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Abstract

The explosion in the amount of the available RDF
data has lead to the need to explore, query and un-
derstand such data sources. Due to the complex
structure of RDF graphs and their heterogeneity,
the exploration and understanding tasks are signifi-
cantly harder than in relational databases, where the
schema can serve as a first step toward understand-
ing the structure. Summarization has been applied
to RDF data to facilitate these tasks. Its purpose is
to extract concise and meaningful information from
RDF knowledge bases, representing their content as
faithfully as possible. There is no single concept of
RDF summary, and not a single but many approaches
to build such summaries; each is better suited for
some uses, and each presents specific challenges with
respect to its construction. This survey is the first
to provide a comprehensive survey of summarization
method for semantic RDF graphs. We propose a tax-
onomy of existing works in this area, including also
some closely related works developed prior to the
adoption of RDF in the data management commu-
nity; we present the concepts at the core of each ap-
proach and outline their main technical aspects and
implementation. We hope the survey will help read-
ers understand this scientifically rich area, and iden-
tify the most pertinent summarization method for a
variety of usage scenarios.

1 Introduction

Semantic languages and models are increasingly used
in order to describe, represent and exchange data
in multiple domains and forms. In particular, given
the prominence of the World Wide Web Consortium
(W3C)! in the international technological arena, its
standard model for representing semantic graphs,
namely RDF, has been widely adopted. Many RDF
Knowledge Bases (KBs, in short) of millions or even
billions of triples are now shared through the Web,
also thanks to the development of the Open Data
movement, which has evolved jointly with the data
linking best practices based on RDF. A famous repos-
itory of open RDF graphs is the Linked Open Data
cloud, currently referencing more than 62 billion RDF
triples, organized in large and complex RDF data
graphs [88]. Further, several RDF graphs are con-
ceptually linked together into one, as soon as a node
identifier appears in several graphs. This enables
querying KBs together, and increases the need to un-
derstand the basic properties of each data source be-
fore figuring out how they can be exploited together.

The fundamental difficulty toward understanding
an RDF graph is its lack of a standard structure (or
schema), as RDF graphs can be very heterogeneous
and the basic RDF standard does not give means to
constrain graph structure in any way. Ontologies can
(but do not have to) be used in conjunction to RDF

Thttp://www.w3.org



data graphs, in order to give them more meaning,
notably by describing the possible classes resources
may have, their properties, as well as relationships
between these classes and properties. On one hand,
ontologies do provide an extra entry point into the
data, as they allow to grasp its conceptual structure.
On the other hand, they are sometimes absent, and
when present, they can be themselves quite complex,
growing up to hundreds or thousands of concepts;
SNOMED-CT?, a large medical ontology, comprises
millions of terms.

To cope with these layers of complexity, RDF
graph summarization has aimed at extracting con-
cise but meaningful overviews from RDF KBs, repre-
senting as close as possible the actual contents of the
KB. RDF summarization has been used in multiple
application scenarios, such as: identifying the most
important nodes, query answering and optimization,
schema discovery from the data, or source selection,
and graph visualization to get a quick understand-
ing of the data. It should be noted that indexing,
query optimization and query evaluation were stud-
ied as standalone problems in the data management
areas, before the focus went to semantic RDF graphs;
therefore, several summarization methods initially
studied for data graphs were later adapted to RDF.
Among the currently known RDF summarization ap-
proaches, some only consider the graph data without
the ontology, some others consider only the ontology,
finally some use a mix of the two. Summarization
methods rely on a large variety of concepts and tools,
comprising structural graph characteristics, statis-
tics, pattern mining or a mix thereof. Summarization
methods also differ in their usage scope. Some sum-
marize an RDF graph into a smaller one, allowing
some RDF processing (e.g., query answering) to be
applied on the summary (also). The output of other
summarization methods is a set of rules, or a set of
frequent patterns, an ontology etc.

Summarizing semantic graphs is a multifaceted
problem with many dimensions, and thus many algo-
rithms, methods and approaches have been developed
to cope with it. As a result, there is now a confusion
in the research community about the terminology in

2https://www.snomed.org/snomed-ct

the area, further increased by the fact that certain
terms are often used with different meanings in the
relevant literature, denoting similar, but not identical
research directions or concepts. We believe that this
lack of terminology and classification hinders scien-
tific development in this area.

To improve understanding of this field and to help
students, researchers or practitioners seeking to iden-
tify the summarization algorithm, method or tool
best suited for a specific problem, this survey at-
tempts to provide a first systematic organization of
knowledge in this area. We propose a taxonomy of
RDF (and most representative, prior graph) summa-
rization approaches. Then, we classify existing works
according to the main class of algorithmic notions
they are based on; further, for each work, we specify
their accepted inputs, outputs, and when a tool is
publicly available, we provide the reference to it. We
place each of the works in the space defined by the
dimensions of our classification; we summarize their
main concepts and compare them when appropriate.

Since our focus is on RDF graph summarization
techniques, we leave out of our scope graph sum-
marization techniques tailored for other classes of
graphs, e.g., biological data graphs [90], social net-
works [57] etc. We focus on techniques that have
either been specifically devised for RDF, or adapted
to the task of summarizing RDF graphs. The litera-
ture comprises surveys on generic (non-RDF) graph
summarization, and/or partial surveys related to our
area of study. The authors of [113] present generic
graph summarization approaches, with a main focus
on grouping-based methods. A recent survey [59] has
a larger focus than ours. It considers static graphs as
well as graphs changing over time; graphs which are
just connection networks (node and edge labels are
non-existent or ignored), but also labeled directed or
undirected graphs, which can be seen as simple sub-
sets of RDF. Also, a recent tutorial [40] covers a sim-
ilar set of topics. However, given their broad scope,
these works describe areas of work we are not con-
cerned with, such as social (network) graph summa-
rization, and ignore many of the proposals specifically
tailored for RDF graphs, which are labeled, oriented,
heterogeneous, and may be endowed with type infor-
mation and semantics. In contrast, our survey seeks



to answer a need we encountered among many Se-
mantic Web practitioners, for a comprehensive review
of summarization techniques tailored exactly to such
graphs. Another recent work [80] focuses on metrics
used for ontology summarization only, whereas we
consider both RDF graphs and their ontologies.

Our survey is structured as follows: Section 2 re-
calls the foundations of the RDF data model, and
RDF Schema (RDFS, in short), the simplest ontology
language which can be used in conjunction with RDF
to specify semantics for its data. Section 3 describes
RDF summarization scope, applications and dimen-
sions of analysis for this survey. In Section 4, we
classify along these dimensions a selection of the main
graph summarization works which preceded works on
RDF summarization. We include a short discussion
of these works here, as they were the first to intro-
duce a set of concepts crucial for summarization, and
on which RDF-specific summaries have built. In the
sequel of the survey, Sections 5, 6, 7 and 8 analyze
the related works in each category. Finally, Section 9
concludes this paper and identifies fields of future ex-
ploration.

2  Preliminaries: RDF graphs

We recall here the core concepts and notations related
to RDF graphs. At a first glance, these can be con-
sidered particular cases of labeled, oriented graphs,
and indeed classical graph summarization techniques
have been directly adapted to RDF; we recall them
in Section 2.1. Then, we present RDF graphs in Sec-
tion 2.2, where we introduce the terminology and spe-
cific constraints which make up the RDF standard,
established by the W3C; we also introduce here on-
tologies, which play a central role in most RDF ap-
plications, with a focus on the simple RDF Schema
ontology language. From a database perspective,
the most common usage of RDF graphs is through
queries; therefore, we recall the Basic Graph Pattern
(BGP) dialect at the core of the SPARQL RDF query
language in Section 2.3. Finally, a brief discussion of
more expressive ontology languages, sometimes used
in conjunction with RDF graphs, is provided in Sec-
tion 2.4.

2.1 Labeled directed graphs:
concepts

core

Labeled directed graphs are the core concept allowing
to model RDF datasets. Further, most (not all) pro-
posals for summarizing an RDF graph also model the
summary as a directed graph. Thus, without loss of
generality, we will base our discussion on this model.
Note that it can be easily generalized to more com-
plex graphs, e.g., those with (multi-)labeled nodes.

Given a set A of labels, we denote by G = (V, E)
an A-edge labeled directed graph whose vertices are
V, and whose edges are E CV x A X V.

Figure 1 displays two such graphs; A edge la-
bels are attached to edges. Node labels will be
used/explained shortly in our discussion.

Figure 1: Sample edge-labeled directed graphs

In addition, the notions of graph homomorphism
and graph isomorphism frequently appear in graph
summary proposals:

Definition 1 (Homomorphism and isomorphism)

Let G = (V,E) and G' = (V',E’) be two A-edge
labeled directed graphs. A function ¢ : V. — V' is
a homomorphism from G to G' iff for every edge
(v1,l,v2) € E there is an edge (¢p(v1),1,¢(v2) € G'.
If, moreover, ¢ is a bijection, and its inverse ¢~ is
also a homomorphism from G’ into G, then ¢ is an
isomorphism.

A homomorphism from G to G’ ensures that the
graph structure present in G has an ”image” into G’.
For our discussion, this is interesting in three different
settings:

1. If G is a data graph and G’ is a summary graph
representing GG, a homomorphism from G to G’



ensures that every subgraph of G has an image
in G'.

2. Conversely, a homomorphism from a summary
graph G’ into the data graph G means that all
the graph structures present in the summary also
appear in the data graph.

3. If Q is a graph query, e.g., expressed in SPARQL,
and G is a data graph, e.g., an RDF graph, the
answer to @ on G, denoted Q(G), is exactly de-
fined through the set of homomorphisms which
may be established from G to G’. Together with
the two items above, this leads to several inter-
esting relationships between queries, data graphs
and their summaries, in particular allowing to
use the summary to gain some knowledge about
Q(G) without actually evaluating it.

Observe that while homomorphisms between a
graph and its summary have useful properties, an
isomorphism would defeat the purpose of summariza-
tion, as two isomorphic graphs would have the same
size.

In Figure 1, the graph shown on the right is homo-
morphic to that on the left. Indeed, a homomorphism
maps each node from the graph at left into the right
graph node whose label contains its number.

Notations: node and edge counts Throughout
this survey, unless otherwise specified, N denotes the
number of nodes and M the number of edges of a di-
rected graph input to some summarization approach.

2.2 The Resource Description Frame-
work (RDF)

Our study of graph summarization techniques is cen-
trally motivated by their interest when summarizing
RDF graphs. RDF is the standard data model pro-
moted by the W3C for Semantic Web applications.

RDF graph. An RDF graph (in short a graph) is
a set of triples of the form (s,p,0). A triple states
that a subject s has the property p, and the value of
that property is the object 0. We consider only well-
formed triples, as per the RDF specification [107],

‘ Assertion ‘ Triple Relational notation

Class (s, rdf:type, o) | o(s)
Property (5.p,0) p(s,0)

‘ Constraint ‘ Triple ‘ OWA interpretation
Subclass (sy <s¢y0) sCo
Subproperty (s, <sp,0) sCo
Domain typing | (p,44,0) Mgomain(s) C o
Range t-/yping (pv ry 0) Hrange(s) Co

Figure 2: RDF (top) & RDFS (bottom) statements.

belonging to (U U B) x U x (U U B U L) where U
is a set of Uniform Resource Identifiers (URIs), £
a set of typed or untyped literals (constants), and
B a set of blank nodes (unknown URIs or literals);
U, B, L are pairwise disjoint. Blank nodes are essen-
tial features of RDF allowing to support unknown
URI/literal tokens. These are conceptually similar to
the labeled nulls or variables used in incomplete re-
lational databases [1], as shown in [27]. As described
above, it is easy to see that any RDF graph is a la-
beled graph as described in Section 2.1. However, as
we explain below, RDF graphs may contain an ontol-
ogy, that is, a set of graph edges to which standard
ontology languages attach a special interpretation.
The presence of ontologies raises specific challenges
when summarizing RDF graphs, which do not occur
when only plain data graphs are considered.

Notations. We use s, p, and o as placehold-
ers for subjects, properties and objects, respec-
tively. Literals are shown as strings between quotes,
e.g., “string”. Fig. 2 (top) shows how to use triples to
describe resources, that is, to express class (unary re-
lation) and property (binary relation) assertions. The
RDF standard [107] has a set of built-in classes and
properties, as part of the rdf: and rdfs: pre-defined
namespaces. We use these namespaces exactly for
these classes and properties, e.g., rdf:type specifies
the class(es) to which a resource belongs. For brevity,
we will sometimes use T to denote rdf:type.

Example 1 (RDF graph) For example, the fol-
lowing RDF graph G describes a book, identified by
doiy, its author (a blank node _:by whose name is



known), title and date of publication:

{(doiy, rdf:type,Book), (doi,,writtenBy,_:b1),
(doi;,hasTitle, “Le Port des Brumes”),
(_:b1,hasName, “G. Simenon”),
(doiy,publishedIn, “19327)}

G:

RDF Schema (RDFS). RDFS allows enhancing
the assertions made in an RDF graph with the use
of an ontology, i.e., by declaring semantic constraints
between the classes and the properties they use. Fig.
2 (bottom) shows the four main kinds of RDFS con-
straints, and how to express them through triples
hence particular graph edges. For concision, we de-
note the properties expressing subclass, subproperty,
domain and range constraints by the symbols <.,
~sp, 4 and —,, respectively. Here, “domain” de-
notes the first, and “range” the second attribute of
every property.

