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Abstract—NUMA platforms, emerging memory architectures with on-package high bandwidth memories bring new opportunities and
challenges to bridge the gap between computing power and memory performance. Heterogeneous memory machines feature several
performance trade-offs, depending on the kind of memory used, when writing or reading it. Finding memory performance
upper-bounds subject to such trade-offs aligns with the numerous interests of measuring computing system performance. In particular,

representing applications performance with respect to the platform performance bounds has been addressed in the state-of-the-art
Cache-Aware Roofline Model (CARM) to troubleshoot performance issues. In this paper, we present a Locality-Aware extension
(LARM) of the CARM to model NUMA platforms bottlenecks, such as contention and remote access. On top of this, the new
contribution of this paper is the design and validation of a novel hybrid memory bandwidth model. This new hybrid model quantifies the
achievable bandwidth upper-bound under above-described trade-offs with less than 3% error. Hence, when comparing applications
performance with the maximum attainable performance, software designers can now rely on more accurate information.

Index Terms—Roofline Model, Cache-Aware Roofline Model, Heterogeneous Memory, Knights Landing, Skylake, Platform Modeling,
Benchmarking, NUMA, Multi-core/single-chip multiprocessors, Shared Memory, Memory Bandwidth

1 INTRODUCTION

HE increasing demands of current applications, both in
T terms of computation and amount of data to be manip-
ulated, and the modest improvements in the performance of
processing cores have led to the development of large multi-
core and many-core systems [1]. These platforms embed
complex memory hierarchies, spanning from registers to
private and shared caches, local main memory, and mem-
ory accessed remotely through interconnection networks. In
these systems, memory throughput is not uniform, since
they embed several kinds of memories and the distance
between processor and memories varies. On such Non-
Uniform Memory Access (NUMA) architectures, the way
data is allocated and accessed has a significant impact on
performance [2].

Recently, the latest Intel Xeon Phi processor, code-name
Knights Landing (KNL) [3], traces the NUMA roadmap with
a processor organized into 4 Sub-NUMA Clusters (SNC-
4 mode). Usually, NUMA platforms include several sock-
ets interconnected with processor-specific links (e.g. Quick
Path Interconnect [4]) or by custom switches, such as SGI
NUMAIink or Bull Coherent Switch [5]. However, the KNL
interconnects NUMA clusters at the chip scale (through a 2D
mesh of up to 36 dual-core tiles). Though the software may
see both types of systems as similar homogeneous NUMA
trees, the strong architectural differences between NUMA
sockets and KNL chips, can impact application performance

in different ways and motivate the joint study of both
systems.

Additionally, each cluster of the KNL may feature tradi-
tional DDR memory as well as 3D-stacked high-bandwidth
memory named MCDRAM, which can be used as hardware-
managed cache or additional software-managed memory.
Managing heterogeneous memories in runtime systems
brings another level of complexity and makes performance
analysis harder and even more necessary. Hence, being
able to understand the impact of the memory hierarchy
and core layout on application performance, as well as on
attainable performance upper-bounds, is of most impor-
tance and interest. This is especially true when modeling
the architecture and tuning applications to take advantage
of the architecture characteristics in order to improve per-
formance. As a reference point, on-chip bandwidth varies
from several orders of magnitude (~ 20 times) between
the caches closest to the cores and the local main memory
(cf. Section 4). Moreover, purely remote memory access
across a tested QPI link delivers half of the local memory
throughput, thus pushing further the data transfer time.
Additionally, increasing the number of concurrent requests
on a single memory also increases the contention and can
slow down the perceived local memory bandwidth down to
~46% of its maximum value on a tested Broadwell system
(cf. Section 4). On the KNL system with 64 cores, the same



memory access pattern decreases the bandwidth down to
~ 25% of its maximum value (¢f. Section 5). Hence, it
is clear that the memory access pattern has a significant
impact on the delivered throughput. Finally, unlike cross
QPI bandwidth, our experiments in Section 5 show a nearly
uniform bandwidth on the interconnection network of the
KNL chip. Therefore, it is obvious that the chip layout has a
significant impact on the achievable performance.

Tuning application performance and inferring their abil-
ity to fully exploit the capabilities of those complex systems
require to model and acquire knowledge about their re-
alistically achievable performance upper-bounds and their
individual components (including the different levels of
memory hierarchy and the interconnection network). The
Cache-Aware Roofline Model [6] (CARM) has been recently
proposed -by some of the authors of this paper- as an
insightful model and an associated methodology aimed
at visually aiding performance characterization and opti-
mization of applications running on systems with a cache
memory subsystem. CARM has been integrated by Intel into
their proprietary tools, and it is described as “an incredibly
useful diagnosis tool (that can guide the developers in the ap-
plication optimization process), ensuring that they can squeeze
the maximum performance out of their code with minimal time
and effort.”! However, the CARM refers to systems based on
a single-socket computational node with uniform memory
access, which does not exhibit the NUMA effects that can
also significantly impact performance.

To address these issues, we have proposed, firstly in
our previous contribution [7] extended in this paper, a
new methodology to enhance the CARM unsightliness and
provide locality hints for application optimization on con-
temporary large shared memory systems, such as multi-
socket NUMA systems and Many Integrated Core proces-
sors with heterogeneous memory technologies and multiple
hardware configurations [7]. However, we noticed that some
highly optimized synthetic benchmarks are not correctly
characterized yet by our model. Though they are designed
to characterize the system bandwidth limits, they do not
reach the bandwidth bounds described by the proposed
NUMA extension [7]. This observation suggests that ad-
ditional system features have to be modeled in order to
successfully characterize the system bandwidth. Hence, on
top of the pillars of this work, our contribution is the design
and validation of a new heterogeneous bandwidth model.
This model aims at providing a more realistic upper bound
of the achievable memory bandwidth when an application
has to use several kinds of memories.

The remainder of this paper is organized as follows:
Section 2 provides an in-depth overview of the Cache Aware
Roofline Model to make the model usable for NUMA and
KNL architectures. Our first contribution, Section 3 deep
dives into the methodology to measure performance upper-
bounds for those systems. Our next contribution, in Sec-
tions 4 and 5, details the Locality Aware Roofline Model
(LARM) construction and validation for a Xeon E5-2650L v4
NUMA system composed of 4 NUMA nodes and the latest
Xeon Phi many-core processor. Our last contribution, in Sec-

1. Intel ® Advisor Roofline - 2017-05-12: https:/ /software.intel.com/
en-us/articles/intel-advisor-roofline
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Fig. 1: CARM chart of a hypothetical compute node com-
posed of one cache level.

tion 6, discusses the main limitations of the model, instanti-
ates and validates a heterogeneous bandwidth model, able
to overcome such limitations. Section 7 gives an overview
of the state-of-the-art related works, while Section 8 draws
the final conclusion of this research work.

2 LocALITY AWARE ROOFLINE MODELING

In general, the Roofline modeling [8] is an insightful ap-
proach to represent the performance upper-bounds of a pro-
cessor micro-architecture. Since computations and memory
transfers are simultaneously performed, this model is based
on the assumption that the overall execution time can be
limited either by the time to perform computations or by
the time to transfer data. Hence, from the micro-architecture
perspective, the overall performance can be limited either
by the peak performance of the computational units or by
the capabilities of the memory system (i.e. bandwidth).

To model the performance limits of contemporary multi-
core systems, the Cache-Aware Roofline Model (CARM) [6]
explicitly considers both the throughput of computational
engine and the realistically achievable bandwidth of each
memory hierarchy level?. With this purpose, the CARM
(see Figure 1) includes several lines representing the system
upper-bounds (Roofs). Oblique lines (representing the mem-
ory bandwidths) cross the horizontal lines (representing the
peak compute performance), bounding the ridge of mem-
ory and compute regions. Applications are characterized
according to their features and achieved performance in
one of these two regions. The CARM introduces a detailed
and meticulous methodology for benchmarking platforms,
which is inherited and extended in this paper to NUMA
systems.

