenge with damphetamine to model cognitive improvement in chronic schizophrenia, Hum. Psychopharmacol. Clin. Exp, vol.25, pp.353-358, 2010.

Z. Cesarec and A. K. Nyman, Differential response to amphetamine in schizophrenia, Acta Psychiatr. Scand, vol.71, pp.523-538, 1985.

M. E. Andrzejewski, The effects of clinically relevant doses of amphetamine and methylphenidate on signal detection and DRL in rats, Neuropharmacology, vol.79, pp.634-641, 2014.

C. A. Riccio, J. Waldrop, C. R. Reynolds, and P. Lowe, Effects of stimulants on the continuous performance test (CPT): Implications for CPT use and interpretation, J. Neuropsychiatry Clin. Neurosci, vol.13, pp.326-335, 2001.

R. C. Spencer, D. M. Devilbiss, and C. W. Berridge, The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex, Biol. Psychiat, vol.77, pp.940-950, 2015.

M. M. Van-gaalen, R. J. Brueggeman, P. F. Bronius, A. N. Schoffelmeer, and L. Vanderschuren, Behavioral disinhibition requires dopamine receptor activation, Psychopharmacology, vol.187, pp.73-85, 2006.

B. J. Cole and T. W. Robbins, Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction-time-task: New evidence for central dopaminergic-noradrenergic interactions, Psychopharmacology, vol.91, pp.458-466, 1987.

M. Matsumoto, Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function, Neuroscience, vol.116, pp.127-137, 2003.

M. J. During, A. J. Bean, and R. H. Roth, Effects of CNS stimulants on the in vivo release of the colocalized transmitters, dopamine and neurotensin, from rat prefrontal cortex, Neurosci. Lett, vol.140, pp.129-133, 1992.

P. Hertel, Effects of D-amphetamine and phencyclidine on behavior and extracellular concentrations of neurotensin and dopamine in the ventral striatum and the medial prefrontal cortex of the rat, Behav. Brain Res, vol.72, pp.103-114, 1995.

D. J. Gerber, Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice, Proc. Natl. Acad. Sci. USA, vol.98, pp.15312-15317, 2001.

N. Takahashi, VMAT2 knockout mice: Heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity, Proc. Natl. Acad. Sci. USA, vol.94, pp.9938-9943, 1997.

L. Bizarro and I. P. Stolerman, Attentional effects of nicotine and amphetamine in rats at different levels of motivation, Psychopharmacology, vol.170, pp.271-277, 2003.

M. Huotari, J. A. García-horsman, M. Karayiorgou, J. A. Gogos, and P. T. Männistö, d-Amphetamine responses in catechol-O-methyltransferase (COMT) disrupted mice, Psychopharmacology, vol.172, pp.1-10, 2004.

S. M. Florin, R. Kuczenski, and D. S. Segal, Regional extracellular norepinephrine responses to amphetamine and cocaine and effects of clonidine pretreatment, Brain Res, vol.654, pp.53-62, 1994.

C. W. Berridge and T. A. Stalnaker, Relationship between low-dose amphetamine-induced arousal and extracellular norepinephrine and dopamine levels within prefrontal cortex, Synapse, vol.46, pp.140-149, 2002.

C. C. Lapish, J. Chiang, J. Z. Wang, and A. G. Phillips, Oscillatory power and synchrony in the rat forebrain are altered by a sensitizing regime of damphetamine, Neuroscience, vol.203, pp.108-121, 2012.