S. Abramsky, The Lazy Lambda Calculus, pp.65-117, 1990.

S. Abramsky and A. Jung, Domain Theory, Handbook of Logic in Computer Science, pp.1-168, 1994.

A. Arnold and M. Nivat, Metric Interpretations of Infinite Trees and Semantics of non Deterministic Recursive Programs, Theor. Comput. Sci, vol.11, pp.181-205, 1980.
DOI : 10.1016/0304-3975(80)90045-6

URL : https://doi.org/10.1016/0304-3975(80)90045-6

M. Barr, Relational algebras, Lect. Notes Math, vol.137, pp.39-55, 1970.

P. Clément and W. Desch, Wasserstein metric and subordination, 2008.

R. Crubillé and U. Dal-lago, On Probabilistic Applicative Bisimulation and Call-by-Value ?-Calculi, Proc. of ESOP, pp.209-228, 2014.

R. Crubillé and U. Dal-lago, Metric Reasoning about ?-Terms: The Affine Case, Proc. of LICS 2015, pp.633-644, 2015.

R. Crubillé and U. Dal-lago, Metric Reasoning About ?-Terms: The General Case, Proc. of ESOP 2017, pp.341-367, 2017.

U. Lago, F. Gavazzo, and P. B. Levy, Effectful applicative bisimilarity: Monads, relators, and Howe's method, Proc. of LICS 2017, pp.1-12, 2017.
DOI : 10.1109/lics.2017.8005117

URL : https://hal.inria.fr/hal-01636365/file/lics2017HAL.pdf

U. Lago, D. Sangiorgi, and M. Alberti, On coinductive equivalences for higher-order probabilistic functional programs, Proc. of POPL, pp.297-308, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01091573

B. A. Davey and H. A. Priestley, Introduction to lattices and order, 1990.
DOI : 10.1017/cbo9780511809088

A. A. De-amorim, M. Gaboardi, J. Hsu, S. Katsumata, and I. Cherigui, A semantic account of metric preservation, Proc. of POPL 2017, pp.545-556, 2017.

J. W. De-bakker and J. I. Zucker, Denotational Semantics of Concurrency, STOC, pp.153-158, 1982.

W. Du, Y. Deng, and D. Gebler, Behavioural Pseudometrics for Nondeterministic Probabilistic Systems, Proc. of SETTA 2016, pp.67-84, 2016.
DOI : 10.1007/978-3-319-47677-3_5

M. H. Escardo, A metric model of PCF, Workshop on Realizability Semantics and Applications, 1999.

F. Gavazzo, Quantitative Behavioural Reasoning for Higher-order Effectful Programs: Applicative Distances (Long Version, 2018.
DOI : 10.1145/3209108.3209149

D. Gebler, S. K. Larsen, and . Tini, Compositional bisimulation metric reasoning with Probabilistic Process Calculi, LMCS, vol.12, p.4, 2016.
DOI : 10.1007/978-3-662-46678-0_15

URL : http://www.cassting-project.eu/wp-content/uploads/GLT-fossacs15.pdf

J. Girard, A. Scedrov, and P. J. Scott, Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability, Theor. Comput. Sci, vol.97, pp.1-66, 1992.
DOI : 10.1016/0304-3975(92)90386-t

URL : https://doi.org/10.1016/0304-3975(92)90386-t

D. Hofmann and G. , Monoidal Topology. A Categorical Approach to Order, Metric, and Topology, Number 153 in Encyclopedia of Mathematics and its Applications, 2014.

D. J. Howe, Proving Congruence of Bisimulation in Functional Programming Languages, Inf. Comput, vol.124, pp.103-112, 1996.

A. Kock, Strong functors and monoidal monads, Archiv der Mathematik, vol.23, pp.113-120, 1972.

K. O. Kortanek and M. Yamasaki, Discrete infinite transportation problems, Discrete Applied Mathematics, vol.58, pp.19-33, 1995.

A. Kurz and J. Velebil, Relation lifting, a survey, J. Log. Algebr. Meth. Program, vol.85, pp.475-499, 2016.

S. B. Lassen, Relational Reasoning about Functions and Nondeterminism, 1998.

F. W. Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Sem. Mat. Fis. Milano, vol.43, pp.135-166, 1973.

P. B. Levy, J. Power, and H. Thielecke, Modelling Environments in Call-byValue Programming Languages, Inf. Comput, vol.185, pp.182-210, 2003.

S. Maclane, Categories for the Working Mathematician, 1971.

J. Morris, Lambda Calculus Models of Programming Languages, 1969.

A. M. Pitts, Howe's Method for Higher-Order Languages, Advanced Topics in, pp.197-232, 2011.

G. D. Plotkin and J. Power, Adequacy for Algebraic Effects, Proc. of FOSSACS, pp.1-24, 2001.

J. Reed and B. C. Pierce, Distance makes the types grow stronger: a calculus for differential privacy, Proc. of ICFP 2010, pp.157-168, 2010.

J. C. Reynolds, Types, Abstraction and Parametric Polymorphism, IFIP Congress, pp.513-523, 1983.

J. J. Rutten, Elements of Generalized Ultrametric Domain Theory. Theor. Comput. Sci, vol.170, pp.349-381, 1996.

D. Sangiorgi, N. Kobayashi, and E. Sumii, Environmental bisimulations for higher-order languages, ACM Trans. Program. Lang. Syst, vol.33, p.69, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01337665

A. Simpson and N. Voorneveld, Behavioural equivalence via modalities for algebraic effects, Proc. of ESOP, 2018.

L. A. Steen and J. A. Seebach, Counterexamples in Topology, 1995.

A. M. Thijs, Simulation and fixpoint semantics, 1996.

C. Villani, Optimal Transport: Old and New, 2008.