In contrast to the other roofline approaches [8], the
CARM perceives the computations and memory transfers
from a consistent micro-architecture point of view, i.e. the
cores that issue instructions. Hence, when characterizing
the applications, the CARM relies on the performance (in
GFlop/s) and the Arithmetic Intensity (Al), i.e. the ratio of
performed compute operations (flops) over the total volume
of requested data (in bytes). The CARM is presented in the
log-log scale, where the x-axis refers to the Al (in flops/byte)
and the y-axis to the performance (in GFlop/s).

2. main memory and several cache levels.
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Fig. 2: Modeled memory access patterns on a system fea-
turing two memories in blue, Node:0 and Node:1, intercon-
nected by the chips memory controller in red.

Proposed NUMA Layer Extension to the CARM

From the application perspective, the memory of modern
computing systems is abstracted as a flat address space.
However, it is made of heterogeneous and/or remote phys-
ical memories. In order to fully exploit those system capa-
bilities, current software interfaces [9] [10] [11] require an
explicit data allocation policy and/or thread binding policy,
in order to reach good performance [12] [13].

Figure 2 depicts such a system, including two sockets
with their local memory (also named NUMA node) and
a set of cores. On these systems, the bandwidth is not
uniform across the network, and it influences memory ac-
cess performance. Hence, when modeling, the source and
destination of memory access (i.e. from a core to a NUMA
node, e.g. local access as in Figure 2a or remote access as
in Figure 2b) should be taken into account to analyze ap-
plication performance. Moreover, such large-scale systems
contain a high number of cores whose pressure on NUMA
nodes can cause data accesses to be serialized, for example
when several of them are accessing a single memory. We
qualify this situation as Contention, and is depicted it in
Figure 2c. Finally, the network connecting the NUMA nodes
to the cores can be subject to Congestion, when several data
paths from the cores to the memory, cross the same link. In
Figure 2d, we consider the case where data is distributed
across all memories. Although there is no contention, each
core will access data located over the whole system NUMA
nodes and will eventually create Congestion because of the
interleaved data paths. In the remainder of this paper, we
use the term Cluster to refer to a set of neighbor cores and
their local NUMA node(s)>.

CARM metrics are consistent across the whole memory
hierarchy of a single cluster (as illustrated for the first
cluster in Figure 2a). However, from the core perspective,
memory access performance is not consistent across the
system: bytes transferred from one NUMA node to a cluster

3.0On usual platforms, a cluster is identical to the widely used
definition of a NUMA node. On KNL, there can exist two local NUMA
nodes near each core (DDR and MCDRAM), hence two NUMA nodes
per cluster.

3

are not transferred at the same speed to other clusters. This
implies that the legacy CARM can only handle a single
multi-core cluster, failing to characterize accurately the cases
illustrated in Figures 2b-2d. Yet, as Figure 1 shows, with-
out proper (here remote) bandwidth representation in the
CARM, locality issues are not obvious since the performance
loss can come from many different sources: no vectorization,
sparse memory access, etc.

To tackle this issue, we have proposed (in our pre-
vious contribution [7]) to extend the CARM with the
Locality-Aware Roofline Model (LARM), providing the lack-
ing NUMA insights represented in Figure 2. It expresses
the three main throughput bottlenecks, as the characteris-
tics of this type of hardware: non-uniform network band-
width (Figure 2b), node contention (Figure 2¢c) and network
congestion (Figure 2d). The locality aware extension focuses
on each cluster perspective, while new bottlenecks are char-
acterized by different memory access patterns. For each
cluster, local and remote bandwidths are measured using
the cluster alone. More intricate aspects of the interconnec-
tion network are characterized using all the clusters simul-
taneously and with the usual memory allocation policies
from the perspective of each cluster. As a result, the LARM
representation is a set of CARM charts, (i.e. one per cluster
of cores) representing the above-described bottlenecks. The
remote roofs set the reference upper-bound of achievable
bandwidth from remote nodes to a cluster. The congestion
roof sets the bandwidth achieved by a cluster when all cores
are accessing simultaneously memory regions located across
all NUMA nodes in a round-robin fashion. Finally, the
contention roof characterizes a cluster granted bandwidth
when all system cores are accessing simultaneously a single
NUMA node.

In this paper, we propose a new contribution to simplify
the representation and provide additional insights when a
given application accesses several different memories simul-
taneously. In Section 6, we replace the local and remote
roofs with a novel heterogeneous bandwidth model. This
new roof is application specific and accounts for the appli-
cation locality pattern to derive the maximum achievable
bandwidth with an equivalent pattern. Not only does it
simplify the model representation and interpretation, but
it also overcomes a limitation of the LARM, which presents
strictly hardware bottlenecks that do not necessarily match
the application performance when several memories and
bandwidths are involved.

To the best of our knowledge, there is no work using
the CARM to characterize NUMA platforms. Hence, besides
the contribution of extending the CARM, we present the
following work and results in the remainder of this paper:
1) a tool based on CARM methodology and add-ons to
automatically instantiate and validate the model on multi-
socket systems and Knights Landing (KNL) Xeon Phi (for
various memory configurations); 2) through several vali-
dation stages LARM model has been validated for both
systems; 3) after observing model issues to match some
synthetic benchmark’s performance with the system roofs,
we propose a heterogeneous bandwidth model able to over-
come those issues.



3 METHODOLOGY FOR MEMORY AND MiICRO-
ARCHITECTURE THROUGHPUT EVALUATION

Initially, Cache-Aware Roofline Model [6] is built with
two main sets of parameters: micro-architecture instruction
throughput and attainable memory bandwidth. The former
provides the peak floating point performance while the
latter is used to construct a set of local memory roofs
(ie. L1, L2, L3, local DRAM bandwidths). LARM details
per NUMA Cluster performance and provides additional
rooflines. The identification of available Clusters, cores and
memory layout required to build the CARM is performed
with hwloc library [10]. The hierarchical representation of
the machine allows us to enrich the CARM with a per
Cluster representation of the system performance bounds,
including the proposed NUMA roofs.

The performance of a micro-architecture, in terms of
throughput, can be obtained either by relying on the theo-
retical hardware characteristics, or by experimentally bench-
marking the micro architecture. In the former case, the peak
floating point performance can be computed as:

Fl
Fpeak = Throughput *+—=22%— x N x Frequency,
—— —_——— —_——
GFlop/s Instructions/Cycle GHz
M

where T'hroughput is the number floating point instructions
retired per cycle by one core, Flops/instruction is the num-
ber of floating point operations performed in each instruc-
tion (e.g. 2 for FMA instruction and 1 for ADD instruction), and
N is the number of cores. Similarly, the peak bandwidth of
the Level 1 cache can be computed as:

Bandwidth = Throughput *Mﬁ’% x N x Frequency .
—_— N , N—_——
GByte/s Instructions/Cycle GHz

@)
Sometimes, the theoretical throughput is not disclosed
by the manufacturer or does not match the experimental
throughput. Therefore, we use the prior CARM methodol-
ogy [6] to implement highly optimized micro-benchmarks
and build the roofs.