The RDFS constraints depicted in Fig. 2 are inter-
preted under the open-world assumption (OWA) [1],
i.e., as deductive constraints. For instance, if
the triple (hasFriend, >4, Person) and the triple
(Anne, hasFriend, Marie) hold in the graph, then so
does the triple (Anne, 7, Person). The latter is due to
the domain constraint in Fig. 2.

Example 2 (RDF graph with an RDFS ontology) 1. 1 1de renaming

Assume that the RDF graph G in the preced-
ing example is extended with the RDFS on-
tological  constraints: (Book, <., Publication),
(writtenBy, <4, hasAuthor), (writtenBy, <=4, Book)
and (writtenBy, <., Person). The resulting graph
is depicted in Fig. 3. Its implicit triples are those
represented by dashed-line edges.

RDF entailment. An important feature of RDF
graphs are implicit triples. Crucially, these are con-
sidered part of the RDF graph even though they
are not explicitly present in it, e.g., the dashed-line
G edges in Fig. 3, hence require attention for RDF
graph summarization.

W3C names RDF entailment the mechanism
through which, based on a set of explicit triples and
some entailment rules, implicit RDF triples are de-
rived. We denote by Fipr immediate entailment,

rdfs:domain

Publication

1 rdfs:subClassOf

“*~._ rdfs:subPropertyOf

: rdfs:domain
“1932” | rdf:type m
o _fim

rdf:type

writtenBy

publishedIn | rdfs:range
N

- writtenBy
doi 2 7 I ey
]1;1.\\1111”)1"’ . “1(”11.\]“"'

hasTitle hasName

[ “Le Port des Brumes” | [ “G. Simenon” |

Figure 3: RDF graph and its implicit triples.

i.e., the process of deriving new triples through a sin-
gle application of an entailment rule. More generally,
a triple (s,p,0) is entailed by a graph G, denoted
G Fror (s,p,0), if and only if there is a sequence of
applications of immediate entailment rules that leads
from G to (s, p,0) (where at each step, triples previ-
ously entailed are also taken into account).

Saturation. The immediate entailment rules allow
defining the finite saturation (a.k.a. closure) of an
RDF graph G, which is the RDF graph G defined
as the fixed-point obtained by repeatedly applying
Fipe rules on G.

The saturation of an RDF graph is unique (up
), and does not contain im-
plicit triples (they have all been made explicit by
saturation). An obvious connection holds between
the triples entailed by a graph G and its saturation:
G Fror (s,p,0) if and only if (s,p,0) € G™.

RDF entailment is part of the RDF standard itself;
in particular, the answers to a query posed on G must
take into account all triples in G [110], since in the
presence of RDF Schema constraints, the semantics
of an RDF graph is its saturation [107]. As a result,
the summarization of an RDF graph should reflect
its saturation, e.g., by summarizing the saturation of
the graph instead of the graph itself.

Example 3 (RDF entailment and saturation)

The saturation of the RDF graph comprising RDFS
constraints G, displayed in Fig. 3, is the graph G
obtained by adding to G all its implicit triples that
can be derived through RDF entailment, i.e., the



graph G in which the implicit/dashed edges are made
explicit/solid ones.

We introduce below a few more notions we will
need in order to describe existing RDF summariza-
tion proposals.

Instance and schema graph. An RDF instance
graph is made of assertions only (recall Fig. 2), while
an RDF schema graph is made of constraints only
(i.e., it is an ontology). Further, an RDF graph can
be partitioned into its (disjoint) instance and schema
subgraphs.

Properties and attributes of an RDF graph.
While this is not part of the W3C standard, some
authors use attribute to denote a property (other than
those built in the RDF and RDFS standards, such
as T, <24 etc.) of an RDF resource such that the
property value is a literal. In these works, the term
property is reserved for those RDF properties whose
value is an URI.

Notations. In the following we use the conjunctive
query notation Q(Z):- t1,...,tq, where {t1,...,tq} 18
a BGP. The head of @ is Q(Z), and the body of @
is t1,...,to. The query head variables T are called
distinguished variables, and are a subset of the vari-
ables occurring in t1,...,t,; for boolean queries T is
empty. We denote by VarB1(Q) the set of variables
and blank nodes occurring in the query Q. In the
sequel, we will use z, y, z, etc. to denote variables in
queries.

Query evaluation. Given a query
Q(Z):- t1,...,t, and an RDF graph G, the evaluation
of Q against G is:

Q(G) ={®(z) | @ : VarBL(Q) — Val(G) isa @ to G
homomorphism such that {®(t1),...,P(ts)} C G}

where we denote by ®(t) (resp. ®(Z)) the result of
replacing every occurrence of a variable or blank node
e € VarB1(Q) in the triple ¢ (resp. the distinguished
variables Z), by the value ®(e) € Val(G).

Query answering. The evaluation of @) against G

Example 4 (Instance, schema, properties and attib ebdE SF R RISE Eﬂ'ﬁk‘;ﬁ) thus may lead to an

The RDF graph G shown in Fig. 8 consists of the
RDF schema graph comprising the blue triples, and
of the RDF instance graph comprising the black
triples. Further, within this G instance subgraph,
the properties considered attributes are the following:
publishedIn, hasTitle and hasName.

2.3 BGP queries

SPARQLS? is the standard W3C query langage used
to query RDF graphs. We consider its popular con-
junctive fragment consisting of Basic Graph Pattern
(BGP) queries. Subject of several recent works [27,
95, 26, 78, 9], BGP queries are also the most widely
used in real-world applications [78, 53]. A BGP is
a generalization of an RDF graph in which variables
may also appear as subject, property and object of
triples.

Shttps://www.w3.org/TR/rdf-sparql-query/

incomplete answer set. The (complete) answer set
of @ against G is obtained by the evaluation of @
against G°°, denoted by Q(G>).

Example 5 (Query evaluation versus answering)
The query below asks for the author’s name of “Le
Port des Brumes”:

Q(z3):- (1, hasAuthor, x2), (22, hasName, z3)
(z1,hasTitle, “Le Port des Brumes”)

Its answer against the explicit and implicit triples
of our sample graph is: Q(G™) = {(“G. Simenon”)}.

Note that evaluating @ only against G leads to the
empty answer, which is obviously incomplete.

24 OWL

Semantic graphs considered in the literature for sum-
marization sometimes go beyond the expressiveness
of RDF, which comes with the simple RDF Schema



ontology language. The standard by W3C for seman-
tic graphs is the OWL [108, 109] family of dialects
that builds on Description Logics (DLs) [4].

DLs are first-order logic languages that allow de-
scribing a certain application domain by means of
concepts, denoting sets of objects, and roles, denoting
binary relations between concept instances. DL di-
alects differ in the ontological constraints they allow
expressing on complex concepts and roles, i.e., de-
fined by DL formula. One of the most important is-
sues in DLs is the trade-off between expressive power
and computational complexity of reasoning with the
constraints (consistency checking, query answering,
etc.)

The first flavour of OWL [108] consists of three di-
alects of increasing complexity: OWL-Lite, OWL-DL
and OWL-Full. Unfortunately, very basic reasoning
(concept satisfiability) in these dialects is highly in-
tractable: ExpTime-complete in OWL-lite that cor-
responds to the SHZFp DL, NExpTime-complete
in OWL-DL that corresponds to the SHZON p DL,
and even undecidable in OWL-full. A second flavour
of OWL [109], a.k.a. OWL2, defines three new di-
alects, OWL2 EL based on the ££ DL, OWL2 QL
based on the DL-liteg DL and OWL2 RL which can
be expressed using logical rules. These new dialects
comes with PTIME complexity for most of the rea-
soning tasks. In particular, data management tasks
(consistency checking, query answering, etc.) un-
der OWL2 QL/DL-liteg ontologies have the same
complexity as their counterparts in the relational
database model [10].

3 RDF summarization: scope,
applications and dimensions
of analysis for this survey

As we shall see, RDF summarization has been at-
tached many different meanings in the literature, and
research is still ongoing. Therefore, we start with de-
limiting the scope of RDF summarization as consid-
ered in this survey (Section 3.1), before describing
the RDF summary applications most frequently en-
countered within this scope (Section 3.2), and finally

presenting several dimensions along which the cor-
responding RDF summarization techniques can be
classified (Section 3.3).

3.1 Scope

Our goal in this survey is to study summarization
notions and tools which are useful to concrete RDF
data management applications. We will thus dis-
cuss a broad set of techniques, some of which are
also used outside our target RDF data management
contexts. However, to keep the survey focused, self-
contained, and useful to RDF practitioners, we do not
cover graph summarization or clustering techniques
designed for very specific classes of graphs. For in-
stance, while social network graphs can be modeled
in RDF, such graphs have a very specific semantics,
for instance, to reflect the important role of “user”
nodes. Instead, we aim to cover summarization of
general RDF graphs (without making assumptions
on their application domain), without ontologies (in
which case they basically coincide with labeled ori-
ented graphs) or with ontologies (that are a specific,
crucial feature of RDF data graphs).

Our review of the literature leads us to the follow-
ing generic definition. An RDF summary is one or
both among the following;:

1. A compact information, extracted from the orig-
inal RDF graph; intuitively, summarization is a
way to extract meaning from data, while reduc-
ing its size;

2. A graph, which some applications can exploit in-
stead of the original RDF graph, to perform some
tasks more efficiently; in this vision, a summary
represents (or stands for) the graph in specific
settings.

Clearly, these notions intersect, e.g., many graph
summaries extracted from the RDF graphs are com-
pact and can be used for instance to make some query
optimization decisions; these fit into both categories.
However, some RDF summaries are not graphs; some
(graph or non-graph) summaries are not always very
compact, yet they can be very useful etc.



3.2 Applications

We illustrate the above generic definition of an RDF
summary through a (non-exhaustive) list of uses
and applications.

Indexing. Most (RDF) summarization methods
from the literature build summaries which are smaller
graphs; each summary node represents several nodes
of the original graph G. This smaller graph, then,
serves as an index as follows. The identifiers of all the
G nodes represented by each summary node v are as-
sociated with the node v. To process a query on G, we
firstly identify the summary nodes, which may match
the query; then identify based on the index, the graph
nodes corresponding to these summary nodes, as a
first step toward answering the query.

Estimating the size of query results. Consider
a summary defined as a set of statistics about prop-
erty (edge label) co-occurrence in G, that is: the sum-
mary stores, for any two properties a, b appearing in
G, the number of nodes which have at least an outgo-
ing a edge and at least an outgoing b edge. If a query
searches, e.g., for resources having both a “descrip-
tion” and an “endorsement” in an RDF graph storing
product information, if the summary indicates that
there are no such resources, we can return an empty
query answer without consulting G. Further, assume
that a BGP query requires a resource with proper-
ties p1,p2, somehow connected to another resource
with properties p3,ps. If the summary shows that
the former property combination is much rarer than
the latter, a query optimizer can exploit this to start
evaluating the query from the most selective condi-
tions pq, po.

Making BGPs more specific BGPs queries may
comprise path expression with wildcards; these are
hard to evaluate, as they require traversing a poten-
tially large part of G. A graph summary may help
understand, e.g., that a path specified as “any num-
ber of a edges followed by one or more b edges” cor-
responds to exactly two data paths in G, namely: a b
edge; and an a edge followed by a b edge. These two

short and simple path queries are typically evaluated
very efficiently.

Source selection One can detect based on a sum-
mary whether a graph is likely to have a certain kind
of information that the user is looking for, without
actually consulting the graph. In a distributed query
processing setting, this can be used to know which
data partition(s) are helpful for a query; in a LOD
cloud querying context, when answering queries over
a large set of initially unknown data sources, this
problem is typically referred to as source selection.

Graph visualization A graph-shaped summary
may be used to support the users’ discovery and ex-
ploration of an RDF graph, helping them get ac-
quainted with the data and/or as a support for visual

querying.

Vocabulary usage analysis RDF is often used as
a mean to standardize the description of data from
a certain application domain, e.g., life sciences, Web
content metadata etc. A standardization commit-
tee typically works to design a vocabulary (or set of
standard data properties) and/or an ontology; appli-
cation designers learn the vocabulary and ontology
and describe their data based on them. A few years
down the road, the standard designers are interested
to know which properties and ontology features were
used, and which were not; this can inform decisions
about future versions of the standard®.

Schema (or ontology) discovery When an on-
tology is not present in an RDF graph, some works
alm at extracting it from the graph. In this case, the
summary is meant to be used as a schema, which is
considered to have been missing from the initial data
graph.

4Thanks to William van Voensel from schema.org for shar-
ing this application with us.



3.3 Classification of RDF summariza-
tion methods

From a scientific viewpoint, existing summarization
proposals are most meaningfully classified according
to the main algorithmic idea behind the summariza-
tion method:

1. Structural methods are those which consider
first and foremost the graph structure, respec-
tively the paths and subgraphs one encounters
in the RDF graph. Given the prominence of ap-
plications and graph uses, where structural con-
ditions are paramount, graph structure is promi-
nently used in summarization techniques.

e Quotient: A particular natural concept
when building summaries is that of quotient
graphs (Definition 2). They allow charac-
terizing some graph nodes as ”equivalent”
in a certain way, and then summarizing a
graph by assigning a representative to each
class of equivalence of the nodes in the orig-
inal graph. A particular feature of struc-
tural quotient methods is that each graph
node is represented by exactly one sum-
mary node, given that one node can only
belong to one equivalence class.

e Non-quotient: Other methods for struc-
turally summarizing RDF graphs are based
on other measures, such as centrality, to
identify the most important nodes, and in-
terconnect them in the summary. Such
methods aim at building an overview of the
graph, even if (unlike quotient summaries)
some graph nodes may not be represented
at all.

