
HAL Id: hal-01925950
https://inria.hal.science/hal-01925950

Submitted on 18 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting Mutations by eBWT
Nicola Prezza, Nadia P Pisanti, Marinella Sciortino, Giovanna Rosone

To cite this version:
Nicola Prezza, Nadia P Pisanti, Marinella Sciortino, Giovanna Rosone. Detecting Mu-
tations by eBWT. Workshop on Algorithms in Bioinformatics, 2018, Helsinki, Finland.
�10.4230/LIPIcs.CVIT.2016.23�. �hal-01925950�

https://inria.hal.science/hal-01925950
https://hal.archives-ouvertes.fr

Detecting Mutations by eBWT∗

Nicola Prezza1, Nadia Pisanti1,3, Marinella Sciortino2, and
Giovanna Rosone†1

1 University of Pisa, Dipartimento di Informatica, Italy
2 University of Palermo, Dipartimento di Matematica e Informatica, Italy
3 ERABLE Team INRIA, France

Abstract
In this paper we develop a theory describing how the extended Burrows-Wheeler Transform
(eBWT) of a collection of DNA fragments tends to cluster together the copies of nucleotides
sequenced from a genome G. Our theory accurately predicts how many copies of any nucleotide
are expected inside each such cluster, and how an elegant and precise LCP array based procedure
can locate these clusters in the eBWT.

Our findings are very general and can be applied to a wide range of different problems. In
this paper, we consider the case of alignment-free and reference-free SNPs discovery in multiple
collections of reads. We note that, in accordance with our theoretical results, SNPs are clustered
in the eBWT of the reads collection, and we develop a tool finding SNPs with a simple scan
of the eBWT and LCP arrays. Preliminary results show that our method requires much less
coverage than state-of-the-art tools while drastically improving precision and sensitivity.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases BWT, LCP Array, SNPs, Reference-free, Assembly-free

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

The cheap and fast Next Generation Sequencing (NGS) technologies are producing huge
amounts of data that put a growing pressure on data structures designed to store raw
sequencing information, as well as on efficient analysis algorithms: collections of billion of
DNA fragments (reads) need to be efficiently indexed for downstream analysis. After a
sequencing experiment, the most traditional analysis pipeline begins with an error-prone and
lossy mapping of the collection of reads onto a reference genome. Among the most widespread
tools to align reads on a reference genome we can mention BWA [20], Bowtie2 [16], SOAP2
[21]. These methods share the use of the FM-index [10], an indexing machinery based on
the Burrows-Wheeler Transform (BWT) [4]. Other approaches [13, 14] combine an index
of the reference genome with the BWT of the reads collection in order to boost efficiency
and accuracy. In some applications, however, aligning reads on a reference genome presents
limitations mainly due to the difficulty of mapping highly repetitive regions, especially in
the event of a low-quality reference genome (not to mention the cases in which the reference
genome is not even available).

For this reason, indices of reads collections have also been suggested as a lossless dictionary
of sequencing data, where sensitive analysis methods can be directly applied without mapping

∗ This work was partially supported by the project MIUR-SIR CMACBioSeq (“Combinatorial methods
for analysis and compression of biological sequences”) grant n. RBSI146R5L.

† Corresponding author: Giovanna Rosone, giovanna.rosone@unipi.it

© Nicola Prezza and Nadia Pisanti and Marinella Sciortino and Giovanna Rosone;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

80
5.

01
87

6v
3

 [
cs

.D
S]

 1
0

M
ay

 2
01

8

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Detecting Mutations by eBWT

the reads to a reference genome (thus without needing one), nor assembling [29, 31, 17, 12].
In [7] the BWT, or more specifically its extension to string collections (named eBWT [27, 2]),
is used to index reads from the 1000 Genomes Project [36] in order to support k-mer search
queries. An eBWT-based compressed index of sets of reads has also been suggested as a basis
for both RNA-Seq [6] and metagenomic [1] analyses. There exist also suffix array based data
structures devised for indexing reads collections: the Gk array [30, 38] and the PgSA [15].
Finally, there are several tools ([29, 31, 19, 3, 18, 17, 12]) that share the idea of using the
de Bruijn graph (dBG) of the reads’ k-mers. The advantages of dBG-based indices include
allowing therein the characterization of several biologically-interesting features of the data
as suitably shaped and sized bubbles1 (e.g. SNPs, INDELs, Alternative Splicing events on
RNA-Seq data, sequencing errors can all be modeled as bubbles in the dBG of sequencing
data [29, 31, 19, 3, 18]). The drawback of these dBG representation, as well as those of suffix
array based indices such as the ones introduced in [30, 38], is the lossy aspect of getting down
to k-mers rather than representing the actual whole collection of reads. Also [13, 14] have
this drawback as they index k-mers. An eBWT-based indexing method for reads collections,
instead, has the advantages to be easy to compress and, at the same time, lossless: (e)BWT
indexes support querying k-mers without the need to build different indexes for different
values of k.

Here we introduce the Positional Clustering framework: an eBWT-based index of reads
collections where we give characterizations of (i) positions sharing a context as clusters in
the eBWT, and (ii) the onset of these clusters by means of the LCP. This clustering allows
to locate and investigate, in a lossless index of reads collections, genome positions possibly
equivalent to bubbles in the dBG [19, 29] independently from the k-mer length (a major
drawback of dBG-based strategies). We thus gain the advantages of dBG-based indices while
maintaining those of (e)BWT-based ones. Besides, the eBWT index also contains abundance
data (useful to distinguish errors from variants, as well as distinct variant types) and does
not need the demanding read-coherency check at post processing as no micro-assembly has
been performed. With these promising advantages with respect to dBG-based strategies, the
positional clustering framework allows likewise reference-free and assembly-free detection of
SNPs [29, 28, 12], small INDELs [22, 12], sequencing errors [32, 33, 23], alternative splicing
events [31], rearrangements breakpoints [19] on raw reads collections.