Our methodology for NUMA-specific bandwidth eval-
uation relies on a hierarchical description of the system
topology as provided by the hwloc library. We focus on deep
and heterogeneous memory level evaluation, rather than
on micro-architectures tightly coupled with caches already
analyzed in the original CARM paper [6]. Since the model
needs to provide insights on possible bottlenecks of NUMA
systems, the model includes the bandwidth roofs described
in Section 2 and depicted in Figure 2, i.e. local accesses,
remote accesses, accesses with congestion and accesses with
contention. In order to model local and remote bandwidths
of a cluster, we designed a benchmark performing contigu-
ous and continuous memory accesses, as in the CARM, but
on each NUMA node individually. One thread is spawned
per core of the target cluster, then for each roof (i.e. local
and remote), the workload is iteratively allocated on each
NUMA node, as depicted in Figures 2a and 2b. We do not
look at individual links, but rather at pairs of cores+ NUMA
node, even though sometimes there are multiple (unknown)
hops between clusters. The contended bandwidths are ob-
tained similarly to the local and remote bandwidths, but
populating all cores with threads (Figure 2c) instead of just
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Fig. 3: hwloc topology representation of, Joe0, a dual-socket
Xeon E5-2650L v4.

the cores of a single Cluster. Each cluster granted bandwidth
is associated with the source contended node to build the
contended roofs on each cluster chart. Finally, the congested
bandwidth is obtained by performing memory accesses
from all the cores, contiguous on the virtual address space,
but with pages physically allocated in a round-robin fashion
across the system NUMA nodes, and with a private data
set for each thread. Once again, the bandwidth perceived
by each cluster is modeled as the congested roof in its
local CARM. Though we call it congestion, it differs from
the standard definition*. However, it fits a more practical
and easy way to reproduce the memory access pattern,
i.e. the one implied by using the Linux interleave memory
allocation policy.

In this paper, we only show the bandwidth for LOAD
instructions because it suits better our use cases. However,
the software tool we have developed is able to evaluate
STORE, non-temporal STORE and a mix of instructions for
all memory levels.

4 MODEL INSTANTIATION AND VALIDATION ON
MULTI-SOCKET SYSTEM

In order to set up and validate the model, we use a dual-
socket NUMA system, named Joe0 and presented in Fig-
ure 3. It is composed by two Broadwell Xeon E5-2650L v4
processors (at 1.7 GHz), configured with the cluster-on-die
mode and exposing the 4 NUMA nodes to the system. Each
NUMA node of the system topology (Figure 3) implements
7 cores, with hyper-threading disabled.

4.1

By relying on the testing methodology proposed in [6],
it was possible to reach near theoretical compute and L1
cache bounds on the Intel Broadwell micro-architecture,
as presented in Table 1. Each core throughput is derived
using the number of operations per instruction and the
processor frequency to obtain the peak FMA floating point
performance (reaching 190 GFlop/s for a single cluster).

Platform Evaluation and Model Instantiation

4. Network congestion in data networking and queuing theory is the
reduced quality of service that occurs when a network node is carrying
more data than it can handle.



Instruction Throughput | Load | Store | ADD | MUL | FMA
Theoretical 2 1 1 2 2
Experimental 1.99 | 099 | 099 1.99 | 1.99

TABLE 1: JoeQ core instructions throughput (Instructions/-
Cycle)

Memory Level Bandwidth (GByte/s)

L1 760.1

L2 309.2

L3 154.0
NUMANODE:0 (local) 36.1
NUMANODE:1 (remote) 17.5
NUMANODE:2 (remote) 15.0
NUMANODE:3 (remote) 14.3
NUMANODE:0 (contended) 16.7
NUMANODE:1 (contended) 8.3
NUMANODE:2 (contended) 6.8
NUMANODE:3 (contended) 6.2
All NUMANODES (congested) 18.1

TABLE 2: Joe0 bandwidth roofs to the first NUMA cluster,
i.e. NUMANODE:0.

As discussed in Section 3, a comprehensive evaluation
aims to extensively benchmark the memory subsystem with
several memory access patterns, i.e. the remote/local band-
width between each pair (cluster, NUMA node), as well as
the contended /congested ones. The results obtained are pre-
sented in Table 2 for the first NUMA cluster of the system.
Unless specified, the model presented herein is restricted to
a single NUMA cluster, due to the bandwidth symmetry
between clusters.

The performed measures (Tables 1, 2) are used to build
the proposed model depicted in Figure 4 for the first cluster
of Joe0. Besides the roofs for local caches, this CARM chart
also includes all the unveiled memory bandwidths, namely
local, remote, contended and congested roofs.

4.2 Model Validation
4.2.1 Micro-Benchmarks

This validation step consists in micro-benchmarking the
system with several arithmetic intensities, i.e. memory and
compute instructions in the platform under evaluation. It
assesses the ability to reach roofs while performing both
computations and memory accesses. The roofs fitness is
evaluated through the relative root mean squared error’
of validation points to the roof performance for a realistic
range of arithmetic intensities. Errors and deviations (too
small to be visible) for each validation point, and for each
bandwidth roof of a single cluster, are presented in Figure 4.
As the error in the legend is small (less than 2% on average
for every roof), the validation enforces that measured band-
widths are attainable by programs with different arithmetic
intensities.

4.2.2 Synthetic Benchmarks

Figure 5 shows the LARM instantiated on the first socket of
Joe0. For each NUMA cluster, a CARM chart includes local

5. The error is computed as 1%0 X

N
>icin (y’y_y’> % where y;

is the validation point at a given arithmetic intensity, and g; is the
corresponding roof.
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Fig. 4: CARM validation of one NUMA cluster of Joe0 plat-
form. Validation points are visible along the roofs. Finally,
the model error for each roof is in the legend.

caches bandwidth, local node bandwidth, the bandwidth
under congestion® and the bandwidth of the first NUMA
node under contention (which is different whether it is
measured from the first or the second cluster). Figure 5 also
illustrates the memory-bound ddot kernel and the compute-
bound dgemm kernel from the BLAS package, under several
scenarios, showing the model ability to pinpoint locality
issues. For each scenario, threads are bound in a round-robin
fashion and data allocation policy is one of: firsttouch (i.e.
data in memory close to threads), interleave (i.e. data spread
on all nodes), Node:0 (i.e. data on a single memory node).
Each thread performs the same amount of work though the
allocation policy on a single node may create an asymmetry
when observing their performance across different NUMA
nodes (Figure 5). The modeled applications run on the full
system, i.e. 28 threads (1 thread per core), however, only
the model for a single socket is presented to minimize the
amount of redundant data. On the chart (Figure 5), ddot and
dgemm are represented each with its own constant arithmetic
intensity (i.e. the code is unchanged between scenarios) but
with different values for runtime parameters.

The ddot case with allocation on Node:0 has a different
performance whether we look at the first or the second
cluster. Hence, the kernel characterization shows the model
ability to spot asymmetries. Even if asymmetries do not
come from the program, they can come from the data
distribution and significantly impact the performance [14].
Congested and contended roofs also successfully charac-
terize similar bottlenecks in ddot application. Indeed, in
Figure 5, ddot kernel with interleaved access (i.e. induc-
ing congestion) and access on a single node (i.e. inducing
contention) match with appropriate memory bandwidths.
Optimized compute-intensive applications do not suffer
from locality issues. Indeed, as presented in Figure 5, the
dgemm execution is not affected by non-uniform memory
access, it achieves the same performance on each node even
if data is allocated with different policies. This may be due to

6. Remote memory bandwidths are very close to congested band-
widths on this system and we omit the former in the chart to improve
its readability.
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Fig. 6: NAS-3.0 MG Functions Characterization on JoeO first
cluster.

the high cache efficiency of the code allowing the system to
prefetch the required data into the cache before it is actually
required, thus avoiding the local and remote memory access
asymmetries.

In a nutshell, data allocation policies applied to synthetic
benchmarks affect the performance in a way that is foresee-
able. It matches expectations from their characterization in
the LARM, thus validating the proposed roofs relevance.

4.2.3 NAS MG Parallel Benchmark

This step aims to show that the model insights can help to
flush out performance bottlenecks, i.e. application charac-
terization with the new roofs can help to pinpoint potential
execution bottlenecks. For this purpose, we ran a C version’
of the NAS-3.0 MG benchmark with one thread per core,
bound in a round-robin fashion on the system cores. We
extract the LARM of this system with hardware counters
at the core level, and aggregate the results at the Cluster
level. As presented in Figure 6, three functions from the
MG benchmark are characterized on the first cluster of the

7. https:/ / github.com /benchmark-subsetting /NPB3.0-omp-C

system with several memory allocation strategies. In the
first scenario, the default Linux policy firsttouch is used
for data allocation. The characterization of these functions
(labeled with firsttouch) reaches near the contention roof
performance, and suggests the usage of interleave alloca-
tion policy to balance memory accesses over the NUMA
nodes in order to decrease contention. Indeed, this latter
policy improves significantly the performance above the
congestion roof. However, it is unlikely that the interleave
policy surpasses the firsttouch policy with such significance.
Hence this observation also suggests that firsttouch actually
allocates memory on a single node. Indeed, once paral-
lelized, the previously sequential memory allocations enable
the firsttouch policy to allocate data on all NUMA nodes
near appropriate threads. This solution, labeled with en-
hanced_firsttouch slightly improve against the performance
of interleave policy.