2. Pattern mining methods: These methods
employ mining techniques for discovering pat-
terns in the data; the summary is then built out
of the patterns identified by mining.

3. Statistical methods: These methods summa-
rize the contents of a graph quantitatively. The
focus is on counting occurrences, such as count-
ing class instances or building value histograms

per class, property and value type; other quanti-
tative measures are frequency of usage of certain
properties, vocabularies, average length of string
literals etc. Statistical approaches may also ex-
plore (typically small) graph patterns, but al-
ways from a quantitative, frequency-based per-
spective.

. Hybrid methods: To this category belong

works that combine structural, statistical and
pattern-mining techniques.

Another interesting dimension of analysis is the
required input by each summarization method, in
terms of the actual dataset, and of other user inputs
which some methods need:

1. Input parameters: Many works in the area

require user parameters to be defined, e.g. user-
specified equivalence relations, maximum sum-
mary size, weights assigned to some graph ele-
ments etc., whereas others are completely user
independent. While parameterized methods are
able to produce better results in specific sce-
narios, they require some understanding of the
methodology and as such limit their exploitation
ability only to experts.

. Input Dataset: Different works have different

requirements from the dataset they get as in-
put. RDF data graphs are most frequently ac-
cepted, usually RDF/S and/or OWL are used
for specifying graph semantics whereas only very
few works consider DL models. In addition,
some works consider or require only ontologies
(semantic schema), whereas other works exploit
only instances. Hybrid approaches exploit both
instance and schema information. For instance,
the instance and schema information can be used
to compute the summary of the saturated graph,
even if the instance graph is not saturated.

For what concerns the summarization output,
we identify the following dimensions:

1. Type: This dimension differentiates techniques

according to the nature of the final result (sum-
mary) that is produced. The summary is some-
times a graph, while in other cases it may be just



a selection of frequent structures such as nodes,
paths, rules or queries.

Nature: Along this dimension, we distinguish
summaries which only output instance represen-
tatives, from those that output some form of
summary a posteriori schema, and from those
that output both.

Availability: Last but not least, from a practical
perspective it is interesting to know the availability
of a given summarization service. This will allow a
direct comparison with future similar tools:

1. System/Tool:  Several summarization ap-
proaches are made available by their authors as a
tool or system shared with the public; in our sur-
vey, we signal when this is the case. In addition,
some of the summarization tools can be readily
tested from an online deployment provided by
the authors.

Open source: The implementation of some
summarization methods is provided in open
source by the authors, facilitating comparison
and reuse.

We also consider the quality characteristics of each
individual algorithm. Quality has to do with: com-
pleteness in terms of coverage, precision and recall
of the results if an “ideal” summary is available as a
gold standard to compare with, the connectivity of
the computed summary and, at the end, computa-
tional complexity. Given variety of RDF summariza-
tion approaches, it is not easy to define and evaluate
a single meaningful notion of quality. A more com-
prehensive, effort to establish a generic framework for
computing quality metrics on summaries is proposed
in [122], where authors discuss summarization qual-
ity concerning both the schema and instances lev-
els. However, difficulties remain, e.g. identifying the
complexity of a summarization algorithm is not al-
ways possible when the available description of the
algorithm does not provide sufficient information.

The main categorization we retain for the dif-
ferent RDF summarization approaches is based on
their measurable/identifiable characteristics and not
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on their intended use. This is because the bound-
aries among the different usages are not very clear
and there are types of methods that can be used
in diverse cases/applications. Thus, the advantages
and/or disadvantages for each category of methods
cannot be identified in a generic way, however, we
inserted a discussion whenever pertinent.

Fig. 4 depicts a high-level taxonomy of the RDF
summarization works, based on the aforementioned
dimensions. Note that many of the dimensions are
orthogonal, thus a work may be classified in multi-
ple categories. In the sequel, we classify the works,
describe the main ideas and the implemented algo-
rithms. Then we identify the specific dimension of
analysis captured in Fig. 4 for each of these works.

4 Generic graph (non-RDF)
summarization approaches

In this Section we review generic graph summariza-
tion approaches. While these have not been specif-
ically devised for RDF, they have either been ap-
plied to RDF subsequently, or served as inspira-
tion for similar RDF-specific proposals. An overview
of the generic graph summarization works is pro-
vided in Table 1 and Table 2. More precisely, Sec-
tion 4.1 presents structural graph summarization
methods, Section 4.2 describes works based on min-
ing and statistics, while Section 4.3 considers sum-
maries based on statistic and hybrid (structural and
statistic) methods.

4.1 Structural graph summarization

The structural complexity and heterogeneity of
graphs make query processing a challenging prob-
lem, due to the fact that nodes which may be part
of the result of a given query can be found anywhere
in the input graph. To tame this complexity and di-
rect query evaluation to the right subsets of the data,
graph summaries have been proposed as a basis for
indexing, by storing next to each summary node, the
IDs of the original graph nodes summarized by this
node; this set is typically called the extent. Given a
query, evaluating the query on the summary and then
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Figure 4: A taxonomy of the works in the area.

using the summary node extents allows obtaining the Definition 3 (Backward bisimulation) In  an

final query results. edge labeled directed graph, a relation ~, between the
graph nodes is a backward bisimulation if and

. ! !/ .

4.1.1 Quotient graph summaries only if for any u,v,u’,v" € V:

Many proposals for indexing graph data are based on 1. If v = v and v has no incoming edge, then v'

establishing some notion of equivalence among graph has no incoming edge;

nodes, and storing the IDs of all nodes as the extent

of the summary node. Formally, these correspond to

quotient graphs, whose definition we recall below:

2. If v =, v and v’ has no incoming edge, then v
has no incoming edge;

3. If v =y ', then for any edge u = v there exists
Definition 2 (Quotient graph) Let G = (V, E) be an edge ' = v’ such that u ~p v';
an A-edge labeled directed graph and = CV x V be u _
an equivalence relation over the nodes of V. The 4 If v v, Ehen for any edge u' = v’ there/ erists
quotient graph of G using =, denoted G =, is an A an edge u = v such that such that u =y u'.

edge-labeled directed graph having: Forward bisimulation, noted ~, is defined sim-

ilarly to backward simulation, but considers the out-

going edges of v and v’, instead of the incoming ones.

Forward and backward simulation, noted =,
e an edge (vs,,l,vs,) iff there exists an E edge is both a backward and a forward bisimulation.

(v1,l,v2) such that vg, (resp. vs,) represents We already pointed out that, in Figure 1, the graph

the set of V nodes =-equivalent to vy (resp. vs). on the right is homomorphic to that on the left. The

former is actually the quotient graph of the latter

Prominent node equivalence relations used for wusing ;. In particular, the classes of ~-equivalent

graph summarization build on backward, forward, or nodes are {1},{2,3,4,5},{6,8,9},{7}, those of ~-

backward-and-forward bisimulation [32]: equivalent nodes are {1},{2},{3,4},{5,6,7,8,9},

e o node ug for each set S of =-equivalent V
nodes;
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and those of ~j-equivalent nodes

{1}, {2}, {3, 4}, {5}, {6}, {7}, {8,9}.

Finally, we remark that it easily follows from the
bisimulation definitions that if v & v/, for instance for
forward-bisimulation, then any label path that can be
followed from v in the graph G can also be followed
from v’ in G and the other way around. In other
words, the same paths start (respectively, end) in two
~-equivalent nodes. This condition is hard to meet
in graphs that exhibit some structural heterogeneity:
in such cases, every node is ~-equivalent to very few
(if any) other nodes.

The Template Index (or T-index) [64] summary
considers that two graph nodes are equivalent if they
are backward bisimilar. In particular, in a T-index,
nodes represented together need to be reachable by
the exact same set of incoming paths. The goal of
the T-index is to speed up the evaluation of com-
plex queries of a certain form (or template), such as
P.v (all nodes v reachable by a path matching the
regular expression P) or v.P.u (all v,u node pairs
connected by a path matching P); the proposal gen-
eralizes to arbitrary arity queries, although the au-
thors note it is likely to be most useful in the above
two simplest forms. The simulation relation between
the nodes of a graph G is known to be computable in
O(M *log(M)) [71] or O(N * M) [32]; the cost drops
to linear for acyclic graphs. All these algorithms as-
sume the graph fits in memory.

To support efficient processing of graph queries
that navigate both forward (in the direction of the
graph edges) and backward, [37] describes the For-
ward and Backward Index (F&B) which considers
two nodes equivalent if they are undistinguishable by
any navigation path composed only of forward and
backward steps (see Figure 5 for an example). While
this equivalence condition is very powerful, it is rarely
satisfied by two nodes, thus the F&B index is likely
to have a large amount of nodes (close to the number
of nodes in the original graph), making the manip-
ulation of the F&B index structure inefficient. To
address the problem, the authors note that in prac-
tice not any path query is frequently asked by appli-
cations, therefore it suffices to consider F&B equiva-
lence of nodes as being undistinguishable by forward
and backward navigation along the paths from a cer-

are
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tain set only.

Another method proposed in [38, 83], in order to
make the F&B index smaller and more manageable,
is to consider bisimilarity restricted only to paths of
a certain length around the graph nodes (see Figure 5
for an example). This increases the chances that two
nodes be considered equivalent, thus reducing the size
of the bisimilarity-based summary. Limited bisimula-
tion summaries like this, can be computed by evaluat-
ing structural group-by queries (for k-bounded bisim-
ilarity), respectively, queries derived from the work-
load of interest (for workload-driven F&B summa-
rization). While the theoretical complexity of such
queries is O(M*), with M the number of edges and k
the size of the most complex query involved, efficient
graph query processors, with the help of good index-
ing, achieve much better performance in practice.

[18] considers the summarization of large Web doc-
ument collections. While the main structure in this
case consists of trees, they may also feature reference
edges which turn the dataset into a global graph. The
authors build a summary as a collection of regular ex-
pression queries, such that the set of results to these
queries, together, make up a partition over the set
of nodes in all the documents of the input collec-
tion. To each such regular expression is associated
a set of cardinality statistics, to help application de-
signers chose meaningful queries and inform them on
the expected performance which may be reached on
those queries. The dominant-cost operation required
by this approach is computing simulations among N
nodes; summaries can then be refined based on user-
specified path queries.

[62] provides an I/O efficient external memory
based algorithm for constructing the k-bisimulation
summary of a disk-resident graph on a single ma-
chine, based on several passes of sorting and grad-
ually refining partitions of nodes on disk. The I/O
complexity of the algorithm is O(k * sort(M,) + k =
scan(Np) + sort(N,)), where M,, respectively, N,
are the numbers of disk pages required to store the
graph edges, respectively, graph nodes, while sort(+)
and scan(-) quantify the cost of an external sort, re-
spectively, the cost to scan a certain number of pages.



4.1.2 Non-quotient graph summaries

There are also many methods that construct non-
quotient graph summaries. They distinguish nodes
according to several criteria/measures and create
summaries in which summary nodes represent multi-
ple nodes out of the original graph.

A Dataguide [28] (see Figure 5 for an example) is
a summary of a directed acyclic graph, having one
node for each data path in the original graph. A
graph node reachable by a set of paths belongs to the
extents of all the respective Dataguide nodes. Thus,
given a path query which may also contain wildcards,
and a Dataguide, it is easy to identify the Dataguide
nodes corresponding to the query, and from there
their extents. The authors show how to integrate
the Dataguide path index with more conventional in-
dexes, e.g., a value index which gives access to all
the nodes containing a certain constant value etc. A
Dataguide is not a quotient: an input node may be
represented by two Dataguide nodes, if it is reach-
able by two distinct paths in the input graph. Build-
ing a Dataguide out of a data graph amounts to de-
terminizing an undeterministic finite automaton; the
worst-case complexity of this is known to be expo-
nential in the size of the input graph, yet only linear
when the database is tree-structured.

Summary-based query answering with an accept-
able level of error is considered in [41, 69]. The focus
is on graph compression while preserving bounded-
error query answering and/or the ability to fully re-
construct the graph from the summary with the help
of so-called “corrections” (i.e. edges to add to or re-
move from the “expansion” of the summary into the
regular part of the graph it derives from). The nodes
of the resulting structural summary represent parti-
tions of similar nodes from G, while a summary edge
exists between two summary nodes v and v only if
the nodes from G represented by u and v are densely
connected. Similarly, [55] aims to compress G, but
without considering corrections, while their edge la-
bels represent the number of edges within each par-
tition set, and the number of edges between every
two such sets. To determine similar nodes, [41] re-
lies on locality-sensitive hashing, while [69, 55] use a
clustering method where pairs of nodes to merge are
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chosen based on the optimal value of an objective
function. In [84], the authors build on the concepts
of [55] to show how to obtain in polynomial time,
summaries which are close to the optimal one (in
terms of corrections needed. However, these works
focus on node connectivity, and ignore the node and
edge labels which crucially encode the data content
of an RDF graph.

[97] proposes the SNAP (Summarization on
Grouping Nodes on Attributes and Pairwise Rela-
tionships) technique, whose purpose is to construct,
with some user input, a summary graph that can be
used for visualization. A SNAP summary represents
all the input graph nodes and edges: its nodes forms
a partition of the input graph nodes, and there is an
edge of type t between two summary nodes A and B if
and only if some input graph node represented by A is
connected through an edge of type t to an input graph
node represented by B. Further, a SNAP summary
has a minimal number of nodes such that (¢) all in-
put graph nodes represented by a summary node have
same values for some user selected attributes and (i)
every input graph node represented by some sum-
mary node is connected to some input graph nodes
through edges of some user-selected types.