As a proof-of-concept, we test our theoretical framework with a prototype tool named
eBWTclust designed to detect positional clusters and post-process them for assembly-free
and reference-free SNPs detection directly on the eBWT of reads collection. Among several
reference-free SNPs finding tools in the literature [29, 37, 28, 12], the state-of-the-art is
represented by the well documented and maintained KisSNP and DiscoSnp suite [29, 37, 11],
where DiscoSnp++ [28] is the latest and best performing tool. In order to validate the
accuracy of positional clustering for finding SNPs, we compared DiscoSnp++ sensitivity and
precision to those of our prototype eBWTclust. Preliminary results on human chromosomes
show that, even when using relatively low coverages (22x), our tool is able to find 91% of all
SNPs (vs 70% of DiscoSnp++) with an accuracy of 98% (vs 94% of DiscoSnp++).

2 Preliminaries

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet with c1 < c2 < . . . < cσ, where < denotes
the standard lexicographic order. For s ∈ Σ∗, we denote its letters by s[1], s[2], . . . , s[n],

1 A bubble in a graph is a pair of disjoint paths sharing the same source node and target node.

N. Prezza, N. Pisanti, M. Sciortino, G. Rosone 23:3

where n is the length of s, denoted by |s|. We append to s ∈ Σ∗ an end-marker symbol $ that
satisfies $ < c1. Note that, for 1 ≤ i ≤ n, s[i] ∈ Σ and s[n+ 1] = $ /∈ Σ. A substring of s is
denoted as s[i, j] = s[i] · · · s[j], with s[1, j] being called a prefix and s[i, n+ 1] a suffix of s.

We denote by S = {R1, R2, . . . , Rm} a collection of m strings (reads), and by $i the
end-marker appended to Ri (for 1 ≤ i ≤ m), with $i < $j if i < j. Let us denote by P
the sum of the lengths of all strings in S.The generalized suffix array GSA of the collection
S (see [35, 5, 25]) is an array containing P pairs of integers (j, r), corresponding to the
lexicographically sorted suffixes Rr[j, |Rr|+ 1], where 1 ≤ j ≤ |Rr|+ 1 and 1 ≤ r ≤ m. In
particular, gsa(S)[i] = (j, r) (for 1 ≤ i ≤ P) if the suffix Rr[j, |Rr|+ 1] is the i-th smallest
suffix of the strings in S. Such a notion is a natural extension of the suffix array of a string
(see [26]). The Burrows-Wheeler Transform (BWT) [4], a well known text transformation
largely used for data compression and self-indexing compressed data structure, has also
been extended to a collection S of strings (see [27]). Such an extension, known as extended
Burrows-Wheeler Transform (eBWT) or multi-string BWT, is a reversible transformation that
produces a string that is a permutation of the letters of all strings in S: ebwt(S) is obtained
by concatenating the symbols cyclically preceding each suffix in the list of lexicographically
sorted suffixes of all strings in S. The eBWT applied to S can also be defined in terms of the
generalized suffix array of S ([2]): if gsa(S)[i] = (t, j) then ebwt(S)[i] = Rj [t− 1]; when t = 1,
then ebwt(S)[i] = $j . For gsa,ebwt, and lcp, the LF mapping (resp. FL) is a function that
associates to each (e)BWT symbol the position preceding (resp. following) it on the text.

The longest common prefix (LCP) array of a collection S of strings (see [5, 25, 8]),
denoted by lcp(S), is an array storing the length of the longest common prefixes between two
consecutive suffixes of S in lexicographic order. For each i = 2, . . . , P , if gsa(S)[i−1] = (p1, p2)
and gsa(S)[i] = (q1, q2), lcp(S)[i] is the length of the longest common prefix of suffixes starting
at positions p1 and q1 of the strings Rp2 and Rq2 , respectively. We set lcp(S)[1] = 0.

For gsa, ebwt, and lcp, the set S will be omitted when clear from the context.

3 eBWT positional clustering

Let R be a read sequenced from a genome G[1, n]. We say that R[j] is a read-copy of G[i]
iff R[j] is copied from G[i] during the sequencing process (and then possibly changed due
to sequencing errors). Let us consider the eBWT of a set of reads {R1, . . . , Rm} of length2
r, sequenced from a genome G. Assuming that c is the coverage of G[i], let us denote with
Ri1 [j1], . . . , Ric [jc] the c read-copies of G[i]. Should not there be any sequencing error, if
we consider k such that the genome fragment G[i+ 1, i+ k] occurs only once in G (that is,
nowhere else than right after G[i]) and if r is large enough so that with high probability
each Rit [jt] is followed by at least k nucleotides, then we observe that the c read copies
of G[i] would appear contiguously in the eBWT of the reads. We call this phenomenon
eBWT positional clustering. Due to sequencing errors, and to the presence of repetitions with
mutations in real genomes, a clean eBWT positional clustering is not realistic. However, in
this section we show that, even in the event of sequencing errors, in the eBWT of a collection
of reads sequenced from a genome G, the read-copies of G[i] still tend to be clustered together
according to a suitable Poisson distribution.

We make the following assumptions: (i) the sequencing process is uniform, i.e. the
positions from where each read is sequenced are uniform and independent random variables,

2 For simplicity of exposition, here we assume that all the reads have the same length r. With little more
effort, it can be shown that our results hold also when r is the average read length.

CVIT 2016

23:4 Detecting Mutations by eBWT

(ii) the probability ε that a base is subject to a sequencing error is a constant3, (iii) a
sequencing error changes a base to a different one uniformly (i.e. with probability 1/3 for
each of the three possible variants), and (iv) the number m of reads is large (hence, in our
theoretical analysis we can assume m→∞).