To sum up, the LARM characterization of the memory-
bound MG benchmark, matches the contended roofs when
data allocation is serialized, i.e. data is allocated on a single
contented node, and improves above the congestion roof
once the contention issue is solved, validating hereby the
proposed roofs.

5 MODEL INSTANTIATION AND VALIDATION ON
KNIGHTS LANDING PROCESSOR

Machine
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Fig. 7: hwloc model of KNL topology in SNC-4 flat mode.
Only the fourth cluster is detailed, for simplifying represen-
tation. Other clusters have a similar topology.



When in SNC-4 mode [3], the KNL is a special case of
a multi-Socket system. Each socket has an additional fast
memory (MCDRAM) to the conventional DRAM memory
also specified as NUMA, which is addressable in Flat mode
or configurable as a last level cache in Cache mode. Whether
flat or cache mode is used, the system may yield different
bandwidths, performances and application execution times.
The proposed model accounts for this behavior when char-
acterizing KNL platform performance.

For our experiments, we used Knights Landing 7230
chips, with 64 cores operating at 1.3GHz. The KNL topology,
when configured with SNC-4 and flat settings, is shown in
Figure 7, where the complete topology is provided for the
last type of cluster. The mesh interconnection network (Fig-
ure 8) between L2 tiles of the chip is widely different
from conventional multi-socket systems [15] and motivates
additional observations when compared to the previously
analyzed system.

PCle
Gen 3

Tile
36 Tiles
connected by
2D Mesh
Interconnect

wWrmZzZ»IO H~IO0O0 W
wWFMZZPIO ~DOO W

[ eoc | e | [ ec [ e |
Ig df it Ut

MCDRAM MCDRAM

MCDRAM

MCDRAM

Package

Fig. 8: Knights Landing mesh interconnect with DRAM and
MCDRAM memory controllers (Source: Intel). Only 32 of
these 38 tiles are actually enabled in our experimentation
platform. The number of tiles enabled can reach up to 36
tiles, though 38 are present.

5.1 Platform Evaluation and Model Instantiation

By relying on the micro-architecture evaluation methodol-
ogy from Section 3, the highest experimentally achieved
throughput with carefully designed micro-benchmarks is
slightly lower than theoretical values (see Table 3). However,
a performance of 2.2 TFlop/s for 64 cores is still achieved.

Instruction Load | Store | ADD | MUL | FMA
Theoretical throughput 2 1 2 2 2
Experimental throughput | 1.66 | 096 | 1.70 | 1.70 | 1.70

TABLE 3: Theoretical and experimental instruction through-
put (in instructions per cycle) for a single core of the KNL
platform.

Table 4 presents the bandwidth evaluation between clus-
ters solo (i.e. by fully exercising memory units within a sin-
gle cluster) for flat mode only. The evaluation is presented
for the first two clusters since the others yield a similar
bandwidth. Contrary to the multi-socket system, remote and
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local DRAM attain similar bandwidths, which suggests the
high efficiency of KNL interconnection network. However,
significant and less predictable variations can be noticed for
MCDRAM, which would require the disclosure of more ar-
chitectural details to fully explain the mesh interconnection
behavior.

from
NUMA:0 | MCDRAM:1 | NUMA:2 | MCDRAM:3
Cluster:0 | 38.1+0.1 92.0£0.5 38.0+£0.8 86.6+0.4
to Cluster:1 | 38.1+0.1 91.5+0.4 38.2+0.1 92.8+0.4
Cluster:2 | 37.8+0.1 90.6+0.5 38.1+0.1 83.7+0.6
Cluster:3 | 38.0+0.2 82.8+0.4 38.0+0.1 90.8+0.3

TABLE 4: KNL load bandwidth (GByte/s) from first and sec-
ond clusters memories to cores in flat mode. Other clusters
are omitted because of similar results.

In Table 5, we also compare the bandwidth for LOAD
instructions granted to the first cluster when the data set is
allocated into the first cluster DRAM and MCDRAM under
different scenarios. The first row of the table corresponds to
the reference when the cluster runs solo as in Table 4 for
the cache and flat modes. In the cache mode, bandwidths
of both types of memories (i.e. DRAM and MCDRAM)
decrease, probably due to overheads induced by the MC-
DRAM caching mechanism. In both modes, DRAM band-
width (NUMA:0) reduces when using all clusters simulta-
neously (i.e. local with 64 versus 16 threads), whereas this is
less obvious for MCDRAM bandwidth. The presence of only
two DRAM memory controllers shared among 4 clusters
to access DRAM, whereas there are 8 EDC controllers (two
per cluster) to access MCDRAM (see Figure 8), is a possible
cause of this behavior.

flat cache
NUMA:0 | MCDRAM:1 || NUMA:0 | MCDRAM:1 | threads
2 local | 38.1 +0.1 92.0 0.5 229 +0.7 85.4 £3.0 16
2 local | 21.7 £0.7 90.9 +1.2 20.0 £0.7 83.3 £2.0 64
B | congested | 19.8 £0.3 77.6 £2.0 17.0 £0.4 NA 64
Y ["contended | 10.7 £0.0 21.5 +0.5 NA NA 64

TABLE 5: KNL load bandwidth (GByte/s) from first cluster
memories.

In cache mode, DRAM bandwidth drops when using all
clusters simultaneously. However, the fall is not as signifi-
cant as the drop in flat mode, probably because of data reuse
in MCDRAM cache, which redirects a part of the traffic via
the EDC channels and absorbs a part of the contention on
DRAM memory controllers. Congestion already happens for
interleaved memory access on DRAMSs, provoking further
bandwidth reduction when compared to local memory ac-
cesses. As expected, contention is the worst-case scenario,
resulting in a dramatic bandwidth reduction. When con-
gestion and contention are experienced, they imply a need
for a locality to achieve good performance. Several Non-
Achievable values stand in Table 5. One of them, contention
on NUMA:0 in cache mode cannot be observed with the
Section 3 methodology. Indeed, private data accessed by
each cluster in NUMA:0 memory would actually fit into the
4 MCDRAMs and result in MCDRAMSs benchmark instead
of NUMA:0 benchmark.

Based on the characterization provided above, the
LARM is constructed for a single cluster and presented
in Figure 9, where the chip is configured in (SNC-4) flat
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Fig. 9: CARM validation of one sub-NUMA cluster of KNL
platform in SNC-4 flat mode.

mode. In contrast to the previous platform, it also includes
the MCDRAM roofs siblings of DRAM roofs. Bandwidths
of remote nodes are hidden for clarity, because they have
the same order of magnitude as local bandwidth and thus
overlap in the chart.

5.2 Model Validation
5.2.1 Micro-Benchmarks

We use again the previous methodology to validate the
model in Figure 9 for one cluster (equivalent to the others).
KNL micro-benchmark validation fits the model with an
average error below 5% for all roofs. Most of these errors
are due to the points located near the ridge on L1 and MC-
DRAM bandwidths roofs. Otherwise, it fits nearly perfectly
the roofs in memory-bound and compute-bound regions.

5.2.2 Synthetic Benchmarks

As previously referred, validation with synthetic bench-
marks aims to verify that well-designed synthetic bench-
marks are able to hit the roofs. For this purpose, we char-
acterize again ddot and dgemm BLAS kernels in the KNL
CARM chart (Figure 10) for the first cluster. Herein we focus
on MCDRAM usage rather than classical memory allocation
policy, which was already analyzed for the multi-socket
system. Hence, several data allocation strategies and sizes,
as well as the flat and cache configurations of the chip are
compared.