[22] considers reachability and graph pattern
queries on labeled graphs, and builds answer-
preserving summaries for such queries, that is: for
a given graph G, summary S(G) and query Q,
there exists a query Q' which can be computed
from @, and a post-processing procedure P such
that P(Q'(S(G))) = Q(G). In other words, eval-
uating ' on the summary and then applying the
post-processing P leads to the result Q(G). This
property is rather strong, however, it is attained
not under the usual query semantics based on graph
homomorphism, underlying SPARQL, but under a
bounded graph simulation one. Under these se-
mantics, answering a query becomes P (instead of
NP), at the price of not preserving the query struc-
ture (i.e., joins). The authors propose two paral-
lel graph compression strategies, targeting different
kinds of queries: (i) reachability queries, where we
seek to know if one node is reachable from another;
(#4) graph pattern queries, for which they attain a
significant compression ratio. It should be again



Figure 5: Structural graph summarization examples.

stressed that the authors consider these queries under
non-standard, more lenient semantics than the ones
used for RDF querying. The complexity of build-
ing their summaries are O(N % M) for reachability
queries, and O(N xlog(M)) for graph pattern queries.

4.2 Mining-based graph summariza-
tion

OLAP and data mining techniques applied to data
graphs have considered them through global, aggre-
gated views, looking for statistics and/or trends in
the graph structure and content.

[112] leverages pattern mining techniques to build
graph indices in order to help processing a graph
query. It firstly applies a frequent pattern mining
algorithm to identify all the frequent patterns with
the size support constraint. Once the frequent pat-
terns are extracted, they are organized in a prefix tree
structure, where each pattern is associated with a list
of ids of the graphs containing it. This prefix tree is
then used to answer queries asking for the respective
part of the graph. This approach by design does not
reflect all data and is based on numeric information.
[118] uses the same idea, but considers trees instead
of graphs.

The Vocabulary-based summarization of Graphs
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(VoG) [51] aims at summarizing a graph by its char-
acteristic subgraphs of some fixed types, which have
been observed encoding meaningful information in
real graphs: cliques, bi-partite cores, stars, chains,
and approximations thereof. VoG first decomposes
the input graph, using any clustering method, into
possibly overlapping subgraphs, the (approximate)
type of each is then identified using the Minimum
Description Length principle [85]. Finally, the input
graph summary is composed of some non-redundant
subgraphs, picked by some heuristic like top &, hence
may not reflect all the input graph. Importantly, the
VoG method has been shown to scale well; it is near-
linear in the number of edges. The VoG code is avail-
able for download®.

An aggregation framework for OLAP operations
on labeled graphs is introduced in [16]. The authors
assume as available an OLAP-style set of dimensions
with their hierarchies and measures; in particular,
graph topological information is used as aggregation
dimensions. Based on these, they define a “graph
cube” and investigate efficient methods for comput-
ing it. With a different perspective, [15] focuses on
building out of node- and edge-labeled graphs, a set
of randomized summaries, so that one can apply data

Shttps://github.com/yikeliu/VoG-0verlap



mining techniques on the summary set instead of the
original graph. Using the summary set leads to bet-
ter performance, while guaranteeing upper bounds on
the information loss incurred.

A graph summarization approach, based solely on
the graph structure is reported in [58]. It produces a
summary graph that describes the underlying topol-
ogy characteristics of the original one. Every sum-
mary node, or super-node, comprises of a set of nodes
from the original graph; every summary edge, or
super-edge, represents an all-to-all connections be-
tween the nodes in the corresponding super nodes.
The goal of this work is to generate a summary
that minimizes the false positives and negatives in-
troduced by this summarization. The authors in-
vestigate different distributed graph summarization
methods, which proceed in an incremental fashion,
gradually merging nodes into supernodes; the meth-
ods differ in the way they chose the pairs of nodes
to be merged, and cut different trade-offs between
efficiency (running time) and effectiveness (keeping
the false positives and negatives under control). The
method termed Dist-LSH selects node pairs with a
high probability to be merged; the probability is es-
timated based on locality-sensitive hashing (LSH) of
the nodes. The algorithms are implemented on top
of the Apache Giraph framework.

[67] surveys many other quantitative, mining-
oriented graph sampling and summarization meth-
ods.

4.3 Statistical and hybrid graph sum-
marization

Several follow-ups on the SNAP summarization ap-
proach (Section 4.1.2) have been proposed in the lit-
erature.

The k-SNAP summarization approach [97, 98] is
an approximation of the SNAP one. It allows setting
the desired number k of summary nodes, so that a
whole graph can be visualized at different granular-
ity levels, similarly to roll-up and drill-down OLAP
operations. A k-SNAP summary is a graph of k£ sum-
mary nodes which satisfy the above condition () of
a SNAP summary, but relax condition (i) so that
only some (not every) input graph node represented

15

by some summary node satisfies it. Further, as many
such summaries may exist, a k-SNAP summary is
defined as one that best satisfy the condition (i) of
SNAP summaries. Finding such a summary is NP-
complete [97], hence tractable heuristic-based algo-
rithms are proposed to compute approximations of
k-SNAP summaries.

The k-SNAP summarization approach has been
further extended [115] to handle numerical attributes,
while k-SNAP as well as SNAP before have only con-
sidered categorial attributes whose domains are made
of a limited number of values. The proposed CANAL
approach allows bucketizing the values of some nu-
merical attribute into the desired number of cate-
gories, hence reducing the summarization of graphs
with categorial and numerical attributes to that of
graphs with categorial attributes only. For a given
numerical attribute a, each of the obtained categories
represent a range of a values that nodes with similar
edge structure have. Computing such categories is
in O(Nlog N + k), where k, is the number of dis-
tinct a values that the input graph contains. Also,
to ease the use of k-SNAP to inspect a graph in an
roll-up and drill-down OLAP fashion, [115] provides
a solution to automatically recommend k values for
visualizing this graph. It consists in ranking k-SNAP
summaries of varying k according to a so-called inter-
estingness measure, defined in terms of conciseness,
coverage and diversity criteria.

k-SNAP has also strongly inspired the summariza-
tion approach in [60], which similarly aims at com-
puting graph summaries w.r.t. user selected num-
ber of summary nodes, attributes and edge types.
The summaries are computed using a variant of
one above-mentionned tractable k-SNAP heuristics,
which keeps the SNAP condition (7) but changes the
SNAP condition (i7) that k-SNAP tries to best sat-
isfies, so that a summary best reflects the organiza-
tion in social communities of the input graph nodes
w.r.t. the selected attributes and edge types.

From a different perspective, [86] sketches SAP
HANA’s approach for large graph analytics through
summarization. It consists in defining rules to sum-
marize part of an analyzed graph. Rules are made
of two components, one graph pattern to be matched
on the graph, and how the matched data should be



Work Input requirements Purpose Output type Output System
nature Theory
SNAP/k-SNAP | Required user param- | Visualization Graph Instance Theory
(97, 98] eters
Zhang et al. | Required user param- | Visualization Graph Instance Theory
[115] eters
Louati et al. | Required user param- | Visualization Graph Instance Theory
[60] eters
Fan et al. [22] Required user- | Query answer- | Graph Node- Theory
selected queries ing labeled
directed
graph
DescribeX [18] None Query answer- | Single root | Instance System
ing node-labeled
graphs
Luo et al. [62] None Indexing, query | Graph Instance Theory
answering
T-index [64] Parametrized user in- | Query answer- | Multi-roots Instance Theory
put ing edge-labeled
graphs
D(K)-index [83] | Parametrized user in- | Query answer- | Single root | Instance Theory
put ing node-labeled
graphs
F&B-index [37] | Parametrized user in- | Query answer- | Single root | Instance Theory
put ing node-labeled
graphs

Table 1: Graph summaries based on structural quotients.

grouped and aggregated into a result graph.

5 Structural RDF summariza-
tion

Structural summarization of RDF graphs aims at
producing a summary graph, typically much smaller
than the original graph, such that certain interesting
properties of the original graph (connectivity, paths,
certain graph patterns, frequent nodes etc.) are pre-
served in the summary graph. Moreover, these prop-
erties are taken into consideration to construct a sum-
mary. The methods for structural summarization are
distinguished into two categories. The quotient sum-
marization methods, discussed in Section 5.1, while
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the remaining structural summarization methods are
described in 5.2

5.1 Structural quotient RDF sum-
maries

We begin with summarization techniques that are
based on quotient methods. Intuitively, each sum-
mary node corresponds to (represents) multiple nodes
from the input graph, while an edge between two
summary nodes represents the relationships between
the nodes from the input graph, represented by the
two adjacent summary nodes. Often, the nodes for-
mulated in summaries like these, are called super-
nodes, while their edges are called super-edges.

An interesting property, which directly follows




from the notion of quotient graph, relates query an-
swers on an RDF graph G to query answers on its
quotient summary:

Definition 4 (Representativeness) Given an
RDF query language (dialect) Q, an RDF graph G
and a summary Sum of it, Sum is Q-representative
of G if and only if for any query Q € Q such that
Q(G>®) # 0, we have Q(Sum™) # 0.

Informally, representativeness guarantees that
queries having answers on G should also have an-
swers on the summary. This is desirable in order
for the summary to help users formulate queries: the
summary should reflect all graph patterns that occur
in the data.

An overview of the structural quotient summaries
is shown in Table 3. Section 5.1.1 introduces sum-
maries defined based on bisimulation graph quotients
(recall Definition 2), while Section 5.1.2 discusses
other quotient summaries.

5.1.1 (Bi)simulation RDF summaries

The classical notion of bisimulation (Section 4.1) has
been used to define many RDF structural quotient
summaries.

Thus, [78] presents SAINT-DB, a native RDF man-
agement system based on structural indexes. This
index is an RDF quotient simulation, based on triple
(not node) equivalence. The summary is not an RDF
graph: its nodes group triples from the input, while
edge labels indicate positions in which triples in ad-
jacent nodes join. Thus, the index is tailored for re-
ducing the query join effort, by pruning any dangling
triples which do not participate in the join. Since the
index contains only information on joins, and nothing
of the values present in the input graph, the query
language is restricted to BGPs comprising of wvari-
ables in all positions; further, these BGPs must be
acyclic. For compactness, they bound the simula-
tion, for small k values, e.g., 2; this enables com-
pression factors of about 10*. Semantic information
or ontologies are not considered. The time complex-
ity of the algorithm comes from the corresonding al-
gorithms for computing graph simulation. This is
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O(N? % M), where N is the number of nodes (equiv-
alent types) and M is the number of edge labels in
the result graph. In practice, different query process-
ing strategies aimed at join pruning are implemented
by integrating the structural index with the RDF-3X
[70] engine.

A structure-based index is proposed in [99], defined
as a bisimulation quotient; the authors show that the
summary is representative of only tree-shaped queries
over non-type and non-schema triples, comprising a
single distinguished variable which corresponds to the
root node. Further, the authors study limited ver-
sions of the bisimulation quotient by considering: (7)
only forward bisimulation, (i¢) only backward bisim-
ulation or (#i7) only neighborhoods of a certain length
for tree structures of the input graph. The proposed
applications of the structure index are twofold: (7)
for data partitioning, by creating a table for each
node of the structure index, thereby physically group-
ing triples with subjects that share the same struc-
ture, and (iz) for query answering, where the query
may be run first on the structure index, to obtain
the set of candidate answers, thus achieving prun-
ing of the (larger) original graph. The authors do
not consider graph semantics, nor answering queries
over type and schema triples.  The complexity of
the corresponding algorithm for generating the index
is O((N1 U N3) « M xlog N), where Ny and Ny are
the nodes selected for backward and forward bisimu-
lation respectively, M is the number of edges and N
the number of nodes of the input graph.

RDF summaries defined in [17] are quotients based
on F'W bisimulation. The authors do not consider
graph semantics or ontologies. They show how to
use the summary as a support for query evaluation:
incoming navigational SPARQL queries are evaluated
on the summary, then the results on the summary are
transformed into results on the original graph by ex-
ploring the extents of summary nodes. They propose
in [45] an implementation based on GraphChi [52],
the single-machine multi-core processing framework,
to construct the summary in roughly the amount of
time required to load the input KB plus write the
summary. GraphChi supports the Bulk Synchronous
Parallel (BSP) [106] iterative, node-centric process-
ing model, by which nodes in the current iteration



execute an update function in parallel, depending on
the values from the previous iteration. Their sum-
marization approach is based on the parallel, hash-
based approach of [6] which iteratively updates each
node’s block identifier by computing a hash value
from the node’s signature defined by the node’s neigh-
bors from the previous iteration. The main idea is
that two bisimilar nodes will have the same signa-
ture, the same hash value, and thus have the same
block identifier. Due to the large size of the result-
ing bisimulation summary, the authors propose a so-
called singleton optimization, which involves remov-
ing summary nodes representing only one node from
G} the reduced summary is therefore no longer a quo-
tient of G.