I Definition 1 (eBWT cluster). The eBWT cluster of i, with 1 ≤ i ≤ n being a position
on G, is the substring ebwt[a, b] such that gsa[a, b] is the range of read suffixes prefixed by
G[i+ 1, i+ k], where k < r is the smallest value for which G[i+ 1, i+ k] appears only once
in G. If no such value of k exists, we take k = r − 1 and say that the cluster is ambiguous.

If no value k < r guarantees that G[i + 1, i + k] appears only once in G, then the
eBWT cluster of i does not contain only read-copies of G[i] but also those of other t − 1
characters G[i2], . . . , G[it]. We call t the multiplicity of the eBWT cluster. Note that t = 1
for non-ambiguous clusters.

I Theorem 2 (eBWT positional clustering). Let Ri1 [j1], . . . , Ric [jc] be the c read-copies of
G[i]. An expected number X ≤ c of these read copies will appear in the eBWT cluster
ebwt[a, b] of i, where X ∼ Poi(λ) is a Poisson random variable with mean

λ = m · r − k
n

(1− ε)k

and where k is defined as in Definition 1.

Proof. The probability that a read covers G[i] is r/n. However, we are interested only in
those reads such that, if R[j] is a read-copy of G[i], then the suffix R[j + 1, r+ 1] contains at
least k nucleotides, i.e. j ≤ r − k. In this way, the suffix R[j + 1, r + 1] will appear in the
GSA range gsa[a, b] of suffixes prefixed by G[i+ 1, i+ k] or, equivalently, R[j] will appear in
ebwt[a, b]. The probability that a random read from the set is uniformly sampled from such
a position is (r− k)/n. If the read contains a sequencing error inside R[j + 1, j + k], however,
the suffix R[j + 1, r + 1] will not appear in the GSA range gsa[a, b]. The probability that
this event does not happen is (1− ε)k. Since we assume that these events are independent,
the probability of their intersection is therefore

Pr(R[j] ∈ ebwt[a, b]) = r − k
n

(1− ε)k

This is a Bernoullian event, and the number X of read-copies of G[i] falling in ebwt[a, b] is
the sum of m independent events of this kind. Then, X follows a Poisson distribution with
mean λ = m · r−kn (1− ε)k. J

Theorem 2 states that, if there exists a value k < r such that G[i + 1, i + k] appears
only once in G (i.e. if the cluster of i is not ambiguous), then X of the b− a+ 1 letters in
ebwt[a, b] are read-copies of G[i]. The remaining (b− a+ 1)−X letters are noise introduced
by suffixes that mistakenly end up inside gsa[a, b] due to sequencing errors. It is not hard to
show that this noise is extremely small under the assumption that G is a uniform text; we
are aware that this assumption is not realistic, but we will experimentally show in Section 4
that also on real genomes we can safely assume X = b− a+ 1 without affecting results.

Note that the expected coverage of position G[i] is also a Poisson random variable, with
mean λ′ = mr

n equal to the average coverage. On expectation, the size of non-ambiguous

3 We assume this to simplify the theoretical framework. In Section 4 we will see that our framework
works even on real data with sequencing simulated using realistic errors distribution.

N. Prezza, N. Pisanti, M. Sciortino, G. Rosone 23:5

ebwt clusters is thus λ/λ′ = (r−k)(1−ε)k

r < 1 times the average coverage. E.g., with k = 16,
ε = 0.0012 (the study [34] reports this maximum average substitution rate for Illumina HiSeq
platforms), and r = 100 the expected cluster size is 100 · λ/λ′ ≈ 84% the average coverage.

Finally, it is not hard to prove, following the proof of Theorem 2, that in the general case
with multiplicity t ≥ 1 the expected cluster size follows a Poisson distribution with mean
t · λ (because the read-copies of t positions are clustered together). This observation will
allow us to detect and discard ambiguous clusters using a significance test.

So far, we have demonstrated the eBWT positional clustering property but we don’t have
a way for identifying the eBWT clusters. A naive strategy could be to fix a value of k and
define clusters to be ranges of k-mers in the gsa. This solution, however, fails to separate read
suffixes differing after k positions (this is, indeed, a drawback of all k-mer-based strategies).
The aim of Theorem 3 is precisely to fill this gap, allowing us to move from theory to practice.
Intuitively, we show that clusters lie between local minima in the LCP array. This strategy
automatically detects the value k satisfying Definition 1 in a data-driven approach.

Our result holds only if two conditions on the eBWT cluster under investigation are
satisfied (see Proposition 4 for an analysis of the success probability). More specifically, we
require that the eBWT cluster ebwt[a, b] of position i satisfies:

(1) The cluster does not have noise, i.e. X = b− a+ 1, and
(2) Let (p1, j1), (p2, j2) ∈ gsa[a, b]. For any x such that k ≤ x < r, if both Rp1 [j1, r] and

Rp2 [j2, r] contain their leftmost sequencing errors in Rp1 [j1 + x] and Rp2 [j2 + x], then
Rp1 [j1 + x] 6= Rp2 [j2 + x].

Proposition 4 will show that with probability high enough Condition (2) is satisfied in
practice. E.g., with r = 100, ε = 0.0012 (see [34]), mean coverage λ′ = 44 (the coverage of
one of our experiments in Section 4.4), and for any k ≥ 11, Proposition 4 shows that the
condition holds (in expectation) on at least 93% of the non-ambiguous clusters.

I Theorem 3. Let ebwt[a, b] be the eBWT cluster of a position i meeting Conditions (1) and
(2). Then, there exists a value a < p ≤ b such that lcp[a+ 1, p] is a non-decreasing sequence
and lcp[p+ 1, b] is a non-increasing sequence.