The ddot function is compared under both flat and
cache modes and by adopting various allocation strategies
and data-set sizes. The small data set (labeled small in
Figure 10 fits into MCDRAM, whereas the large data set
(labeled large) does not. MCDRAM policy allocates the
whole small data set into MCDRAM. Interleave exploits
Linux implementation of the policy, allocating pages of the
data set across all the nodes, i.e. MCDRAM and DRAM
nodes. Finally, the Linux policy firsttouch allocates data on
the DRAM near the first thread writing the corresponding
page.

In flat mode, allocation into MCDRAM allows for the
performance to reach approximately the MCDRAM roof,
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Fig. 10: CARM of KNL first cluster with synthetic bench-
marks running either in flat mode or in cache mode.

as visually assessed through the model. Unlike allocations
into MCDRAM, large data sets with firsttouch policy are
allocated into slow memory and also reach approximately
the DRAM roof performance. With interleave policy, the
data set is mixed across memories and thus the performance
stands in between local DRAM roof and local MCDRAM
roof, with a higher influence of the slowest DRAM memory
(the point is closer to this roof). In cache mode, the small
data set is cached in MCDRAM, thus reaching MCDRAM
bandwidth roof. Although MCDRAM bandwidth is lower
in cache mode, the performance of large data sets with
firsttouch policy is higher than DRAM roof. This is because
the large MCDRAM cache size allows reusing a significant
part of the data, thus improving achievable performance.
Interleaving memory accesses decreases performance when
compared to firsttouch policy, because of the congestion
hereby generated.

The dgemm function uses a data set too large to fit
into MCDRAM and is compared in flat and cache mode.
As expected, the intrinsic temporal locality of this kernel
allows the cache mode to yield a better performance. When
choosing the data set size or location (DRAM or MCDRAM),



the synthetic benchmark performance still corresponds to
our expectation and validates the model insights on KNL
system. When choosing the system configuration (flat or
cache), the model also shows that kernels with good data
reuse, i.e. with a performance over MCDRAM roofs, benefit
from the hardware cache mechanism and also validates the
model relevance.

5.2.3 Lulesh proxy-applications

For NUMA KNL system, we focus on Lulesh application
because of its sensitivity to memory bandwidth. The aim of
this validation step is to show that the model helps manag-
ing memory, i.e. either performance can be improved with
the chip configuration or a good memory allocation policy.
From Lulesh, we pick the three memory-bound hot spots of
the application (i.e. the ones bounded below NUMANode:0
roof), namely CalcFBHourGlassForElems, IntegrateStress-
ForElems functions, and a loop in the main function. Due
to the lack of required hardware counters, arithmetic in-
tensity, performance and application profile are collected
with the Intel Advisor tool®. In our experiments, we ran the
application using a working set size large enough’ not to fit
into MCDRAM. Hence, target memory needs to be carefully
chosen to fulfill size constraints and special care needs to
be taken when addressing memory allocation to get good
performance.

The first run allocates all data into regular DRAM
memory (labeled DRAM), and aims at characterizing the
application to find potential allocation improvements. We
then customize dynamic allocations in those hot spots by
replacing the usual allocator from the standard C library
with memkind [16] allocator to target fast memory (labeled
as MCDRAM in Figure 11a) instead of the traditional DRAM
(labeled as DRAM). Finally, instead of forcing MCDRAM al-
locations, we let the interleave policy (labeled as interleave)
to choose which data to put into MCDRAM for all alloca-
tions visible in the file lulesh.cc. Summarizing, each hereby
found hot spot is executed using three different policies,
i.e. DRAM allocation (labeled DRAM), custom allocations
(labeled MCDRAM), and interleave policy, in flat mode (see
Figure 11a).

The second chart in cache mode (see Figure 11b) con-
trasts the performance of hand-tuned allocations into MC-
DRAM with hardware management of the fast MCDRAM
cache. As expected, MCDRAM allocations provide im-
proved performance in flat mode. However, in cache mode
hot spots characterization reaches comparable performance
to top achieved performances in flat mode, denoting hard-
ware efficiency to manage data locality. In comparison, in-
terleave memory policy performs poorly, probably because
spread allocation forces threads to access remote nodes, thus
congesting the mesh.

To summarize, the use of the LARM for data allocation
policy choice on the KNL, we saw with lulesh case that
cache mode brings no significant performance improve-
ment. Hopefully, LARM characterization gave us this in-
sight because it pointed out that the application performed

8. Product version: Update 2 (build 501009).

9. Lulesh application run parameters: -i 1000 -s 60 -r 4. The applica-
tion is compiled with ICC 17.0.2 and options: -DUSE_MPI=0 -qopenmp
-O3 -xHost
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(b) KNL first cluster in cache mode.

Fig. 11: CARM chart of the KNL first cluster. The 3 main hot
spots as detected by Intel Advisor are represented both in
cache and flat modes.

below MCDRAM roofs. Nevertheless, data allocation policy
changes performance significantly between interleave and
other policies. However, the causes of this behavior arises
are not clear. In the model, interleave points are widely
spread on the performance axis. This suggests a different
issue than memory allocation policies. Unfortunately, some
other bottlenecks than the ones presented here may lower
overall performance when changing such a very high-level
parameter as the memory allocation policy. In the next sec-
tion, we explore one among possible causes for this lack of
accuracy in the LARM and propose a novel heterogeneous
bandwidth model.

6 BEYOND MEMORY BOUNDS: MODELING HET-
EROGENEOUS MEMORY BANDWIDTH.

As shown in previous sections, performance characteriza-
tion of some applications may not perfectly match the band-
width upper-bounds defined by the model. When streaming
a data set spanning several memories (e.g. MCDRAM
+ DRAM), the maximum achievable bandwidth does not
adhere to a single memory bound. The LARM characterizes
achievable bounds as one of those memory bounds, while



using several memories simultaneously leads to a different
bandwidth upper-bound. In the real world, this scenario
might happen for different reasons: using Linux interleave
allocation policy, allocating a large data set spanning several
memories, or even application-level allocation management
as offered by memkind interface [16]. Our proposal is to
characterize application physical memory access patterns
and infer the maximum achievable bandwidth following
this pattern. Therefore, instead of modeling raw memory
bandwidth (local and remote), we model a bandwidth
parametrized by the locality scheme spanning across several
memories. Such hybrid roof is represented in the original
LARM (Figure 13) for a KNL platform. In between MC-
DRAM:1 and NUMANODE:0 load bandwidths, possible
positions of hybrid roofs are characterized by a color gradi-
ent. This gradient represents the continuity of the achievable
bandwidth parametrized by the amount of MCDRAM and
NUMANODE:0 accesses.

The main memory subsystem features several band-
widths depending on the memory type and distance to
cores, as shown in the LARM [7]. The combination of
all those bandwidths is subject to a superposition of dif-
ferent hardware mechanisms involved in serving memory
requests. Starting from instruction pipeline, data requests
trigger the prefetchers and cache coherency systems, cross-
ing the cache hierarchy, then the chip interconnection net-
work (mesh for KNL, ring for Broadwell, efc.), memory
controllers, off-chip interconnect and finally memory banks.
Every component of the non-exhaustive herein described
data path implies complex policies. These may not even be
publicly disclosed, which makes hardware-based modeling
a hard task. Thus, unlike it is performed in the CARM
construction methodology, we apply herein a systemic ap-
proach, by considering unknown details of the main mem-
ory subsystem as a black box, to model the main memory
subsystem (not including the caches). Our goal is to expose a
simple model out of significantly complex hardware mech-
anisms involved.