ExpLOD [42, 43] produces summaries of RDF
graphs, by first transforming the original RDF
dataset into an unlabeled-edge-ExpLOD-graph,
where a node is created for each triple in the orig-
inal RDF graph, labeled with the triple property;
unlabeled edges go from the original triple’s subject
and object, to the newly constructed property node.
Then, the ExpLOD graph is summarized by a
forward bisimulation quotient, grouping together
nodes having the same RDF usage. RDF usage can
be statistical, e.g., the number of instances of a
particular class, or the number of times a property
is used to describe resources in the graph. RDF
usage can also be structural, e.g., the set of classes
to which an instance belongs, the sets of properties
describing an instance, or sets of resources connected
by the owl:sameAs property. As such, they do not
propose one summary, but rather a framework where
one can select the summary according to his ”usage”
preferences. Finally, the bisimulation quotient is
applied without taking into account neither schema
nor type triples, thus the summary is not represen-
tative. There are two sequential implementations
of ExpLOD. The first implementation computes
the relational coarsest partition of a graph using
a partition refinement algorithm [72], and requires
datasets to fit in main memory. The second ap-
proach uses SPARQL queries against an RDF triple
store; although in principle this is more scalable,
as datasets need not be stored in main memory,
it is slower due to the query answering time. To
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Figure 6: RDF vocabulary for the data graph sum-
mary [11].

overcome the limitation of the centralized approach,
the authors extend ExpLOD, proposing a novel,
scalable mechanism to generate usage summaries of
billions of Linked Data triples based on a parallel
Hadoop implementation [44].

[87] considers the problem of efficiently building
quotient summaries of RDF graphs based on the FW
bisimulation node equivalence relation. The authors
do not reserve any special treatment to RDF type
and schema triples, which prevents the resulting RDF
summaries of being representative. Two implemen-
tations of the algorithm for computing graph bisim-
ulations, first introduced in [3], are presented: one
for sequential single-machine execution using SQL,
and the other for distributed execution, taking advan-
tage of MapReduce parallelization to reduce running
time. They both have worst-case time complexity of
a O(M x N + N?).

5.1.2 Other structural quotient summaries

To assist users whose task is query formulation, [11]
creates the summary graph, the so called node collec-
tion layer, by grouping nodes having the exact same
types, or in the absence of types, the same outgo-
ing properties, into entity nodes; further, nodes from
the input with no outgoing properties, and having
the same incoming properties from subjects with the
same set of types, are represented by blank nodes.
An edge exists between two summary nodes v; and
vg, labeled by a property p, if there exist two nodes
v] and v} in G, such that v} is represented by vy,
vh is represented by v, and there exists an edge la-
beled by p in G from v} to v5. The number of rep-



resented nodes from the input is attached to each
summary node, and the number of represented edges
from the input to each summary edge. This summary
graph may group resources from multiple datasets.
The proposed dataset layer groups together nodes of
the node collection layer which belong to the same
dataset. Schema triples are not considered. The ap-
proach bears similarities with ExpLOD, since nodes
in the first layer are partitioned by types, and par-
titions are represented by distinct summary nodes.
However, unlike ExpLOD, the G nodes having a type,
are not further distinguished by their data proper-
ties, i.e., two nodes of the same type A, one having
the data properties a, b and ¢ and the other hav-
ing the properties a and d will be represented by the
same summary node. Unlike ExpLLOD, their sum-
mary graph is an RDF graph.

RDF summaries are defined in a rather restricted
setting in [34]. The authors assume that all subjects
and objects are typed, and that each has exactly one
type; class and property URIs are not allowed in sub-
ject and object position, and no usage is made of
possible schema triples. Under this hypothesis, they
construct from the RDF graph a typed object graph
(TOG) comprising (s, p,0) triples and assigning an
RDF type for each such s and o. Two methods are
proposed for summarizing the TOG, namely, equiva-
lent compression and dependent compression. The
equivalent compression produces a quotient of the
TOG by grouping together nodes having the same
type and the same set of labels on the edges adja-
cent to the node. In the dependent compression, two
nodes v, and vy of the TOG are grouped together if
v1 is adjacent only to vg, or vice-versa. As application
scenarios of this approach the authors indicate min-
ing semantic associations, usually defined as graph
or path structures representing group relationships
among several instances.

Based on query-preserving graph compression [22]
(Section 4.1.2), an Adaptive Structural Summary for
RDF graphs (ASSG, in short) is introduced in [114].
ASSG aims at building compressed summaries of the
part of an RDF graph which is concerned by a cer-
tain set of queries. The authors compute a structural
rank of nodes, which is 0 for leaves, and grows with
the shortest distance between the node and a leaf;
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then, nodes having the same label and the same rank
are considered equivalent, and are all compressed to-
gether in a single ASSG node. To partition the N
nodes of a graph G to different equivalent classes by
their label and rank the cost is O(N + M), where M
the number of the edges of the graph.

RDF summaries defined in [13, 14, 12] adapt the
idea of quotient summaries to two characteristic fea-
tures of RDF graphs: (i) the presence of type triples
(zero, one, or any number of types for a given re-
source), and (i7) the presence of schema triples. As
we explained in Section 2.1, RDF Schema informa-
tion is also expressed by means of triples, which are
part of G. [12] shows that quotient summarization of
schema triples does more harm than good, as it de-
stroys the semantics of the original graph. To address
this, they introduce a notion of RDF node equiva-
lence which ensures that class and property nodes
(part of schema triples) are not equivalent to any
other G nodes, and define a summary as the quotient
of G through one such RDF node equivalence. Such
summaries are shown to preserve the RDF Schema
triples intact, and to enjoy representativeness (Defini-
tion 4) for BGP queries having variables in all subject
and object positions. The authors show how bisim-
ulation summaries can be cast in this framework,
and introduce four novel summaries based property
cliques, which generalize property co-occurrence as
follows. A clique c¢g is a set of data properties from
G such that for any py,p2 € cg, a resource of G is the
source and/or target of both p; and py. For instance,
if resource r; has properties ¢ and b while ro has b
and ¢, then a, b, c are part of the same source clique;
if, instead, r1 and ro are targets of these properties,
then a,b,c are part of the same target cligue. The
so-called weak summary groups together nodes hav-
ing the same source or target clique, while the strong
summary requires the same source and the same tar-
get clique; their variant typed-weak and typed-strong
summaries first group nodes according to their types,
and then according to their cliques. All these sum-
maries can be computed in linear-time in the size of
the input graph. A benefit of this specific approach is
that clique summaries are orders of magnitude more
compact than bisimulation summaries. The authors
also study how to obtain the summary of G’s seman-



tics, which is the saturation of G. They provide a
sufficient condition on the RDF equivalence relation,
ensuring that the summary of G*° can be computed
from G without saturating it, and show that this may
be many times faster than the direct procedure of first
saturating GG, then summarizing G°°. The software
tool implementing this approach is available as open

sourceb.

5.2 Structural
summaries

RDF

non-quotient

Several structural RDF summaries have been based
on techniques different from structural quotients.
Our presentation below attempts to identify fami-
lies of proposals based on the summarization tech-
niques and /or, as appropriate, on the usage for which
the summaries are built. An overview of all struc-
tural, non-quotient summaries is shown in Table 4,
depicting their individual characteristics as well. Sec-
tion 5.2.1 presents proposals based on text summa-
rization and information retrieval; Section 5.2.2 de-
scribes summaries built around concepts of central-
ity (or rank, importance) of nodes in a graph; Sec-
tion 5.2.3 considers structural RDF summarization
based on an index or other structures which aim at
selective data access; finally, Section 5.2.4 discusses
RDF summaries whose goal is to facilitate the extrac-
tion of a schema, understood as a compact structural
description, of the input RDF graph.

5.2.1 Inspired by text summarization and in-
formation retrieval

One way of summarizing data, especially when the
summary is meant for human users, is to select a
most significant subset thereof. Such summarization
is very useful, considering that the human ability to
process information does not change as the available
data volumes grow. We describe here RDF knowl-
edge base summarization efforts inspired from infor-
mation retrieval and text summarization.

In [96], the authors study the problem of select-
ing the most important part of an RDF graph which

Shttps://gitlab.inria.fr/cedar/quotientSummary
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is to be shown to a user interested in a certain en-
tity (resource). A fixed space (triple) budget is to be
used; beyond labels, authors also allow the edges of
the RDF graph to carry weights, with higher-weight
edges being more important to show. The authors
provide algorithms which select triples favoring close-
ness to the target entity and weight; then, they ex-
tend this with criteria based on diversity (include
edges with different labels in the selection) and pop-
ularity (favor frequently occurring edge labels). It
is worth noting that similar techniques have recently
been included in Google’s search engine, when the
user searches for an entity present in Google’s Knowl-
edge Graph, and is presented with a small selection
of this entity’s properties.

Besides this, text summarization principles, where
a text can be seen as a collection of terms or a bag
of sentences, have been applied to summarize ontolo-
gies. An ontology summarization method along these
lines is introduced in [117], based on RDF Sentence
Graphs. An RDF Sentence Graph is a weighted, di-
rected graph where each vertex represents an RDF
sentence, which is a set of RDF Schema statements
as illustrated in Fig. 7. A link between two sentences
exists, if an object of one sentence belongs to another
sentence as well. The creation of a sentence graph is
customized by domain experts, who provide as in-
put the desired summary size, and their navigation
preferences, i.e. weights in the links they are mostly
interested in. Then, the importance of each RDF sen-
tence is assessed by determining its centrality in the
sentence graph. The authors compare different cen-
trality measures (based on node degree, betweenness,
and the PageRank and HITS scores, and show that
weighted in-degree centrality and some eigenvector-
based centralities produce better results. Finally, the
most important RDF sentences are re-ranked consid-
ering the coherence of the summary and the coverage
of the original ontology, and the constructed result
is returned to the user. This method does not han-
dle implicit information (thus, it should be applied to
a saturated ontology); also, it does not consider the
instance graph.

Subsequently, the authors extended their technique
from one ontology, to the global set of ontologies har-
vested from the semantic web [116]. Specifically, to
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Figure 7: Sample RDF sentences [117].

decide the importance (salience) of an RDF sentence,
they extend it with neighboring information, for ex-
ample counting how often the terms of the sentence
are linked or instantiated in the global semantic web.
Two salience measures are proposed: structural and
pragmatic importance. Structural importance, mea-
sures the number of entities in the web that have a
reference to the local RDF sentences with regards to
subjects, predicates or objects. Secondly, the prag-
matics importance takes into account the statistical
frequency of terms instantiated across the global se-
mantic web. The two measures are combined in order
to produce an integrated importance value for each
RDF sentence, which again is passed to a re-ranking
step to ensure coverage over the whole ontology. Al-
though, in the second approach, statistical informa-
tion over the instances is considered, the approach
still does not consider implicit information.

KCE [76], [66], on the other hand, attempts to au-
tomatically identify the key concepts in an ontology.
To achieve this, it combines cognitive principles with
lexical and topological measures (the density and the
coverage). The goal is to identify a number of con-
cepts that would be selected by human experts. To
this direction a number of criteria are defined:

e The notion of natural category is used for iden-
tifying concepts that are information-rich in a
psycho-linguistic sense. This is approximated by
two measures: (i) name simplicity promotes con-
cepts labeled with simple names and penalizes
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compounds; (i7) basic level measures how cen-
tral a concept is in the taxonomy of the ontol-
ogy. This is combined with the density favouring
concepts which have many properties and taxo-
nomic relationships.

The coverage tires to ensure that no part of the
ontology is neglected.

Lastly, the notion of popularity, is based on lexi-
cal statistics, and tries to identify concepts com-
monly used in natural language.

Each ontology concept is assigned a score, which is
a weighted sum of the scores assigned for each indi-
vidual criterium; then the key concepts of the ontolo-
gies are taken to be those with the highest score. This
approach extracts only schema elements, based on
both schema and instance information. Implicit in-
formation in the ontology is also taken into account in
the process. To fine-tune result quality, the method
requires the user to specify values for a set of pa-
rameters. The tool implementing this approach is
available online and in open source’

5.2.2 Focused on centrality measures

In this section, we present approaches that focus on
exploiting centrality measures (and in some cases in
combination with other parameters)in order to pro-
duce summaries.

RDFDigest [102], [100] produces summaries of
RDF schemas, consisting of the most representative
concepts of the schema, seen also from the angle
of their frequency in a given instance (RDF graph).
Thus, the input of the process includes both an ontol-
ogy and a data graph. The tool starts by saturating
the knowledge base with all implicit data and schema
information, thus taking them into account for the
rest of the process. The goal of the work is to iden-
tify the most important nodes in the ontology, and
to link them in order to produce a valid sub-graph of
the input scema.

In its first version [101], node relevance is defined
based on the relative cardinality, and the in/out de-
gree centrality of the node. Then the most relevant

"http://www.essepuntato.it/kce



nodes are retained as being part of the answer. To
find out how to connect these nodes in a sub-schema,
two algorithms are proposed, trying to maximize the
importance of the selected ontology edges either glob-
ally or locally. In the first case a spanning tree is cal-
culated maximizing the importance of the selected
edges, and then the most important nodes are con-
nected using paths from this tree. In the second
case, the edges linking the most important nodes are
selected based on the notion of coverage trying to
maximize the most representative edges out of the
whole schema graph. The authors report that link-
ing the most important nodes based on maximum-
cost spanning trees produces better summaries ac-
cording to their experiments with both methods hav-
ing a worst-case time complexity of O(NJ), where
No is the number of nodes in the ontology. How-
ever, this method does not guarantee that the total
weight of the selected subgraph is maximized, and
when picking a connecting path, it may introduce
many additional nodes in the result, some of which
may not be important at all. The size and quality
of the resulting summary can be fine-tuned by spec-
ifying values for a set of parameters; the system is
available online® and is mostly targeted for visually
presenting the ontology summaries.