Proof. Let us denote by pM the largest index in (a, b] such that lcp[pM] = M , whereM is the
maximum value of LCP in (a, b] (if M occurs multiple times, take the rightmost occurrence).
We claim the theorem holds for p = pM . Let us denote by q and j, 1 ≤ q ≤ m, 1 ≤ j ≤ r,
the positive integers such that gsa[pM] = (j, q). This means, by using Condition (2), that the
read Rq contains the longest prefix Rq[j, j+M − 1] without sequencing errors, j+M ≤ r+ 1.
Consider any other suffix Ru[ju, r+1] in the range and let Ru[ju+x] be the leftmost mismatch
letter in Ru[ju, r + 1], with x ≥ k. Note that if Ru[ju, r + 1] does not contain sequencing
errors, then ju+x−1 = r, otherwise Ru[ju+x] has been mutated with an error. We suppose
that the mutation at position ju + x generated a letter lexicographically smaller than that of
the genome (the other case is symmetric). By Condition (2), x ≤M + 1 and no other suffix
Rv[jv, r + 1] in the range satisfies Rv[jv + x] = Ru[ju + x]. Then, Ru[ju, r + 1] falls right
after a suffix Ru′ [ju′ , r + 1] such that either Ru′ [ju′ , r] properly prefixes Ru[ju, r + 1] or the
leftmost mismatch occurs at position x′ ≤ x. Similarly, Ru[ju, r+ 1] falls right before a suffix
Ru′′ [ju′′ , r+ 1] such that Ru[ju+x] < Ru′′ [ju′′ +x] and whose leftmost mismatch position x′′
satisfies x ≤ x′′ ≤M +1. This shows that, before suffix Rq[j, r+1], other suffixes are ordered
by increasing position of their leftmost mismatch letter (since x′ ≤ x ≤ x′′) and, then, by the
lexicographic order among mismatch letters, which in particular implies that before suffix
Rq[j, r + 1] the lcp values are non-decreasing. Symmetrically, with a similar reasoning one
can easily prove that after suffix Rq[j, r + 1] the lcp values are non-increasing. J

CVIT 2016

23:6 Detecting Mutations by eBWT

I Proposition 4. Given a eBWT cluster ebwt[a, b] with multiplicity t ≥ 1, Condition (2) holds
with probability at least

CDF (tλ, dtλe+ δ) ·
(3∑
e=0

(
dtλe+ δ

e

)
· (1− ε)dtλe+δ−e · εe · ce

)r−k

for any integer δ ≥ 0 and where: k is the value defined in Definition 1, λ is the mean of the
Poisson distribution of Theorem 2, CDF (µ, z) is the cumulative distribution function of a
Poisson random variable with mean µ evaluated in z, and c0 = c1 = 1, c2 = 2/3, c3 = 2/9.

Proof. First note that, by Theorem 2, the number of suffixes in the cluster sharing their
first k bases is at most dtλe+ δ with probability CDF (tλ, dtλe+ δ). We first analyze the
probability that the condition holds for a fixed offset x (i.e. looking at the (x+ 1)-th base
of all suffixes in the range sharing their first x characters), and then compute the joint
probability for all k ≤ x < r.

Note that the condition cannot fail if the number e of bases Rph
[jh + x] that have been

subject to errors is either e = 0 or e = 1. The condition does not fail also if we have e = 2 or
e = 3 distinct errors, while it always fails for e ≥ 4 (since at least two errors will produce
the same base). On a generic number Y ≤ dtλe+ δ of suffixes (those sharing their first x
bases), one can verify that the probability that the condition does not fail for a fixed number
e < 4 of errors is

(
Y
e

)
· (1− ε)Y−e · εe · ce, where c0 = c1 = 1, c2 = 2/3, c3 = 2/9. Since these

events are disjoint, we can sum these probabilities to get a lower bound to the probability
that condition (2) holds on a specific offset x on Y suffixes. Since this probability decreases
as Y increases, we get a lower bound by taking the maximum Y = dtλe + δ, and obtain
probability

∑3
e=0

(dtλe+δ
e

)
· (1− ε)dtλe+δ−e · εe · ce.

To get a lower bound to the probability that the condition holds simultaneously on all
k ≤ x < r, we take the product of these probabilities (note that errors at different offsets
are independent events). This reasoning holds only if there are at most dtλe + δ suffixes
sharing their first k bases — which happens with probability CDF (tλ, dtλe+ δ) — so we
must include this multiplicative correction factor to get our final lower bound. J

Note: to get a lower bound that is independent from δ in Proposition 4, use the δ that
maximizes the expression (since the lower bound holds for any δ).

According to Theorem 3, clusters are delimited by local minima in the LCP array of the
read set. This gives us a strategy for finding clusters that is independent from k. Importantly,
the proof of Theorem 3 also gives us the suffix in the range (the p-th suffix) whose longest
prefix without sequencing errors is maximized. This will be useful in the next section to
efficiently compute a consensus of the reads in the cluster.

Observe that by applying Theorem 3 we also find ambiguous clusters. However, the
expected length of these clusters is a multiple of λ, so they can be reliably discarded with a
significance test based on the Poisson distribution of Theorem 2.

4 Experimental Validation: Reference-Free SNPs Discovery

When the reads dataset contains variations (e.g. two allele of the same individual, or two
or more distinct individuals, or different isoforms of the same gene in RNA-Seq data, or
different reads covering the same genome fragment in a sequencing process, etc.), the eBWT
positional clustering described in the previous section can be used to detect, directly from the
raw reads (hence, without assembly and without the need of a reference genome), positions

N. Prezza, N. Pisanti, M. Sciortino, G. Rosone 23:7

G[i] exhibiting possibly different values, but followed by the same context: they will be in a
cluster delimited by LCP minima and containing possibly different letters (corresponding
to the read copies of the variants of G[i] in the read set). This general idea can be used in
several applications: error correction, assembly (the strategy finds overlaps between reads,
so it can be used for assembly purposes), haplotype discovery (if fed with reads from just
one diploid sample, this strategy can find heterozygous sites), and so on.