In this section, we provide a thorough analysis of perfor-
mance upper-bounds for memory-bound application, which
is actually multi-bandwidth-bound. We first show that, in
practice, the effective bandwidth exploited by an application
can be in between several system memory bandwidths, if
data span across several memory levels. We propose to
characterize this performance bound with an application
specific hybrid roof instead of the previously proposed
static NUMA roofs. This bound is assessed through a set
of bandwidth benchmarks by considering a wide range of
memory access patterns. We show that the herein proposed
memory bound can provide a better approximation of an
application achievable bandwidth upper-bound when com-
pared with traditional modeling approaches. Finally, the
overall goal of designing application specific hybrid roof
is achieved. On top of these observations, we characterize
achieved bandwidth limits with an insightful model, which
quantifies the system ability to overlap some data transfers
across several memories.

6.1 Motivation: Use Cases

This subsection carries out runs of several STREAM bench-
marks with several memory access patterns. It aims to
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show that highly optimized memory-bound applications
may run at a lower bandwidth than raw system band-
width. Furthermore, the ddot synthetic benchmark is chosen
for demonstrating effects of using heterogeneous memory
bandwidth, while triad and scale benchmarks are chosen
to show variations in memory bandwidth when serving
a different amount of load and store requests in main
memory. Hence, these applications are good candidates for
showcasing benefits of including a hybrid roof in the LARM.

We implemented a custom version of these kernels with
ISA specific instructions optimized for AVX512 capable
micro-architectures and with non-temporal stores. This im-
plementation is compiler agnostic and ensures to exercise
the full potential of tested platforms. A code snippet of criti-
cal regions of ddot and triad are exposed in Figures 12a, 12b.

ddot is tailored to approach target memory load band-
width. However, in certain cases, data accesses can span sev-
eral memories. For instance, within this application, allocat-
ing a large data set into MCDRAM, exceeding its capacity,
will result in utilizing the slower DRAM as well. Another
way to allocate the memory without explicit awareness of
the hybrid memory system is to use an interleave policy. In
this case, pages of allocated data are pinned in a round-robin
fashion on the system memories. In Figure 13, the LARM
performance characterization is presented for the same ddot
function but with different allocation policies: data into
MCDRAM memory (MCDRAM), data into DRAM memory
(firsttouch), and data spanning both memories (interleave).
As it can be observed, when data is allocated into several
memories with different bandwidths, the total aggregated
bandwidth does not match any of the system memories
bandwidth. triad and scale benchmarks also exhibit different
bandwidths than the system memories bandwidth, even
though data is allocated into a single local memory, due
to different load /store patterns when compared to ddot.

For the aforementioned cases, with the very same arith-
metic intensity but varying memory access patterns, the per-
formance was affected even though those synthetic bench-
marks are designed to reach memory bandwidth bounds. To
some extent, memory access pattern is a constraint that has
to be fulfilled, though it is considered as sub-optimal in the
LARM. Hence, the herein proposed work aims at enriching
the model with a roof accounting for applications specific
memory access pattern. The next subsection discusses the
construction of such a hybrid roof, along with its integration
in the LARM.

6.2 Overlapping Memory Bandwidths Model

In its current form, the CARM model is based on the
assumption that the performance of an application can be
bound either by compute throughput or memory band-
width depending on the application arithmetic intensity.
Every bandwidth associated to cache levels and memory
kinds are represented as possible bottlenecks. The LARM
splits the system in NUMA domains and stacks on top
of each local CARM bandwidths, local and remote band-
widths, bandwidth under congestion and bandwidth under
contention. With the new proposed bandwidth model, we
remove local and remote bandwidths in the LARM, and
replace them with a hybrid roof. For each application,



vpxor %7mm0, %7mm0, %7gmm0
loop_ddot:

vmovupd (%1), %%zmml
vmovupd (%2), %zmm2
vimadd231pd %rzmm2, %%zmml,
vmovupd 64(%1), %%zmm3
vmovupd 64(%2), ¥%emmd
vimadd231pd %rzmm4, %%zmm3,
vmovupd 128(%1), %%emmb5
vmovupd 128(%2), %gmm6
vimadd231pd %zmm6, %%zmmb,
vmovupd 192(%1), %%emm7
vmovupd 192(%2), %emm§
vimadd231pd %%zmm8, %%zmm?7,
add $256, %l

add $256, %2

sub $32, %3

jnz loop_ddot

YeVezmm(0

YeVezmm(0

YeVezmm(0

YeVezmm(0

(a) ddot assembly code snippet.

vmovupd (%[s]), %zmm0
loop_triad:

vmovupd (%[a]), %¥%mml
vmovupd (%[b]), %zmm2
vimadd231pd %%zmm0, %%zmm2,
vmovntpd %emml, (%[c])
vmovupd 64(%[a]), %Y&mm3
vmovupd 64(%[b]), %emm4
vimadd231pd %%emm0, %emm4,
vmovntpd %Yemm3, 64(%[c])
vmovupd 128(%[a]), %Yemm5
vmovupd 128(%[b]), %emm6
vimadd231pd %%emm0, %emm6,
vmovntpd %Yemm5, 128(%[c])
vmovupd 192(%[a]), %Yemm?7
vmovupd 192(%[b]), %Yemm8
vimadd231pd %%zmm0, %%zmms,
vmovntpd %Yemm7, 192(%[c])
add $256, %la]

add $256, %[b]

add $256, %]c]

sub $32, %|n]

jnz loop_triad

%6Yezmml

YeYzmm3

YeYzmmb

Y /gzmm7

(b) triad assembly code snippet.

Fig. 12: Sample of KNL optimized assembly of ddot and triad
kernels.

we characterize its physical memory access pattern and
match the best achievable bandwidth following a similar
pattern. The latter comes in replacement of the previous
local and remote bandwidths. In Figure 13, we represent the
LARM chart of a single NUMA domain of a KNL system,
with local MCDRAM and DRAM bandwidths. The range
of possible values for herein proposed hybrid roofs are
represented as a color gradient spanning from MCDRAM
bandwidth to DRAM bandwidth. Projecting this roof for
each represented application would correspond to replacing
the color gradient with parallel oblique lines crossing each
application point, if it is indeed limited by the matching
hybrid bandwidth.

When accessing several memories (in the main memory
subsystem), a bandwidth-bound application needs to wait
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Fig. 13: Several STREAM benchmarks with different load/-
store patterns and different memory allocations. Between
MCDRAM:1_LOAD and NUMANODE:0_LOAD roofs is
represented as a color gradient the possible scalar values for
the hybrid roof depending on the physical memory access
pattern between each hereby characterized memory.
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Fig. 14: LARM extension model compared with LARM and
CARM models.

(at least) for the slowest data transfer to finish, thus defining
an upper bound of the achievable bandwidth. It is also a
reasonable hypothesis to state that the application has to
wait (at most) the time of sequentially accessing each of
those memories, thus setting a lower bound of the achiev-
able bandwidth. As it will be shown in the next subsection,
the realistically achievable bandwidth is in between those
two bounds. Thus, data transfers can overlap as depicted in
Figure 14, and our goal is to quantify this overlap in order to
provide a complete characterization of the proposed hybrid
roof.



6.3 Dissecting Nodes Memory Bandwidth

In order to understand and quantify how the overall ap-
plication bandwidth is affected by the use of different
memories with different bandwidths, we run a large set
of micro-benchmarks tailored to reach system bandwidth
upper-bounds following the legacy methodology from the
CARM [6]. For this evaluation, we use two NUMA memo-
ries, and one cluster of cores; the memory with the highest
bandwidth is noted as fast and the one with the least
bandwidth is noted as slow. For instance, on a Knights
Landing processor, the slow memory stands for the DRAM,
while the fast memory stands for the MCDRAM. Hence,
this methodology remains the same whether it is applied
to the KNL system with a fast and a slow memory per
cluster of cores, or if it is applied to a single cluster of a
multi-socket system with near fast memory and far slow
memories. Unlike it was considered previously, the herein
proposed approach accounts for the application locality
and load/store patterns to infer the achievable bandwidth.
This is done by measuring the sustained bandwidth when
varying the amount of load and store instructions, as well
as the proportion of the data set in fast and slow memories.
Obtained benchmark results are represented by a surface,
where the bandwidth measured by a cluster of cores is a
function of loa(ﬁ% proportion and fastffstlow proportion of
data accessed. Each benchmark bandwidth can be finally
matched with (load, store) and (slow, fast) ratios of an
application (obtained with hardware counters) to deduce a
new upper-bound of the application achievable bandwidth.
For each bacﬁ_% value to test, we generate a highly
tuned micro-benchmark to measure the platform band-
width. As for constructing the CARM roof, the critical
section of each benchmark uses the highest available vector
extension (i.e. AVX512 here) for load and store instructions.
Furthermore, since we do not intend to measure cache
effects, we bypass the cache hierarchy with the special non-
temporal store instructions VMOVNTPD . We do not use non-
temporal loads VMOVNTQDA yielding a similar bandwidth
as cache-able loads VMOVUPD. Such an instruction flow is
depicted on Figure 15. The latter also shows how memory
locality is coupled with loads and stores which is detailed
below.