The more recent version [75] tries to identify
the most important schema nodes using six well-
known measures from graph theory (i.e., degree,
betweennes, bridging centrality, harmonic centrality,
radiality, and ego centrality [8]) and adapting them
for RDF/S KBs in order to consider instance infor-
mation as well. The authors model the problem of
linking those nodes as a graph Steiner Tree selec-
tion problem [30], trying to minimize the total num-
ber of additional nodes introduced, employing ap-
proximations and heuristics to speed up the execu-
tion of the respective algorithms. According to the
authors, the optimal selection of importance mea-
sure and approximation for linking the most impor-
tant nodes yields a worst-case time complexity of
O(N%xM)+O(S*(N+M)) where N is the number of
nodes, M is the number of edges in the ontology and
S the number of most important nodes to be selected.

8http://www.ics.forth.gr/isl/rdf-digest/
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An overview of the summarization process is shown
in Fig. 8. Also in this version, users have the op-
portunity to parameterize the process by specifying
values of different parameters, such as the number of
summary nodes to be selected. In the latest version
of the system [103, 104], the authors propose explo-
ration operations based on summaries such as zoom
and extend. Extend focuses on a specific subgraph
of the initial ontology whereas zoom on the whole
graph, providing more or less detailed information
for the selected nodes.

[82] on the other hand, tries to combine user pref-
erences with centrality measures in order to calculate
the importance of a node. Then paths that include
the most important nodes are identified to produce
the final graph. Thus, the result is a subgraph of the
original graph. The main steps of this summarization
method are shown in Fig. 9: (i) select the parame-
ters (e.g., the size of the summary and importance
thresholds) and possibly nodes that are important ac-
cording to user’s opinion; (#4) compute the relevance
of the concepts in the ontology as the weighted sum
of the the degree centrality and the closeness central-
ity; (i7) identify the paths linking the selected nodes
using the Broaden Relevant Paths algorithm. The
specific algorithm tries to find paths of greatest qual-
ity within the summarized graph by considering the
relevance of the included nodes in the path. The ap-
proach supports RDF or OWL ontologies and mainly
aims to help ontology understanding through visual-
ization.

5.2.3 Index-driven RDF summaries

Besides summaries focusing on centrality measures,
other approaches try to exploit summaries for index-
ing.

GRIN [105], for example, is an index for RDF
graphs that has been designed for efficient query an-
swering. The semantics of the indexed RDF graph is
taken into account by assuming that the input graph
is saturated before being indexed, however the RDF
Schema is not part of the index. A GRIN index is
a hierarchical clustering of the resources of an RDF
graph, modelled as a balanced binary tree. The set
of leaf nodes in the tree, form a partition of the set of
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triples in the RDF graph; each leaf node represents
the resources of the triples it holds. Interior nodes
are constructed by finding a center triple, and a ra-
dius value R. An interior node in the tree implicitly
represents the set of all vertices in the graph that are
within R units of distance (i.e. less than or equal to
R links) from that center. Inner nodes at a same level
of the index form a partition of the input RDF graph,;
each inner node reflects the resources of the triples of
the nodes it is an ancestor of. The worst case com-
plexity for building the index is O(R**logaR). Then
at query time, GRIN derives a set of inequality con-
straints from the query, evaluated againes the nodes
of the GRIN index in order to identify the smallest
sub-graph that contains answers to the input query.

[29] studies efficient query processing in the TriAD
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distributed RDF data management system, by rely-
ing on a summary of the RDF graph stored within the
system. This summary, which is an RDF graph, fol-
lows from a standard partitioning of the input RDF
graph, computed with METIS?, which minimizes the
number of edges across the partition’s blocks. The
summary is made of triples of the form B; L5 By re-
flecting that there exists a triple (s, p,0) in the input
graph with s a resource of the partition block B; and
o a resource of the block By. The proposed technique
does not consider implicit triples of the input RDF
graph and basically reflects how (some resources of)
sets of strongly connected triples, i.e., those reflected
by the partition blocks, are loosely connected. Then

9http://glaros.dtc.umn.edu/gkhome/metis/metis/
overview



at query time, the index is used to prune dangling
triples by identifying the bindings for the join vari-
ables in the query, which are later used to generate
results via the relational joins of the underlying sys-
tem.

[54] builds RDF graph summaries meant to help
answer keyword queries in RDF graphs. As common
in this setting, a match is a tree of interconnected
RDF triples, such that each keyword from the query
is present in one of the triples; the score of a query
match is consisted of several keywords and decreases
with the number of edges (triples) in this tree, that is,
the closest the nodes (thus, the smaller the tree) the
better; and the answer to the query is the set of the
highest-scoring matches. To enable efficient query
answering, the authors build a summary as a collec-
tion of tree structures (see below), each representing
a subset of the graph triples; the summary trees, to-
gether, represent all graph triples. Given a summary
tree, the authors estimate the length of a path which
may connect the tree with the nodes matching differ-
ent query keywords. If the result tree has a length
larger than one already found, there is no reason of
visiting the nodes of this tree. To summarize an RDF
graph (the authors consider a restricted setting where
each resource has at most one type), they proceed as
follows. (i) For each type T and each resource r of
this type, given a user-specified integer parameter «,
a partition block is created comprising of the triples
forming paths of length at most « from r, except the
triples included in previously built partition blocks.
(1) Next, they search for a partition block (sub-graph
of G) which can be embedded via homomorphism into
another, and when this happens, they discard the for-
mer (as it can be considered to be “sufficiently well
represented” by the latter). More specifically, each
partition is represented by its graph core, and homo-
morphisms are identified between cores; for efficiency,
covering trees of sub-graphs are used instead of the
subgraphs themselves. Overall, this technique does
not consider RDF Schema nor implicit information.

5.2.4 Oriented towards schema extraction

In this subsection we focus on methods that try to
creata schemarlike structures of the available data
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sources.

One of the challenges when working with Linked
Open Data is the lack of a concise schema, or a clear
description of the data that can be found in the data
source. SchemEX [49, 50], an indexing and schema
extraction tool for the LOD cloud, attempts to solve
this problem. Out of an RDF graph, it produces a
three-layered index, based on resource types. Each
layer groups input data sources of the LOD cloud
into nodes, as follows: () in the first layer, each node
is a single class ¢ from the input, to which, the data
sources containing triples whose subject is of type ¢
are associated; (#¢) in the second layer, each node,
now named as an RDF type cluster, is a set of classes
C' mapped to those data sources having instances
whose exact set of types is C; (¢i¢) in the third layer,
each node is an equivalence class, where: two nodes
u and v from the input belong to the same equiva-
lence class if and only if they have the exact same
set of types, they are both subjects of the same data
property p, and the objects of that property p belong
to the same RDF type cluster. Further, each equiva-
lence class is mapped to all data sources comprising of
triples (s, p, o) from an input RDF graph, such that s
belongs to the equivalence class of the node. To build
the index, a stream-based computation approach is
proposed, depicted in Fig. 10. The restriction to a
certain window size of the data stream typically leads
to incomplete results, thus the choice of the appro-
priate window size is an essential parameter for the
quality of the extracted index. The specific approach
does not consider implicit triples, nor untyped re-
sources. In addition, the resulting index is not a quo-
tient, since in each layer data sources may be mapped
to multiple index nodes (while a quotient partitions
the graph nodes). Finally the time complexity of the
approach is O(N x logN) or O(M logM), where N
is the number of RDF classes available and M is the
number of properties.

Towards the same goal of building a compact rep-
resentation of an RDF graph to be used as a schema,
[39] proposes an approach to extract a schema-like di-
rected graph, as follows. A density-based clustering
algorithm is used on the input RDF graph to iden-
tify the summary nodes: each such node, called a
(derived) type, corresponds to a set of resources with
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sufficient structural similarity. Further, each of these
types is described by a profile, i.e., a set of (property,
probability) pairs of the form (7, @) or (', ) mean-
ing that a resource of that type has the outgoing or in-
coming property p with probability «. These profiles
are used to define output schema edges of two kinds:
(i) There is a p-labeled edge from a type node T; to
a type node Ts, i.e., T} 2, T, whenever p is an out-
going property of T;’s profile and an incoming prop-
erty of Ty’s profile. (i4) There is an rdfs:subClassOf-
labeled edge from a type node T; to a type node 75,
ie., Th _rdfs:subOlassOf | Ts, whenever T is found more
specific than T5 by an ascending hierarchical clus-
tering algorithm applied to their profiles. The time
complexity of the corresponding algorithm is O(N?)
where N is the number of entities in the dataset. The
output directed graph can be seen as a summary de-
scribing first, types which correspond to structurally
similar resources, and second, how properties relate
resources of various types.

6 Pattern-based RDF summa-
rization

In this section we review summarization methods
based on data mining techniques, which extract
the frequent patterns from the RDF graph, and
use these patterns to represent the original RDF
graph. A frequent pattern, usually referred to as
a knowledge pattern in the RDF/OWL KB con-
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text (or simply pattern from now on), character-
izes a set of instances in an RDF data graph that
share a common set of types and a common set of
properties. It is usually modeled as a star BGP
of the form {(x,7,¢1),...,(x,7,¢n), (x, Pry, ?b1),. ..,
(x, Prm, b))} denoting some resource z having
types ci,...,c, and properties Pry,..., Pr,,. Given
an RDF graph G, a pattern KP identifies all the G
resources that match z in the embeddings of KP into
G; the number of such embeddings is called the sup-
port of KP in G. Patterns identified in such a manner
become representative nodes (supernodes).

Example 6 (Knowledge pattern) Consider
again our sample RDF graph G presented in
Figure 1. The following knowledge pattern

{(z,7,Publication), (z,hasTitle,y), (z,hasAuthor, z)}

has no support in G and a support of 1 in G= (when
the embedding matches x to doiy ).

An overview of the works in this category is shown
in Table 5. Section 6.1 discusses methods that exploit
mining graph patterns, while Section 6.2 is concerned
with methods which summarize the RDF graph based
on rules derived from mining techniques.

6.1 Mining graph patterns

In this section we describe methods that exploit pat-
terns that eventually appear in the RDF graph and
construct the summary based on these patterns.
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[121, 120] present an approach for RDF graph sum-
marization based on mining a set of approximate
graph patterns that “best” represent the input graph;
the summary is an RDF graph itself, which allows to
take advantage of SPARQL to evaluate (simplified)
queries on the summary instead of the original graph.
The approach proceeds in three steps, as shown in
Fig. 11. First, the RDF graph is transformed into
a binary matrix. In this matrix the rows represent
the subjects and the columns represent the predi-
cates. The semantics of the information is preserved,
by capturing the available distinct types and all at-
tributes and properties (capturing property partici-
pation both as subject and object for an instance).
Second, the matrix created in the previous step, is
used in a calibrated version of the PaNDa+ [61] al-
gorithm, which allows to retrieve the best approx-
imate RDF graph patterns, based on different cost
functions. Each extracted pattern identifies a set of
subjects (rows), all having approzimately the same
properties (columns). The patterns are extracted so
as to minimize errors and to maximize the coverage
(i.e. provide a richer description) of the input data.
A pattern thus encompasses a set of concepts (type,
property, attribute) of the RDF dataset, holding at
the same time information about the number of in-
stances that support this set of concepts. Based on
the extracted patterns and the binary matrix, the
summary is reconstructed as an RDF graph, enriched
with the computed statistic information; this enables
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SPARQL query evaluation on the summary to re-
turn approximate answers to queries asked on the
original graph. The time complexity of the approach
is O(M * N + K x M? x N), where K is the max-
imum number of patterns to be extracted, M and
N are respectively the number of distinct properties
and subjects/resources in the original KB. The au-
thors note that the algorithm works equally well on
homogeneous and heterogeneous RDF graphs.

In [91], the goal is to discover the k patterns which
maximize an informativeness measure (an informa-
tiveness score function is provided as input). The
algorithm takes as input an integer distance in d,
which will be used to control the neighborhoods in
which we will look for similar entities, and a bound
k as the maximum number of the desired patterns.
The algorithm discovers the k d-summaries/patterns
that maximize the informativeness score function.

The authors use d-similarity to capture similarity
between entities in terms of their labels and neigh-
borhood information up to the distance d. Com-
pared to other graph patterns like frequent graph pat-
terns, (bi)simulation-based, dual- simulation-based
and neighborhood-based summaries, d-similarity of-
fers greater flexibility in matching, while it takes into
account the extended neighborhood, something that
provides better summaries especially for schema-less
knowledge graphs, where similar entities that are not
equivalent in a strict pairwise manner. A node v of
the original graph G is attributed to the base graph



of the d-summary P if and only if there is a node
u of P which has the same label as v and for every
parent/child u; of w in P, there exists a parent/child
vy of v in G such that edges (u1,u) and (v, v) have
the same edge label. Then the d-summaries are used
e.g. to facilitate query answering.

A d-summary P is said to dominate another d-
summary P’ if and only if supp(P) > supp(P’); a
maximal d-summary P is one that dominates any
summary P’ that may be obtained from P by adding
one more edge. The algorithm starts by discovering
all maximal d-summaries by mining and verifying all
k-subsets of summaries for the input graph G, then
greedily adds a summary pair (P, P1) that brings the
greatest increase to the informativeness score of the
summary. The time complexity of the approach is
O(S « (b+ N)* (b+ M) + & « 5?), where N, M
are respectively the total number of nodes (subject
and objects) and edges (triples) of the original RDF
graph, and S is the number of possible d-summaries
whose size is bounded by b.

6.2 Mining rules

Methods described here use rule mining techniques
in order to extract rules for summarizing the RDF
graph. A common limitation of such methods is that,
by design, the summary is not an RDF graph, thus
it cannot be exploited using the common set of RDF
tools (e.g., SPARQL querying, reasoning etc.)