In this section, with the purpose of experimentally validating the theoretical framework
of Section 3, we describe a new alignment-free and reference-free method that, with a simple
scan of the eBWT and LCP array, detects SNPs in read collections.

Since (averagely) half of the reads comes from the forward (F) strand, and half from
the reverse-complement (RC) strand, we denote with the term right (resp. left) breakpoint
those variants found in a cluster formed by reads coming from the F (resp. RC) strand,
and therefore sharing the right (resp. left) context adjacent to the variant. A non-isolated
SNP [37] is a variant at position i such that the closest variant is within k bases from i, for
some fixed k (we use k = 31 in our validation procedure, see below). The SNP is isolated
otherwise. Note that, while isolated SNPs are found twice with our method (one as a right
breakpoint and one as a left breakpoint), this is not true for non-isolated SNPs: variants at
the sides of a group of non-isolated SNPs are found as either left or right breakpoint, while
SNPs inside the group will be found with positional clustering plus a partial local assembly
of the reads in the cluster. In the next two subsections we give all the details of our strategy.

4.1 Pre-processing (eBWT computation)
Since we do not aim at finding matches between corresponding pairs of clusters on the forward
and reverse strands, we augment the input adding the reverse-complement of the reads: for a
reads set S, we add SRC as well. Hence, given two reads sets S and T , in the pre-processing
phase we compute ebwt(R), lcp(R), and gsa(R), for R = {S ∪ SRC ∪ T ∪ T RC} [25, 5, 24].
We also compute gsa(R) because we will need it (see Subsection 4.2) to extract left and right
contexts of the SNP. Though this could be achieved by performing (in external memory)
multiple steps of LF- and FL-mappings on the eBWT, this would significantly slow-down
our tool. Note that our approach can also be generalized to more than two reads collections.

4.2 SNP calling
Our SNPs calling approach takes as input ebwt(R), lcp(R), and gsa(R) and outputs SNPs in
KisSNP2 format [11]: a fasta file containing a pair of sequences per SNP (one per sample,
containing the SNP and its context). The SNP calling is divided in two main steps.

Build clusters. First, we scan ebwt(R) and lcp(R), find clusters using Theorem 3, and
store them to file as a sequence of ranges on the eBWT. In addition, while computing clusters
we also apply a threshold of minimum LCP (by default, 16): we cut clusters’ tails containing
LCP values smaller than the threshold. This additional filtering drastically reduces the
number of clusters saved to file (and hence memory usage and running time), since the
original strategy would otherwise output many short clusters containing small LCP values
corresponding to noise.

Call SNPs. The second step takes as input the clusters file, ebwt(R), lcp(R), gsa(R),
and R, and processes clusters from first to last as follows:
1. We test the cluster’s length using the Poisson distribution predicted by Theorem 2; if the

cluster’s length falls in one of the two tails at the sides of the distribution (by default, the
two tails summing up to 5% of the distribution), then the cluster is discarded; Moreover,

CVIT 2016

23:8 Detecting Mutations by eBWT

due to k-mers that are not present in the genome but appear in the reads because of
sequencing errors (which introduce noise around cluster length equal to 1), we also fix a
minimum value of length for the clusters (by default, 4 letters per sample).

2. In the remaining clusters, we find the most frequent nucleotides b1 and b2 of samples 1
and 2, respectively, and check whether b1 6= b2; if so, then we have a candidate SNP: for
each sample, we use the GSA to retrieve the coordinate of the read containing the longest
right-context without errors (see explanation after Proposition 4); moreover, we retrieve,
and temporarily store in a buffer, the coordinates of the remaining reads in the cluster.

3. After processing all events, we scan the fasta file storing R to retrieve the reads of interest
(those whose coordinates are in the buffer); for each one of them, we compute a partial
assembly of the read prefixes preceding the SNP, for each of the two samples. This allows
us to compute a left-context for each SNP (by default, of length 20), and represents a
further validation step: if the assembly cannot be built because a consensus cannot be
found, then the cluster is discarded. Note that these left-contexts preceding SNPs (which
are actually right-contexts if the cluster is formed by reads from the RC strand) allow us
to capture non-isolated SNPs.

Complexity In the clustering step, we process the eBWT and LCP and on-the-fly output
clusters to disk. The SNP-calling step performs one scan of the eBWT, GSA, and clusters
file to detect interesting clusters, plus one additional scan of the read set to retrieve contexts
surrounding SNPs. Both these phases take linear time in the size of the input and do not
use disk space in addition to the input and output. Due to the fact that we store in a
buffer the coordinates of reads inside interesting clusters, this step uses an amount of RAM
proportional to the number of SNPs times the average cluster size λ times the read length r
(e.g. a few hundred MB in our case study of Section 4.4). Notice that our method is very
easy to parallelize, as the analysis of each cluster is independent from the others.