Since data allocation spans several memories, we have to
set the allocation scheme maximizing the achievable band-
width. The trade-off is between spatial locality when allo-
cating one continuous block for each memory (or balance)
and parallelism when interleaving pages on each memory.
It is worth to note that the system prefetcher is able to suc-
cessfully deal with regularly spaced patterns of interleaved
memory allocations and mitigate spatial locality issues.
Hence, we choose to use the interleave allocation pattern as
illustrated in Figure 15 with a read buffer and a write buffer
interleaving pages of slow and fast memories. If the amount
of each memory used is not balanced, then, remaining
pages which cannot be interleaved are allocated in a single
memory. Unlike pages allocation strategy, benchmarks load
and store instructions are interleaved in a balanced way
to mimic application behaviour. For instance, if there are
twice as much load instructions than store instructions, the
pattern interleaves two loads with one store as depicted
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vmovupd 64(%[al), %%zmm0
vmovupd 128(%[a]), %%zmm1
vmovntpd %%zmm?2, 64(%Ib1)

Fig. 15: Example of a memory benchmark pattern where half
of buffers size is in the fast memory, i.e. slow/fast ratio =
1, and one third of the instructions are store instructions, i.e.
load/store ratio = 2

in Figure 15. Indeed, because of the limited amount of
registers in the processor, applications usually have to store
computations results soon after they are performed in order
to release the registers for new data.

6.4 Results and Models

We applied the proposed methodology for a wide range
of (load, store) and (slow, fast) ratios on two different
NUMA systems: the Knights Landing processor and a bi-
socket Xeon processor from Skylake generation, in order to
evaluate the target memory bandwidths. These bandwidths
are noted with the label "benchmark” in Figure 16: the x
axis denotes the proportion of fast memory used on the
overall allocations, while the y axis represents the achieved
bandwidths. The total allocated size is constant for every
sample and large enough to hide caching effects.

In order to extend the comprehensiveness of the results,
we also plot a grey area noted Theoretical limit bounding
the theoretically achievable bandwidth. Upper and lower
bounds of this area are computed from the theoretical total
aggregated bandwidth when all memories can be simul-
taneously used (see equation 4) and the total theoretical
aggregated bandwidth when each memory is sequentially
used (see equation 3). In the first case, the execution time
is bound by the longest of the memory access, whereas
in the second case the time is bound by the sum of the
memory access time. The "Model” curve is a comprehensive
model built on the top of system bandwidths. It decomposes
the total bandwidth into each memory bandwidth involved
and weights their contribution in the final execution time.
Hence, the model weights bridge the gap between the
hardware characteristics and the execution context imposed
by the application.

Toward the explanation of the model we introduce few
notations (quantities are expressed in Bytes):

o, the quantity of data to load from the slow mem-
ory,

e (g, the quantity of data to store into the slow mem-
ory,

e qy the quantity of data to load from the fast memory,

e g, the quantity of data to store into the fast memory,



13

O | O | oF | 0% | 6 | 0% | 6% | 65 | 0% | 05 | 6% | 6
Skylake | 0.966 | 0.600 | -0.102 | 0.465 | 0.294 | 0.373 | 0.912 | 0.067 | 0.337 | 0.059 | 0.293 | 0.54
KNL | 0238 | 0.722 | 0.985 | 0.956 | 0.611 | 0.564 | 0.183 | 0.953 | 0.797 | 0.726 | 0.571 | 0.65

TABLE 6: Model parameters fitted for the Skylake and KNL systems, obtained from Figure 16.

ETheoretical limits =Benchmark-Model
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Fig. 16: Bandwidth versus Model for data locality on the
KNL and Skylake systems where only stores (or only load)
instructions are used.

such that q,, + q , + q;; + q is constant across executions.
We also establish several bandwidth notations (expressed in
bytes/seconds):

e by the load bandwidth of the slow memory,
e Dby the store bandwidth of the slow memory,
e by the load bandwidth of the fast memory,
o by the store bandwidth of the fast memory.

As a result, it can be observed that it takes at least:

oty = qy /bis seconds to load the data set from the
slow memory,

oty = qg /bss seconds to store the data set into the
slow memory,

ot =qy /bis seconds to load the data set from the fast
memory,

oty = q;/bss seconds to store the data set into the fast
memory.

tmin = Mmax (tlsa tssa tlfv tsf)

®)

tmax = tis + tss + tie + ts¢ (4)

tmin (3) is the minimum time to serve memory requests if
all of them are simultaneously performed. tnin stands for a
lower bound of the achievable time. It shall not be confused
with the actual transfer time that might be longer. With these

notations, the top of the grey area in Figure 16 represents
(qs + g + Q¢ + 9¢) / tmin- In contrast, the bottom of the grey
area represents (q;, +qq, +qj;+ ) /tmax, Where tmay (4) refers
to the amount of time required to serve memory requests
by each of accessed memories serially. tmax Stands for an
upper bound of the achievable transfer time. It shall not be
confused with the actual transfer time that might be shorter.

One can see in Figure 16 that in extreme cases
(load_ratio € {0, 1}and fast_ratio € {0,1}), the bandwidth
matches the limits of the “Theoretical limits” area. Hence,
both tmin Or tmax can be used as the intercept term of the
linear model of the total transfer time.

We split the model into four parts to treat separately the
cases where each of the four bandwidths is dominating the
data transfer. They are used to obtain a better curve fitness
when there are sudden breaks and the measured bandwidth
does not seem differentiable. In order to reach this objective,
we define the following set of flags:

o ismaxy = 1 if max(ts, tss, tir, tst) = tie else 0,
o ismaxg = 1if max(tys, tss, tir, tst) = tsr else 0,
o ismaxj = 1if max(ts, tss, tir, tsr) = tis else 0,
o ismaxg = 1if max(ts, tss, tir, tsr) = tss €lse 0,

such that ismaxj + ismaxgs 4+ ismaxjs + ismaxss = 1. With
this notation, we can rewrite the intercept term tmin = tif *
ismaxys + tis * ismaxys + tef * ismaxes + tss * iSmaxgg split into
four parts.

For each of the four model parts, the slope is defined
as the weighted sum of non-dominating bandwidths which
do not overlap the dominating bandwidth with a quantity
0. We define 6 weights sub-scripted with the first letters
of the dominating bandwidth and super-scripted with the
non-dominating bandwidth considered. For instance, 61
represents the quantity of data transfer loaded from the slow
memory and that is not overlapped by the transfer of data
loaded from the fast memory. With this notation, the slopes
of the four model parts are written as follows:

o ismaxs*( }fs st + Hfff stos+ 057 *tss ), the not overlapped
transfer times when the whole time is dominated by
loads in the fast memory,

e ismaxy x (Qgtlf + Gfsftsf + 6itss), the not overlapped
transfer times when the whole time is dominated by
loads in the slow memory,

o ismaxy * (05ts + Ot + 65ts), the not overlapped
transfer times when the whole time is dominated by
stores in the fast memory,

o ismaxg * (05t + Oty + 0Fty), the not overlapped
transfer times when the whole time is dominated by
stores in the slow memory.