[36, 35] propose compressing the RDF datasets re-
moving triples that can be inferred using logical and
inference rules. Thus, graph decompression infers
such triples again, to retrieve the original graph.

This approach, which is depicted in Fig. 12, gen-
erates, from a given RDF graph G, an active graph
G 4 containing the triples that adhere to certain log-
ical rules, and a dormant graph G p, which contains
the set of triples of the original graph which none
of the identified rule can infer. This leads to view-
ing an RDF graph G as being R(G4) U Gp, where
R represents the set of rules to be applied to the ac-
tive graph G 4, while (G4, Gp) together represent the
compressed graph. An association rule mining algo-
rithm is employed to automatically identify the set
of logical rules.

The authors leverage the Apriori [2] or FP-Growth
[31] frequent pattern mining algorithms, to identify
sets of association rules. First, for each property
p, a “transaction” (in classical data mining terms)
is a list of objects which are the values of prop-
erty p for a given subject. FEach rule thus is de-
fined by: a property p, an object item k, and a fre-
quent itemset x associated with k. One sample rule
ist Vz, (@,p,k) — Ai_i(z,p,v;), stating that the
subjects that carry the value k for property p, carry
also the values u; for the same property. Based on
such a rule, the triple (z,p, k) is encoded in the sum-
mary while the inferred triples A, (x,p, v;) can be
removed. Further, the authors extend the approach
to use as a transaction, the lists of all (p, 0) pairs for
a given subject, and similarly mine for frequent item-
sets in this context, each of which will be interpreted
as a logical compression rule.

The specific approach works well when the original
graph contains many different nodes, sharing many
same “neighbors”, but it is not effective when the
contrary is true. To deal with the last issue, the
authors of [74] extend the previous approach by ex-
ploiting a graph pattern with two variables instead of
one, which makes it applicable to more generic graph
structures, reducing the size of the summary graph.
This is because the number of triples in the sum-
mary graph is halved (a rule can now represent more
triples). The time complexity of the two previous ap-
proaches is O(M * R+ N, * O% x N;), where M is the
total number of triples, R is the number of the gen-
erated logical rules, N, and N, are respectively the
number of distinct properties and subjects/resources
in the graph and O, is the average number of differ-
ent objects/values that are assigned to a property p
(we should remember that we are looking for common
neighbours and thus for common values for the prop-
erties in the object/value part, (s,p,0) or (s,p,v) in
the triple notation); thus the lower the average num-
ber of different values the more common the neigh-
bourhood and the better the algorithm behaves as
already stated earlier.
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7 Statistical summarization

The works we discuss here focus on quantitatively
summarization of the contents of an RDF graph. An
overview is shown in Table 6.

A first motivation for statistical summarization
works comes from the source selection problem. In
general, statistical methods are interested in provid-
ing quantitative statistics on the content of the KBs
in order to decide if it is pertinent to use the KB or
not. In that respect, compared to the pattern mining
category (which is conceptually close) and the other
categories, it has the advantage not to care too much
about issues of structural completeness of the sum-
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mary and thus reducing computational costs. Early
works in this area [5, 89] use SPARQL ASK queries
to identify whether a triple pattern exists in a source
node or not, and query those sources only in a subse-
quent step. The main problem of this solution is that
many sources might contain the same facts, meaning
that we will have many duplicate results and there-
fore many unnecessary requests. The authors of [33]
propose to expand ASK queries in order not to return
a boolean answer, but a concise summary of the re-
sult, in the form of Bloom filters [7]. Based on these
summaries, a corresponding algorithm estimates the
benefit of retrieving results for a triple pattern from
a specific source, ignoring sources with low or zero



benefit. The summaries produced are called sketches,
and include statistical information on the instances.
In this approach, input is not required from the users.

Another approach, which seeks to identify the most
important resources in an ontology, is [111]. The
proposed algorithm, named Concept-And-Relation-
Ranking, does not consider instances and tries to
identify the most important schema concepts and re-
lations in an iterative manner. The importance of a
concept is a combination of the number of relations
starting from it, its relations to more important con-
cepts, and the weights of these relations. The more
important the concept at the source of a relation, the
higher the weight of the relation. The importance of
nodes and the weights of the relations reinforce one
another in an iterative process. The approach con-
siders implicit and semantic information as well; it
is based on an ontology graph model to which RDF,
DAML+OIL and OWL ontologies can be mapped.

[79] proposes an method to automatically summa-
rize local ontologies that are used as schemas of peers
participating in a peer-to-peer system. The goal is to
help peer clustering, where an incoming peer must
search for semantically similar peers in order to join.
To do that, a schema summary of the new node is
compared with the schema summaries of the existing
peers in order to decide where to join.

In order to determine the relevance of a concept,
two measures are combined: centrality and frequency.
Centrality is an adaptation of the degree central-
ity; different weights can be assigned to user-defined
properties, on one hand, and to the special proper-
ties isA (RDFS subclassOf), partOf and sameAs; fre-
quency is the ratio between the number of concept
correspondences and the number of distinct local on-
tologies. The algorithm starts by computing the rel-
evance, then it selects the top-k nodes, and subse-
quently groups adjacent relevant concepts. Finally,
in order to link non-adjacent groups, the first k-paths
connecting them are examined in order to select the
ones that have the best f-measure and average rel-
evance. The approach does not consider the data
triples of the input graph, nor the implicit triples.
However, it supports OWL ontologies. Using it re-
quires setting the values of a set of parameters and
weights, in particular to determine the importance of
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different properties, to compute the relevance, to de-
termine the summary size etc. The tool is available
online for download!®.

LODSight [21] is an RDF dataset summary visu-
alization tool that displays typical combinations of
types and predicates. It relies solely on SPARQL
queries and as such, given a SPARQL endpoint, it can
theoretically summarize all accessible data, without
requiring any user input. Through those SPARQL
queries, it collects statistical information on the avail-
able combinations of types and predicates, and visu-
alizes them in a labelled graph. Implicit RDF data
is only accounted for to the extent that the endpoint
returns full answers based on reasoning. The tool
provides dynamic means of changing the level of de-
tails, and is able to summarize very large datasets.
The system is available online'!.

LODSight was extended in [68] in order to further
improve the understanding of a dataset, by instanti-
ating the summary patterns identified by LODSight.
To do that, the authors propose an approach to se-
lect instances through three methods, namely ran-
dom, distinct and representative. In random selec-
tion, random examples of each RDF summary path
are selected; this runs the risk of returning dupli-
cates. The distance selection method aims to select
data paths as distinct from one another as possible;
to this effect, distance measures are used to find how
similar two paths are, and a greedy heuristic is em-
ployed to construct a sufficiently diverse set of pairs.
The representation selection method combines diver-
sity and representativeness criteria in order to select
a set of paths achieving a comprehensive result. The
selection method is available as a web service 2.

[81] proposes a dataset analysis method based on
recognizing and discovering patterns. The aim of this
method is to support query answering. As such, the
authors create initially an ontology that depicts the
organization of the dataset and identifies its main fea-
tures, i.e. information about triples, paths, and types
and properties occurring in the paths. In addition,
it includes statistics about these elements, such as

Onttp://www.cin.ufpe.br/~speed/0OWLSummarizer/

Hhttp://lod2-dev.vse.cz/lodsight/about.html

2https://github.com/jindrichmynarz/
rdf-path-examples



the number of occurrences of each path. Using this
ontology, the core types and properties can be distin-
guished based on their frequencies and the position
in paths. According to these observations, central
knowledge patterns (containing a central type and
properties) are extracted in order to define prototyp-
ical queries. Implicit information is not taken into
account.

8 Other summarization meth-
ods

In this section, we present approaches that combine
methods from the structural, statistical and pattern-
mining categories in order to get better results. In
addition, there are methods going beyond RDF graph
summaries, for example summarizing DL ontologies.
An overview of the works in this category is shown
in Table 7.

[3] proposes a hybrid structural summarization
technique for RDF graphs, the purpose of which is
to reduce their size while retaining their structure
as much as possible. It consists of a graph quotient
step followed by a graph clustering step. The first
one adopts bounded forward bisimulation, as accord-
ing to the authors, previous studies showed that, in
general, unbounded bisimulation is not amenable to
significant graph size reduction. This intermediate
graph being a quotient, it represents all the N nodes
and M edges of the input graph, and is computed in
O(M*N+N?). It is then further compressed by hier-
archical clustering, which fuses root nodes of similar
depth-bounded tree subgraphs. This is achieved with
the so-called Complete-Link Clustering algorithm in
O(N?) [67], where N is the number of nodes of the
aforementioned intermediate graph. This technique
produces a standard graph out of an RDF one, with-
out user input, which summarizes the whole input
graph (nodes and edges). However, it does not per-
form particular treatment on RDF Schema triples,
hence does not capture the implicit triples they en-
tail, unless input RDF graph are saturated prior to
summarization.

ABSTAT [73, 92, 93] is a summarization method
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for RDF graphs (and OWL KBs), which aims at re-
flecting how class instances are related through prop-
erties. A summary is not a graph but a set of abstract
knowledge patterns (AKPs) of the form (¢, p, ¢2) rep-
resenting the (s, p,0) graph triples with ¢; (resp. ¢2)
one of the most specific types of s (resp. o0); there
may have several such ¢y, co pairs for a given prop-
erty p. An ABSTAT summary is built in polynomial
time in the size of the input RDF graph, by first
computing for every value presents in the graph all
its types, from which are pruned out the redundant
ones. Then, for each property assertion (s, p,0), an
AKP (c1,p,co) is built if ¢; (resp. ¢2) is a most spe-
cific type for value s (resp. 0). ABSTAT is available
online'?

[94] proposes to use structural summaries of RDF
graphs for estimating the cardinality of conjunctive
queries. The authors build a graph summary of an
RDF graph by grouping together nodes having ex-
actly the same set of types, same outgoing and same
incoming properties. A summary edge is labeled with
the number of edges of G that have been collapsed
due to merging (thus, the summary is not a quo-
tient). The classes (appearing in the object position
of type triples), and properties appearing in the prop-
erty position are preserved, i.e., they are represented
in the summary by themselves. However, properties
appearing in the subject/object positions are not pre-
served; moreover, possible RDF'S properties are sum-
marized just as any other data property, thus the
schema is not conserved either. These summaries,
built in time linear in M, the number of graph edges,
may be too large; therefore, the authors propose an
algorithm to reduce the summary to a target size
specified by the user, by merging nodes having simi-
lar incoming and outgoing properties. The similarity
is determined by a Jaccard index, approximated by
MinHashing [56]; to efficiently compute the similarity
between all pairs of summary nodes, locality-sensitive
hashing [56] is used. The approach gets as input only
instances and optional parameters for summary re-
finement and returns an instance graph. This graph
is further used to enable the estimation of the cardi-
nality for easing query answering and evaluation.

13http://abstat.disco.unimib.it/search



[77] combines structural non-quotient and statisti-
cal methods to create a summary of an RDF graph,
which they call relational schema. The initial sum-
mary is generated, in linear time of the RDF graph
size (average complexity), by computing sets of prop-
erties joining on the subject, the so called character-
istic sets, denoted C'S. A summary node is created
for each C'S, thus representing nodes of G having the
same outgoing properties. An edge exists between
two summary nodes, labeled by a property p, if there
exist two G nodes in their respective extents, such
that there exists an edge labeled by p in G between
the two G nodes. This structural aspect therefore
considers only the instance component of an RDF
graph. In the second step, a short human-friendly
label is computed for summary nodes and edges, by
relying on type triples, or in their absence, on ontol-
ogy information. To reduce the summary size, sum-
mary nodes are subsequently merged. In semantic
merging, two summary nodes can be merged in two
ways: (¢) if they have the same label, taken from an
ontology, or (i7) if their labels, originating from dif-
ferent ontologies, have a common superclass, and the
generality score of this superclass is lower than a cer-
tain threshold. The generality score of an ontology
class v is computed as the ratio between the number
of instances of v’s subclasses and the total number of
instances covered by the ontology to which v belongs.
Moreover, the two ways in which two summary nodes
can be merged in structural merging are as follows:
(7) if they both have an incoming edge with the same
property, from another summary node, or (i) if the
properties in their respective C'Ss have the TF/IDF
similarity score higher than a given threshold. The
merging order of the nodes, affects the resulting sum-
mary. The summary is modeled relationally: a ta-
ble is created per summary node, with a column for
each property in the C'S represented by the summary
node; the relationships between the nodes are stored
as foreign keys. The chosen relational model proves
challenging for storing the possibly highly heteroge-
neous graph structure, inherent to RDF graphs, and
it drives the modifications to the summary. First, the
C'S of each summary node may be a result of merging
multiple summary nodes and thus their C'Ss. There-
fore, a G node in the extent of a summary node may
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not have a value for each property in the CS of the
summary node, and will have a NULL value in the
table for each such property. Properties having few
non-NULL values are deleted. Second, a single prop-
erty in RDF may have multiple literal values, possibly
of different types. In such cases, [77] chooses to add a
column for each distinct literal value type per prop-
erty, which other than incurring space costs, may lead
to more NULL values. Therefore, for each literal value
type below the infrequency threshold, all triples are
moved to a separate single PSO table. Finally, infre-
quent edges are deleted from the summary, while a
summary node is deleted if the number of nodes it
represents is below a threshold; with the exception
of summary nodes which are referred to many times
from other tables. The approach relies on end-users
for choosing the right parameters whereas, the au-
thors propose also an auto-tuning algorithm for de-
termining the best value of the similarity threshold.
[119] proposes a framework for mining equivalent
structure patterns with equivalent semantic mean-
ing. As in RDF KBs, it is common to have differ-
ent graph structures, sharing the same meaning, the
authors’ aim is to ease end-user’s querying task. As
such, instead of demanding from the users to have
the complete knowledge of the schema - enumerat-
ing in the query all possible semantically equivalent
graph structures -. the authors propose an approach
that performs query rewriting, exploiting automati-
cally other possible graph structures with the same
meaning. To achieve that, they define the notion of
semantic graph edit distance and present a framework
that tries first to rewrite the input query to one con-
sidering semantic equivalences and then finding the
subgraphs minimizing the semantic graph edit dis-
tance. For efficiency, they build offline a semantic
summary graph over which they perform a two-level
pruning at query time in order to finally provide an-
swers. The semantic summary graph is a multi-layer
graph where the first layer is consisted of the linked
types of the instances (they call them semantic facts).
Then, they abstract this graph in the layers above,
replacing/abstracting in each layer classes with their
superclass. The summary produced does not require
user input to be produced, whereas the aforemen-
tioned method can only be applied in fully typed



RDF KBs. 9 Conclusions and Future
Work

Finally, the next works consider structural meth-
ods for the summarization of ABoxes (facts) in de-
scription logics KBs.