4.3 Validation
Here we describe the validation tool we designed to measure the sensitivity and precision
of any tool outputting SNPs in KisSNP2 format. Note that we output SNPs as pairs
of reads containing the actual SNPs plus their contexts (one sequence per sample). This
can be formalized as follows: the output is a series of pairs of triples (we call them calls)
(L′, s′, R′), (L′′, s′′, R′′) where L′, R′, L′′, R′′ are the left/right contexts of the SNP in the
two samples, and letters s′, s′′ are the actual variant. Given a .vcf file (Variant Call Format)
containing the ground truth, the most precise way to validate this kind of output is to check
that the triples actually match contexts surrounding true SNPs on the reference genome
(used here just for accuracy validation purposes). That is, for each pair in the output calls:
1. If there is a SNP s′ → s′′ in the .vcf that is surrounded in the first sample by contexts

L′, R′ (or their RC), then (L′, s′, R′), (L′′, s′′, R′′) is a true positive (TP).
2. Any pair (L′, s′, R′), (L′′, s′′, R′′) that is not matched with any SNP in the ground truth

(as described above) is a false positive (FP).
3. Any SNP in the ground truth that is not matched with any call is a false negative (FN).
We implemented the above validation strategy with a (quite standard) reduction of the
problem to the 2D range reporting problem: we insert in a two-dimensional grid two points
per SNP (from the .vcf) using as coordinates the ranks of its right and (reversed) left contexts
among the sorted right and (reversed) left contexts of all SNPs (contexts from the first sample)
on the F and RC strands. Given a pair (L′, s′, R′), (L′′, s′′, R′′), we find the two-dimensional
range corresponding to all SNPs in the ground truth whose right and (reversed) left contexts

N. Prezza, N. Pisanti, M. Sciortino, G. Rosone 23:9

are prefixed by R′ and (the reversed) L′, respectively. If there is at least one point in the
range matching the variation s′ → s′′, then the call is a TP4 (case 1 above; note: to be a TP,
a SNP can be found either on the F or on the RC strand, or both). Otherwise, it is a FP
(case 2 above). Finally, pairs of points (same SNP on the F/RC strands) that have not been
found by any call are marked as FN (case 3 above). We repeat the procedure for any other
SNP found between the two strings L′s′R′ and L′′s′′R′′ to find non-isolated SNPs.

4.4 Preliminary Experiments
In order to valuate our method, we compare eBWTclust with DiscoSnp++, that is a
revisiting of the DiscoSnp algorithm: while DiscoSnp detects both heterozygous and
homozygous isolated SNPs from any number of read datasets without a reference genome,
DiscoSnp++ is designed for detecting and ranking all kinds of SNPs and small indels
from raw read set(s). As shown in [28], DiscoSnp++ performs better than state-of-the-art
methods in terms of both computational resources and quality of the results.

DiscoSnp++ is composed of several independent tools. As a preprocessing step, the
dBG of the input datasets is built, by also removing erroneous k-mers. Then, DiscoSnp++
detects bubbles generated by the presence of SNPs (isolated or not) and indels and it outputs
a fasta file containing the variant sequences (KisSnp2 module). A final step (kissreads2)
maps back the reads from all input read sets on the variant sequences, mainly in order to
determine the read coverage per allele and per read set of each variant. This module also
computes a rank per variant, indicating whether it exhibits discriminant allele frequencies
in the datasets. The last module generates a .vcf of the predicted variants. If no reference
genome is provided this step is a change of format from fasta to .vcf (VCFcreator module).

We propose two experiments simulating two human chromosomes haploid read sets
obtained mutating (with real .vcf files) real reference chromosomes5. The final goal of the
experiments is to reconstruct the variations contained in the original (ground truth) .vcf
files. We generated the mutated chromosomes using the 1000 genome project (phase 3) .vcf
files6 related to chromosomes 16 and 22, suitably filtered to keep only SNPs of individuals
HG00100 (ch.16) and HG00096 (ch.22). From these files, we simulated Illumina sequencing
with SimSeq [9], both for reference and mutated chromosomes: individual HG00096 (ch.22)
at a 29x getting 15, 000, 000 of 100-bp reads, and individual HG00100 (ch.16) a 22x getting
20, 000, 000 of 100-bp reads.

Our framework has been implemented in C++ and is available at https://github.com/
nicolaprezza/eBWTclust. All tests were done on a DELL PowerEdge R630 machine, used
in non exclusive mode. Our platform is a 24-core machine with Intel(R) Xeon(R) CPU
E5-2620 v3 at 2.40 GHz, with 128 GB of shared memory. The system is Ubuntu 14.04.2 LTS.
Note that, unlike DiscoSnp++, our tool is currently able to use one core only.

We experimentally observed that the pre-processing step is more computationally ex-
pensive than the actual SNP calling step. The problem of computing the eBWT is being
intensively studied, and improving its efficiency is out of the aim of this paper. However,
a recent work [7] suggests that direct storing of read data with a compressed eBWT leads
to considerable space savings, and could therefore become the standard in the future. Our

4 Since other tools such as DiscoSnp++ do not preserve the order of samples in the output, we actually
check also the variant s′′ → s′ and also search the range corresponding to L′′ and R′′

5 ftp.1000genomes.ebi.ac.uk//vol1/ftp/technical/reference/phase2_reference_assembly_
sequence/hs37d5.fa.gz

6 ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

CVIT 2016

https://github.com/nicolaprezza/eBWTclust
https://github.com/nicolaprezza/eBWTclust
ftp.1000genomes.ebi.ac.uk//vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp.1000genomes.ebi.ac.uk//vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

23:10 Detecting Mutations by eBWT

strategy can be easily adapted to directly take as input these compressed formats. For both
tools, we thus omit time/space requirements of the preprocessing steps: computing the data
structures described in Section 4.1 for eBWTclust, and constructing the dBG and removing
erroneous k-mers for DiscoSnp++. Building the dBG requires a few minutes and, in order
to keep the RAM usage very low, no other information other than k-mer presence is stored
in the dBG used by DiscoSnp++. On the other hand, the construction of eBWT, LCP and
GSA can take a few hours (around 90 minutes by using Egsa [25]). So, overall DiscoSnp++
is faster than eBWTclust when considering both pre-processing and post-processing.