Finally, the fit of approximate spent time in data transfers



is expressed as follows:

the = (5)
ismaxy * (9}? * b + 9155 * top + OFF * tss + i)+
ismax * (0} % tr + 055 tyr + 05 * tyg + o)+
ismaxgs * (05 * tig + 05 * tir + 05 * tg + to)+

ismaxgg * (0;@ * tg + Qgs s tir + 05 * tof + ts)

where each § parameter is adjusted with a linear regression
and quantifies the system ability to overlap a pair of band-
widths when one is dominating the total transfer time. The
fitted parameters for the tested Skylake system, as well as
for the KNL system, are given in Table 6.

The “Benchmark” curve on Figure 16 is obtained by
assessing the system heterogeneous bandwidth along a
wide range of memory access patterns. Not only the hereby
obtained roof can help to troubleshoot performance issues,
but it also provides a simplified interpretation of the system
bandwidth. The average model error'® is below 3% for each
platform, thus highlighting the model quality. However, the
model shows a protuberance at 50% of the data allocated
in fast memory, where it does not break although the
real bandwidth seems to. This shortcoming can easily be
overcome by introducing additional parameters, e.g. by
splitting the model to introduce a hypothetical intermediate
memory element and estimate its bandwidth. However, this
approach would weaken the model interpretability, since
this new element would not be built to match a real system
component for which we can measure the bandwidth but
instead a hypothetical one.

6.5 Model Validation with synthetic benchmarks

The final step of this work is to verify the capability of
the proposed model to characterize the behaviour of highly
optimized memory-bound applications. For this purpose,
a set of STREAM benchmarks, expected to approach the
modeled roofs, are used. The benchmarks ratio of loads
and stores is constrained, however the memory allocation
policy is not. Hence, we validate the roof along the locality
dimension for the three applications. The buffers for reading
and writing are all allocated with the same methodology
as the benchmarks are, as it is presented in Figure 15.
Figure 17 presents the validation chart, where the synthetic
benchmarks are matched with the closest micro-benchmark.
For each (slow, fast) ratio, we plot the achieved bandwidth
when compared to the micro-benchmark bandwidth, fitted
model bandwidth and associated model with § parameters
(computed with platform micro-benchmarks) from Table 6.
We also plot the system raw load and store bandwidths
with horizontal lines. The latter clearly shows (see Knights
Landing in Figure 17) the importance of providing a hybrid
roof when compared to raw bandwidths, especially when
extracting the information that a memory bandwidth bot-
tleneck is reached. Though the "Model” is still a good fit
to benchmarks, both feature a different bandwidth when

10. The model error is computed as root mean squared error of
bandwidth differences between the benchmarks y; and the model ¥;:
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Fig. 17: Comparison of STREAM benchmarks bandwidth
(application) with systems bandwidths (benchmark) assum-
ing the same load/store ratio, with the system raw band-
widths as horizontal (roof) lines, and with the model of the
system bandwidth (Model).

compared with scale or triad, on the Skylake system. Never-
theless, since they perform better than the application, they
still can stand as a roof of the achievable bandwidth.

7 RELATED WORKS

To this date, there are two main approaches for Roofline
modeling, namely: the Original Roofline Model (ORM) [8]
and the Cache-Aware Roofline Model (CARM) [6]. Unlike
the CARM that includes the complete memory hierarchy
in a single plot, the ORM mainly considers the memory
transfers between the last level cache and the DRAM, thus
it provides fundamentally different perspective and insights
when characterizing and optimizing applications [17]. Re-
cently, the ORM was also instantiated on the KNL [18],
without modifying the original model. The arithmetic in-
tensity (AI) described in ORM is not to be confused with
CARM AI because of the difference in the way how the
memory traffic is observed. The bandwidth measured also
differs from the one measured in this paper, the latter
being explicitly load bandwidth. In [18], the authors present
several ORM-based optimization case studies, and compare
the performance improvements between Haswell processor
and KNL, with data in DDR4 memory or MCDRAM, and
finally KNL with data in MCDRAM memory. However, the
authors do not show how the model can help choosing
between memories when working sets do not fit in the
fastest one nor they provide a comparison with the cache
mode.

An extension to the ORM, named 3DyRM [19], has been
proposed to provide locality insights on NUMA systems.
This model considers memory accesses from a single last



level cache to any other memory, and not only local memory.
It extends the ORM with a latency dimension to characterize
the sampled memory access. Not only 3DyRM inherits the
distorted perspective of the ORM, when characterizing real-
world applications, but it also gives very limited insights on
the distance of memory accesses to the NUMA thresholds
considered in this paper. Moreover, 3DyRM characterizes
applications with sampled memory accesses, without clas-
sifying them nor providing a methodology to get the first
order insights, which is the main goal of the legacy model.

The Capability Model [15] was recently proposed to evalu-
ate KNL realistic upper-bounds and guide applications per-
formance optimization. The authors established a complex
model mostly focusing on latency and bandwidth of the
mesh interconnect. The Capability Model focuses on com-
munication intensive algorithms (such as barrier synchro-
nization, reduction, sorting, etc), whereas the LARM has a
throughput-oriented approach, focusing on computational
workloads stressing both compute and memory units. As
such, the Capability model suits better message passing
programming paradigms to enhance communication-based
algorithms, while the LARM suits better shared memory
programming paradigms where communications are not
explicitly expressed and mixed with computations.

Execution Cache Memory (ECM) [20] is also another in-
sightful approach to model performance of memory-bound
applications. This model is built under similar assumptions
as the CARM when modeling the performance of pro-
cessing elements and memory levels, e.g., by considering
their maximum throughput. However, the ECM aims at
predicting the application runtime whereas the CARM aims
at providing insights toward application characterization
and optimization. Moreover, to the best of our knowledge,
there are no studies demonstrating the usability of the ECM
for NUMA and heterogeneous memory systems featuring
emerging heterogeneous memory technologies.

Our contribution to the CARM can also advance its cur-
rent implementation in the Intel proprietary tool’s, referred
as Intel Advisor Roofline [21], and for which some of the
authors of this paper published concrete use cases [22]. Un-
like Intel Advisor Roofline, we keep track of the MCDRAM
bandwidth in several aspects, and provide additional in-
sights about potential bottlenecks and characteristics of
NUMA systems. Indeed, we demonstrated that our model
improvements can efficiently spot locality-related issues,
and provide different interpretation methodology, especially
in the case of traditional multi-socket systems.

8 CONCLUSIONS

The trend of increasing the number of cores on-chip is
enlarging the gap between compute power and memory
performance. This issue leads to design systems with het-
erogeneous memories, creating new challenges for data lo-
cality. Before the release of those memory architectures, the
Cache-Aware Roofline Model offered an insightful model
and methodology to improve application performance with
knowledge of the cache memory subsystem. We build new
roofs characterizing bottlenecks typical of NUMA systems
and showed that this additional information can help to suc-
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cessfully spot locality issues arising from different sources,
such as data allocation policy or memory configuration.

This paper also focused on overcoming the limitations
and extending its ability to pinpoint a wider set of appli-
cation bottlenecks. The model limitations were highlighted
with concrete synthetic benchmark cases. Based on this ob-
servation, we built a multi-bandwidth model and method-
ology to design a heterogeneous roof in the model for
replacing some of the previously proposed roofs. By design,
the fitted model also quantifies the system ability to overlap
bandwidths when simultaneously accessing several mem-
ories with different characteristics. Finally, the relevance of
the proposed approach was validated by matching a set of
applications with it.

A trail toward future works is to provide deeper insights
by modeling the memory latency and the different access
patterns. So far, we only modeled contiguous memory ac-
cesses or typical interleaved patterns. However, it could
be interesting to measure the achievable performance gains
from a complex memory access pattern that could be simpli-
fied. Generalizing the model to other devices and architec-
tures (also embedding heterogeneous memories) represents
one of the future research directions with a potentially high
interest to the scientific community.
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