In this survey, we present a comprehensive state-of-
the-art in semantic graph summarization. To this di-
rection, we introduce a taxonomy of the works in the
area (based on different properties/criteria that the
works adhere to), that can help practitioners and re-
[25] proposes a method for compressing (hence gearchers to determine the method most suitable for
summarizing) the ABox of a Horn-ALCHOZ de- their data and goal. In this taxonomy, we grouped
scription logic KBs, using the mnotion of ABox the main methods of the algorithms presented into
abstraction. Given an ABox A, for each A value v, four main categories structural, statistical, pattern-
a type pattern of the form tp(v) = (tpy,p—,tP) mining and hybrid, identifying subcategories when-
is computed, where ¢p; denotes the explicit types eover possible. In addition we also classified works in
v has in A (C’s such that C(v) € A), tp-, the the field according to their input, output, availabil-
outgoing properties v has in A (R’s such that ity on the internet and purpose, showing the rapidly
R(v,v") € A) and tp. the incoming properties v evolving dynamics in the area.
has in A (S’s such that S(v',v) € A). These type

patterns are then used to build the abstraction B
of the ABox, which is an ABox itself; each such

type pattern s us.ed to represent all the ABox data indexing to RDF graph visualization. Struc-
values that match it: for every type pattern tp = . . . .
tural quotient summaries are most applicable to in-
(1€ Oy { B, s B}, {50, 1), B con- dexing and query answering through graph reduc-
tains {C1(ztp); - - -, Con (T1p), R1(Tipy Y )y -+ s Ru(2ap, y "X)d. 8 AUety al & ust erap
5 s p thoti; this holds especially for quotients built through
S1Wip > Tip)s - - Si(Wip » Tep) }- We  remark that, equivalence relations such as bisimilarity (possibly
given an ABox, its abstraction is simply obtained bounded). Non-quotient summaries mostly target vi-
by traversing its facts. Tt is further shown in  gua1ization, schema discovery and data understand-
[25] how the abstraction of the ABox of an input ing. Pattern mining summaries provide in many cases
Horn-ALCHOT KB can be gradually refined, using logical rules besides the summary graph as part of
reasoning steps, to obtain the abstraction of the {}¢ final result, so could be possibly more useful in
ABox of the input KB saturation. RDF graph compression scenarios. Summaries could
also be really useful in data integration scenarios [48],
where instead of generating mappings [63], [65] be-
ABox summaries has also been considered for tween data source schemas, summaries could be used
the data management tasks of consistency checking to drive the definition of the mapping. Extending
[24, 23] and query answering [19, 20] in SHZN KBs. this to a scenario where the sources can also evolve
In these works, the notion of a summary ABox is very [47], [46], summaries can play a key role in schema
general: an ABox A’ is a summary of another ABox understanding and mapping redefinition. Different
A w.r.t. some function f that maps A values to A" RDF summarization scenarios each bring their very
ones whenever f defines a homomorphism from A to specific requirements (e.g., whether the summary size
A’. Based on this property of ABox summaries, the is bounded or not, whether a schema is present or
purpose of [24, 23, 19, 20] is to study how SHZAN con- not, whether to summarize the data or the schema,
sistency and query answering reasoning techniques whether the summary needs to reflect all the struc-
can be performed correctly and more efficiently than ture or not etc.); in many cases more than one al-
when handling the input ABox. gorithm or family of algorithms will provide suitable

In general, RDF graph summaries can be useful in
various application scenarios ranging from data un-
derstanding to query answering and from RDF graph

32



results. The goal of our survey was to provide enough
information to the users of these algorithms (i.e. ap-
plication developers or researchers) in order to be
able to easily refer to the characteristics of each ap-
proach, and evaluate their suitability to their appli-
cation requirements.

Despite the considerable amount of work in the
area of semantic graph summarization, there still are
many important open problems in the field. Below
we mention two of the most notable ones.

The first one is the quality of the produced RDF
summary. Since the result summary for the different
algorithms, varies among a selection of nodes, quo-
tients, some other frequency structure or a complete
graph with various types of nodes and links identify-
ing a single golden standard is a complex task. On
the other hand, even domain experts in many cases
disagree on which specific elements should be selected
in a semantic summary. However, having in mind our
proposed taxonomy we believe that the next step in
the area is the establishment of different golden stan-
dards specific to each subcategory focusing on specific
purpose input and output.

Another open issue we perceive as really impor-
tant, is the dynamic nature of all these datasets. As
new information becomes available due to new ex-
perimental evidence or observations and erroneous
past conceptualizations are constantly updated many
datasets are rapidly changing. However, summa-
rization in most cases and especially for big data
sources is a time-consuming process that should be
constantly updated to facilitate data exploration. As
such, novel ideas should focus in this dynamicity, aug-
menting the exploration experience of end users.

The work in RDF graph summarization gains more
importance as the RDF Knowledge Bases become
larger and more connected and thus we expect to see
additional advances in the field in the near future.
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Work Method Input requirements Purpose Output Output na- | System
type ture Theory
Dataguide | Structural | None Indexing, Single Instance System
(28] non- query root,
quotient answering | node-
and edge-
labeled
graphs
Rudolf et | Structural | Required user param- | Visualization Property Instance System
al. [86] non- eters graph
quotient
Chen et | Structural | None OLAP Multiple Multiple In- | Theory
al. Graph | non- non-RDF stances
OLAP [16] | quotient graphs
Zhao et al. | Pattern None Indexing, Set of | Instance Theory
[118] mining graph con- | frequent
tainment trees
queries
Yan et al. | Pattern Parameterized wuser | Indexing, Tree Instance Theory
[112] mining input query
answering
Koutra et | Clustering, | None Visualization Graph Instance Theory
al. [51] pattern
mining
Khan et | Structural | Required degree | Visualization Graph Instance Theory
al. [41] non- threshold,  overlap
quotient, ratio
data
mining
Navlakha Structural | Optional user- | Visualization Graph Instance Theory
et al. [69] | non- specified  bounded
quotient, error parameter
data
mining
LeFevre et | Structural | Required number of | Answering | Graph Instance Theory
al. [55], | non- summary nodes, size | adjacency,
Riondato quotient, of the extent of sum- | degree and
et al. [84] | data mary nodes centrality
mining queries
Chen et | Structural | Required support | Visualization Graph Instance Theory
al.  Ran- | non- threshold
domized quotient,
summaries | pattern
[15] mining

Table 2: Other graph summary proposals.
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Work RDF Input Purpose Output Output System
input require- type nature Theory
compo- ments
nent

ExpLOD  [42] | Instance None Data explo- | Graph Instance System

[43] ration, visual- and

ization schema
Campinas et al. | Instance None Query formula- | RDF Instance Theory
[11] tion graph and
schema
Consens et al. | Instance None Query answer- | RDF Instance System
[17, 45) ing graph and
schema
Khatchadourian | Instance None Data explo- | Graph Instance Theory
et al. [44] ration, visual- and
ization schema
Schatzle et al. | Instance None Graph  reduc- | Graph Instance Theory
(87] tion and
schema
ASSG [114] Instance Required Query answer- | Graph Compressed| Theory
user- ing graph
selected
queries

Cebiri¢ et al. | Instance None Query optimiza- | RDF Instance System

[12] and tion, query for- | graph and
schema mulation, visu- schema

alization

Jiang et al. [34] | Instance None Semantic min- | Labeled Instance Theory

ing graph

Picalausa et al. | Instance None Indexing, query | Graph Instance System

[78] answering and

schema
Tran et al. [99] | Instance Optional Indexing, data | Graph Instance Theory
param- partitioning, and
eters query process- schema
FW/BW/FBing
and neigh-
borhood
size

Table 3: Structural quotient RDF summaries.
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Work RDF Input require- | Purpose Output Output System
input ments type nature Theory
compo-
nent

SchemEX Instance Data stream | Indexing RDF Instance Theory

[49, 50] window size graph

RDF  Sentence | Schema Required Visualization Labeled Schema System

Graph [117], schema, Pa- graph

[116] rameterized

user input,
RDF/OWL

KCE [76], [66] Instance Required Visualization Isolated Schema System
and schema, Pa- nodes nodes
schema rameterized

user input,
RDF/OWL

RDFDigest [102], | Instance Required Visualization,Labeled Schema System

[100], [75] and schema, Pa- | query an- | graph
schema rameterized swering

user input, | tasks

RDF/OWL,

Semantics-

aware, Handle

implicit data
Queiroz et al. | Schema Required Visualization Labeled Schema System
[82] schema, Pa- graph

rameterized

user input,

RDF/OWL

Sydow et al. [96] | Instance Entity of inter- | Visualization RDF Instance Theory

est graph

Gurajada et al. | Instance None Query an- | RDF Instance System

[29] swering graph

Kellou et al. [39] | Instance None Schema Graph Schema Theory
and discovery
Schema

Le et al. [54] Instance Required neigh- | Indexing, Partitioned | Instance Theory

borhood size keyword RDF
queries graph

Udrea et al. [105] | Instance Assumes  sat- | Indexing, Balanced Instance System

urated input | visual binary

graph, Required | querying tree

size k of the (leaves

input graph = parti-

partition tion over
resources)

Table 4: Structural non—ﬂlllotient RDF summaries.




Work RDF Input requirements Purpose Output Output System
input type nature Theory
compo-
nent

Zneika et | Instance Optional user param- | Query answer- | RDF Instance | Theory

al.  [120, eters ing graph and

121] schema

Joshi et al. | Instance None Compression Graph Instance | Theory

(36, 35] and logical

rules
Pan et al. | Instance None Compression Graph Instance | Theory
[74] and logical

rules
Song et al. | Instance Bounded hop neigh- | Query answer- | Graph Schema | Theory
[91] bors d, maximum size | ing patterns

of patterns K,

Table 5: Pattern mining RDF summaries.
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Work RDF Input requirements Purpose Output Output System
input type nature Theory
compo-
nent

Hose et al. | Instance None Source se- | Statistical | Instance Theory

[33] lection informa-

tion
Wu et al. | Schema Requires schema, | Visualization Isolated Schema Theory
[111] RDF/OWL, minor schema
user input nodes
Pires et al. | Schema Requires schema, | Query Labeled Schema System
[79] OWL answering | graph
tasks

LODSight | Instance None Compression, Labeled Instance System

[21] and Visualiza- | graph
schema tion

Mgynarz et | Instance Required schema | Understandingabeled Instance System

al. [68] and summary  patterns, | of dataset, | graphs
schema the number (k) of | Visualiza-

selected examples, tion

Presutti et | Instance None Querying Labeled Construct | Theory

al. [81] and Dataset graphs an ontol-
schema ogy and

the corre-
sponding
instances
that sum-
marize key
features
of dataset
and iden-
tify  the
core KPs

Table 6: Statistical RDF summaries.
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Work Method RDF Input require- | Purpose Output Output System
input ments type nature Theory
compo-
nent

Alzogbi et | Structural | Instance| None Compression Graph Instance Theory

al. [3] quotient, and

clustering schema

Stefanoni Structural | Instance| Optional pa- | Conjunctive| Graph Instance Theory

et al. [94] | non- rameters for | query car-

quotient, summary re- | dinality
data finement estimation
mining
ABSTAT Statistical, | Instance| RDF/OWL, Visualization,Labeled | Schema System
[73] [92] pattern and Semantic- schema graph graph
mining schema | aware, Handles | discovery (pat- (Abstract
implicit data terns) Knowl-
edge
Patterns)
Pham et | Structural | Instance| Required max. | Query op- | Relational Instance Theory
al. [77] non- and number of sum- | timization | tables
quotient, schema | mary nodes, and
statistical min. number foreign
of mnodes rep- keys
resented by a
summary node,
infrequency
threshold, simi-
larity threshold

Zheng et | Structural | Instance| Each instance | Query op- | Multi- Schema Theory

al. [119] quotient, and should have a | timization | layer

pattern- schema | type, the list Graph
mining of meaning-

equivalent  in-

stances should

be provided

Glimm et | Pattern Instance| Description Compression ABox Instance Theory

al. [25] mining and Logics, (facts)
schema | Semantic-

aware, Handles
implicit data

Fokoue et | Structural | Instance| Description Consistencyr ABox Instance System

al. [24, 23, | non quo- | and Logics, checking (facts)

19, 20] tient schema | Semantic- and query

aware, Handles | answering
implicit data

Table 7: Hybrid RDF summaries.
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