We run DiscoSnp++ with default parameters (includes k-mers size 31) except for P = 3
(it searches up to P SNPs per bubble) and b (b = 0 forbids variants for which any of the two
paths is branching; b = 2 imposes no limitation on branching; b = 1 is inbetween).

eBWTclust takes as input few main parameters, among which the most important
are the lengths of right and left contexts surrounding SNPs in the output (-L and -R), the
minimum cluster size (-m), and (-v) the maximum number of non-isolated SNPs to seek in
the left contexts (like parameter P of DiscoSnp++). We decided to output 20 nucleotides
preceding (and including) the SNP (-L 20), 30 following the SNP (-L 30), a minimum
cluster size of -m 6 and -m 4, and -v 3.

In Table 1, we show the number of TP, FP and FN as well as sensitivity (SEN), precision
(PREC), and the number of non-isolated SNPs found by the tools. The outcome is that
eBWTclust is always more precise and sensitive than DiscoSnp++. Moreover, while in
our case precision is stable and always quite high (≈ 98.5% with -m 6 for HG00096 and -m 4
for HG00100, and > 99% with -m 6 HG00100), for DiscoSnp++ precision is much lower in
general, and even drops with b = 2, especially with lower coverage, when inversely sensitivity
grows. Sensitivity of DiscoSnp++ gets close to that of eBWTclust only in case b = 2,
when its precision drops and memory and time get worse than ours. Note that precision and
sensitivity of DiscoSnp++ are consistent with those reported in [28].

Individual HG00096 vs reference (chromosome 22, 50818468bp), coverage 29× per sample

Tool Param. Wall RAM TP FP FN SEN PREC Non-isolated
Clock in MB SNP

DiscoSnp++ b=0 5:07 101 32773 3719 13274 71.17% 89.81% 4707/8658
DiscoSnp++ b=1 16:39 124 37155 10599 8892 80.69% 77.80% 5770/8658
DiscoSnp++ b=2 20:42 551 40177 58227 5870 87.25% 40.83% 6325/8658
eBWTclust m=4 19:43 415 42973 2639 3074 93.32% 94.21% 7268/8658
eBWTclust m=6 24:58 411 41972 630 4075 91.15% 98.52% 6940/8658

Individual HG00100 vs reference (chromosome 16, 90338345bp), coverage 22× per sample

Tool Param. Wall RAM TP FP FN SEN PREC Non-isolated
Clock in MB SNP

DiscoSnp++ b=0 6:20 200 48119 10226 18001 72.78% 82.47% 6625/11055
DiscoSnp++ b=1 31:57 208 53456 24696 12664 80.85% 68.40% 7637/11055
DiscoSnp++ b=2 51:45 1256 57767 124429 8353 87.37% 31.71% 8307/11055
eBWTclust m=4 41:12 423 61264 943 4856 92.66% 98.48% 9314/11055
eBWTclust m=6 43:51 419 58085 391 8035 87.85% 99.33% 8637/11055

Table 1 Comparative results of eBWTclust (only SNP calling) and DiscoSnp++ (only KisSnp2
and kissreads2). Wall clock is the elapsed time from start to completion of the instance, while
RAM is the peak Resident Set Size (RSS). Both values were taken with /usr/bin/time command.

N. Prezza, N. Pisanti, M. Sciortino, G. Rosone 23:11

5 Conclusions

We introduced a positional clustering framework for the characterization of breakpoints in
the eBWT, paving the way to several possible applications in assembly-free and reference-free
analysis of NGS data. The experiments proved the feasibility and potential of our approach.
Further work will focus on improving the prediction in highly repeated genomic regions and
using our framework to predict SNPs, predict INDELs, haplotyping, correcting sequencing
errors, detecting Alternative Splicing events in RNA-Seq data, and sequence assembly.

References
1 C. Ander, O.B. Schulz-Trieglaff, J. Stoye, and A.J. Cox. metaBEETL: high-throughput ana-

lysis of heterogeneous microbial populations from shotgun DNA sequences. BMC Bioinf.,
14(5):S2, 2013.

2 M.J. Bauer, A.J. Cox, and G. Rosone. Lightweight algorithms for constructing and inverting
the BWT of string collections. Theoret. Comput. Sci., 483(0):134 – 148, 2013.

3 E. Birmelé, P. Crescenzi, R.A. Ferreira, R. Grossi, V. Lacroix, A. Marino, N. Pisanti, G.A.T.
Sacomoto, and M.-F. Sagot. Efficient Bubble Enumeration in Directed Graphs. In SPIRE,
LNCS 7608, pages 118–129, 2012.

4 M. Burrows and D.J. Wheeler. A Block Sorting data Compression Algorithm. Technical
report, DIGITAL System Research Center, 1994.

5 A.J. Cox, F. Garofalo, G. Rosone, and M. Sciortino. Lightweight LCP construction for
very large collections of strings. J. Discrete Algorithms, 37:17–33, 2016.

6 A.J. Cox, T. Jakobi, G. Rosone, and O.B. Schulz-Trieglaff. Comparing DNA sequence
collections by direct comparison of compressed text indexes. In WABI, LNBI 7534, pages
214–224, 2012.

7 D.D. Dolle, Z. Liu, M. Cotten, J.T. Simpson, Z. Iqbal, R. Durbin, S.A. McCarthy, and
T.M. Keane. Using reference-free compressed data structures to analyze sequencing reads
from thousands of human genomes. Gen. Res., 27(2):300–309, 2017.

8 L. Egidi and G. Manzini. Lightweight BWT and LCP merging via the Gap algorithm. In
SPIRE, LNCS 10508, pages 176–190, 2017.

9 D. Earl et al. Assemblathon 1: A competitive assessment of de novo short read assembly
methods. Gen. Res., 21(12):2224–2241, 2011.

