F. Bauer and M. A. Lukas, Comparing parameter choice methods for regularization of ill-posed problems, Math. Comput. Simulat, vol.81, pp.1795-1841, 2011.

M. Bertero, Linear inverse and ill-posed problems, Adv. Electron. El. Phys, vol.75, pp.1-120, 1989.

C. G. Bowsher, M. Voliotis, and P. S. Swain, The fidelity of dynamic signaling by noisy biomolecular networks, PLoS Comput. Biol, vol.9, issue.3, p.1002965, 2013.

S. Boyd and L. Vandenberghe, Convex Optimization

E. Cinquemani, Reconstruction of promoter activity statistics from reporter protein population snapshot data, Proc. of the 54th IEEE CDC, pp.1471-1476, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218010

E. Cinquemani, On observability and reconstruction of promoter activity statistics from reporter protein mean and variance profiles, Proc. of the 5th HSB workshop, vol.9957, pp.147-163, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399934

. Cvx-research, . Inc, and . Cvx, Matlab software for disciplined convex programming, 2012.

G. De-nicolao, G. Sparacino, and C. Cobelli, Nonparametric input estimation in physiological systems: Problems, methods, and case studies, Automatica, vol.33, issue.5, pp.851-870, 1997.

B. Finkenstädt, E. A. Heron, M. Komorowski, K. Edwards, S. Tang et al., Reconstruction of transcriptional dynamics from gene reporter data using differential equations, Bioinformatics, vol.24, issue.24, pp.2901-2907, 2008.

N. Friedman, L. Cai, and X. S. Xie, Linking stochastic dynamics to population distribution: An analytical framework of gene expression, Phys. Rev. Lett, vol.97, p.168302, 2006.

D. T. Gillespie, A rigorous derivation of the chemical master equation, Physica A, vol.188, pp.404-425, 1992.

C. W. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica, vol.37, issue.3, pp.424-438, 1969.

J. Hasenauer, S. Waldherr, M. Doszczak, N. Radde, P. Scheurich et al., Identification of models of heterogeneous cell populations from population snapshot data, BMC Bioinformatics, vol.12, issue.1, p.125, 2011.

J. Hasenauer, V. Wolf, A. Kazeroonian, and F. J. Theis, Method of conditional moments (MCM) for the Chemical Master Equation, J. Math. Biol, vol.69, issue.3, pp.687-735, 2014.

J. P. Hespanha, Modelling and analysis of stochastic hybrid systems, IEE Proceedings-Control Theory and Applications, vol.153, issue.5, pp.520-535, 2006.

A. Hilfinger, T. M. Norman, G. Vinnicombe, and J. Paulsson, Constraints on fluctuations in sparsely characterized biological systems, Phys. Rev. Lett, vol.116, issue.058101, 2016.

M. Kaern, T. C. Elston, W. J. Blake, and J. J. Collins, Stochasticity in gene expression: From theories to phenotypes, Nat. Rev. Gen, vol.6, pp.451-464, 2005.

M. Komorowski, B. Finkenstädt, C. Harper, and D. Rand, Bayesian inference of biochemical kinetic parameters using the linear noise approximation, BMC Bioinformatics, vol.10, issue.1, p.343, 2009.

M. Komorowski, B. Finkenstädt, and D. Rand, Using a single fluorescent reporter gene to infer half-life of extrinsic noise and other parameters of gene expression, Biophys. J, vol.98, issue.12, pp.2759-2769, 2010.

I. Lestas, J. Paulsson, N. E. Ross, and G. Vinnicombe, Noise in gene regulatory networks, IEEE Trans. Autom. Control, vol.53, pp.189-200, 2008.

I. Lestas, G. Vinnicombe, and J. Paulsson, Fundamental limits on the suppression of molecular fluctuations, Nature, vol.467, issue.7312, pp.174-178, 2010.

A. Llamosi and A. M. Gonzalez-vargas,

C. Versari, E. Cinquemani, G. Ferrari-trecate, P. Hersen, and G. Batt, What population reveals about individual cell identity: Single-cell parameter estimation of models of gene expression in yeast, PLoS Comput. Biol, vol.12, p.1004706, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01248298

J. Lygeros and M. Prandini, Stochastic hybrid systems: A powerful framework for complex, large scale applications, Eur. J. Control, vol.16, pp.583-594, 2010.

G. Neuert, B. Munsky, R. Z. Tan, L. Teytelman, M. Khammash et al., Systematic identification of signal-activated stochastic gene regulation, Science, vol.339, issue.6119, pp.584-587, 2013.

J. R. Norris, Number 2 in Cambridge series on statistical and probabilistic mathematics, 1997.

A. Ocone, L. Haghverdi, N. S. Mueller, and F. J. Theis, Reconstructing gene regulatory dynamics from highdimensional single-cell snapshot data, Bioinformatics, vol.31, issue.12, pp.89-96, 2015.

E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. Van-oudenaarden, Regulation of noise in the expression of a single gene, Nat. Genet, vol.31, pp.69-73, 2002.

A. Papoulis, Probability, random variables, and stochastic processes. McGraw-Hill series in electrical engineering, 1991.

J. Paulsson, Models of stochastic gene expression, Phys. Life Rev, vol.2, issue.2, pp.157-175, 2005.

C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning, 2006.

J. Ruess, A. Milias-argeitis, S. Summers, and J. Lygeros, Moment estimation for chemically reacting systems by extended kalman filtering, J. Chem. Phys, vol.135, issue.16, p.165102, 2011.

K. R. Sanft, S. Wu, M. Roh, J. Fu, R. K. Lim et al., Stochkit2: Software for discrete stochastic simulation of biochemical systems with events, Bioinformatics, vol.27, issue.17, pp.2457-2458, 2011.

M. Schelker, A. Raue, J. Timmer, and C. Kreutz, Comprehensive estimation of input signals and dynamics in biochemical reaction networks, Bioinformatics, vol.28, issue.18, pp.529-534, 2012.

M. L. Simpson, C. D. Cox, and G. S. Sayler, Frequency domain chemical Langevin analysis of stochasticity in gene transcriptional regulation, J. Theor. Biol, vol.229, pp.383-394, 2004.

D. M. Suter, N. Molina, D. Gatfield, K. Schneider, U. Schibler et al., Mammalian genes are transcribed with widely different bursting kinetics, Science, vol.332, pp.472-474, 2011.

M. Thattai and A. Van-oudenaarden, Intrinsic noise in gene regulatory networks, vol.98, pp.8614-8619, 2001.

N. G. Van-kampen, Stochastic Processes in Physics and Chemistry. North-Holland Personal Library, 1992.

X. Wang, B. Errede, and T. C. Elston, Mathematical analysis and quantification of fluorescent proteins as transcriptional reporters, Biophys. J, vol.94, issue.6, pp.2017-2026, 2008.

E. Yeung, J. L. Beck, and R. M. Murray, Modeling environmental disturbances with the Chemical Master Equation, Proc. of the 52nd IEEE CDC, pp.1384-1391, 2013.

C. Zechner, J. Ruess, P. Krenn, S. Pelet, M. Peter et al., Moment-based inference predicts bimodality in transient gene expression, vol.109, pp.8340-8345, 2012.

C. Zechner, M. Unger, S. Pelet, M. Peter, and H. Koeppl, Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings, Nat. Methods, vol.11, pp.197-202, 2014.

V. Zulkower, M. Page, D. Ropers, J. Geiselmann, and H. De-jong, Robust reconstruction of gene expression profiles from reporter gene data using linear inversion, Bioinformatics, vol.31, issue.12, pp.71-79, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01217800