10 P. Ferragina and G. Manzini. Opportunistic data structures with applications. In FOCS,
pages 390–398, 2000.

11 S.N. Gardner and B.G. Hall. When Whole-Genome Alignments Just Won’t Work: kSNP
v2 Software for Alignment-Free SNP Discovery and Phylogenetics of Hundreds of Microbial
Genomes. PLoS ONE, 8(12):e81760, 2013.

12 Z. Iqbal, I. Turner, G. McVean, P. Flicek, and M. Caccamo. De novo assembly and geno-
typing of variants using colored de Bruijn graphs. Nature Genetics, 44(2):226–232, 2012.

13 K. Kimura and A. Koike. Analysis of genomic rearrangements by using the Burrows-
Wheeler transform of short-read data. BMC Bioinf., 16(suppl.18):S5, 2015.

14 K. Kimura and A. Koike. Ultrafast SNP analysis using the Burrows-Wheeler transform of
short-read data. Bioinformatics, 31(10):1577–1583, 2015.

15 T.M. Kowalski, S. Grabowski, and S. Deorowicz. Indexing arbitrary-length k-mers in se-
quencing reads. PLoS ONE, 10(7), 2015.

16 B. Langmead and S.L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nat. Methods,
9(4):357–359, 2012.

17 R.M. Leggett and D. MacLean. Reference-free SNP detection: dealing with the data deluge.
BMC Genomics, 15(4):S10, 2014.

CVIT 2016

23:12 Detecting Mutations by eBWT

18 R.M. Leggett, R.H. Ramirez-Gonzalez, W. Verweij, C.G. Kawashima, Z. Iqbal, J.D.G.
Jones, M. Caccamo, and D. MacLean. Identifying and Classifying Trait Linked Poly-
morphisms in Non-Reference Species by Walking Coloured de Bruijn Graphs. PLoS ONE,
8(3):1–11, 03 2013.

19 C. Lemaitre, L. Ciortuz, and P. Peterlongo. Mapping-free and assembly-free discovery of
inversion breakpoints from raw NGS reads. In AlCoB, pages 119–130, 2014.

20 H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009.

21 R. Li, C. Yu, Y. Li, T. W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang. SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics, 25(15):1966–1967, 2009.

22 S. Li, R. Li, H. Li, J. Lu, Y. Li, L. Bolund, M.H. Schierup, and J. Wang. SOAPindel:
efficient identification of indels from short paired reads. Gen. Res., 23(1):195–200, 2013.

23 A. Limasset, J.-F. Flot, and P. Peterlongo. Toward perfect reads: self-correction of short
reads via mapping on de Bruijn graphs. CoRR, abs/1711.03336, 2017.

24 F.A. Louza, S. Gog, and G.P. Telles. Inducing enhanced suffix arrays for string collections.
Theor. Comput. Sci., 678:22–39, 2017.

25 F.A. Louza, G.P. Telles, S. Hoffmann, and C.D.A. Ciferri. Generalized enhanced suffix
array construction in external memory. Algorithms for Molecular Biology, 12(1):26, 2017.

26 U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. In
SODA, pages 319–327, 1990.

27 S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. An extension of the Burrows-Wheeler
Transform. Theoret. Comput. Sci., 387(3):298–312, 2007.

28 P. Peterlongo, C. Riou, E. Drezen, and C. Lemaitre. DiscoSnp++: de novo detection of
small variants from raw unassembled read set(s). bioRxiv, 2017.

29 P. Peterlongo, N. Schnel, N. Pisanti, M.-F. Sagot, and V. Lacroix. Identifying SNPs without
a Reference Genome by comparing raw reads. In SPIRE, LNCS 6393, pages 147–158, 2010.

30 N. Philippe, M. Salson, T. Lecroq, M. Léonard, T. Commes, and E. Rivals. Querying large
read collections in main memory: a versatile data structure. BMC Bioinf., 12:242, 2011.

31 G.A.T. Sacomoto, J. Kielbassa, R. Chikhi, R. Uricaru, P. Antoniou, M.-F. Sagot,
P. Peterlongo, and V. Lacroix. KISSPLICE: de-novo calling alternative splicing events
from RNA-seq data. BMC Bioinf., 13(S-6):S5, 2012.

32 L. Salmela and E. Rivals. LoRDEC: accurate and efficient long read error correction.
Bioinformatics, 30(24):3506–3514, 2014.

33 L. Salmela, R. Walve, E. Rivals, and E. Ukkonen. Accurate self-correction of errors in long
reads using de Bruijn graphs. Bioinformatics, 33(6):799–806, 2017.

34 M. Schirmer, R. D’Amore, U.Z. Ijaz, N. Hall, and C. Quince. Illumina error profiles:
resolving fine-scale variation in metagenomic sequencing data. BMC Bioinf., 17(1):125,
2016.

35 F. Shi. Suffix Arrays for Multiple Strings: A Method for On-Line Multiple String Searches.
In ASIAN, LNCS 1179, pages 11–22, 1996.

36 The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526:68–74, 2015.

37 R. Uricaru, G. Rizk, V. Lacroix, E. Quillery, O: Plantard, R. Chikhi, C. Lemaitre, and
P. Peterlongo. Reference-free detection of isolated SNPs. Nuc.Acids Res, 43(2):e11, 2015.

38 N. Välimäki and E. Rivals. Scalable and Versatile k-mer Indexing for High-Throughput
Sequencing Data. In ISBRA, LNCS 7875, pages 237–248, 2013.

	1 Introduction
	2 Preliminaries
	3 eBWT positional clustering
	4 Experimental Validation: Reference-Free SNPs Discovery
	4.1 Pre-processing (eBWT computation)
	4.2 SNP calling
	4.3 Validation
	4.4 Preliminary Experiments

	5 Conclusions

