
FAR-Cubicle - A new reachability algorithm for Cubicle

Sylvain Conchon∗† Amit Goel‡ Sava Krstić§ Rupak Majumdar¶ Mattias Roux∗

∗LRI, Université Paris Sud CNRS, Orsay F-91405
†INRIA Saclay – Ile-de-France, Orsay cedex, F-91893

§Intel Corporation
§Max Planck Institute for Software Systems

‡Apple

Abstract—We present a fully automatic algorithm for ver-

ifying safety properties of parameterized software systems.

This algorithm is based on both IC3 and Lazy Annotation.

We implemented it in Cubicle, a model checker for verifying

safety properties of array-based systems. Cache-coherence pro-

tocols and mutual exclusion algorithms are known examples

of such systems. Our algorithm iteratively builds an abstract

reachability graph refining the set of reachable states from

counter-examples. Refining is made through counter-example

approximation. We show the effectiveness and limitations of

this algorithm and tradeoffs that results from it.

1. Introduction

We describe FAR (Forward Abstracted Reachability), an
algorithm for fully automatic verification of parameterized
software systems. A parameterized system describes a fam-
ily of programs such as cache coherence protocols where the
number of processes involved can change but the algorithm
handling their behaviour is the same for all of them. Thus,
the parameter allows to talk about these algorithms without
knowing the actual number of processes that will be involved
and then to prove its safety regardless of this number.

Safety properties state that “nothing bad happens” in
our parameterized system. Verifying them can be reduced
to finding an invariant of it. Finding an invariant can be
hard (and even undecidable [1]). The standard approach to
find one is to find a formula Φ such that Φ is an inductive
invariant of the system (i.e. the initial state of the system
satisfies Φ and taking a transition from a state satisfying Φ
leads to another state satisfying Φ).

In this paper we describe an algorithm for the automatic
construction of inductive invariants for array-based systems
(Section 2). This algorithm, based on both IC3 [2] and Lazy
Abstraction [3], builds an inductive invariant by unwinding
a graph (Section 3) building a forward abstract reachability
of our system. This unwinding is described as a set of non
deterministic rules. We then provide an implementation in
Cubicle [4], [5], [6] (Section 5) of these rules and test its ef-
fectiveness on several cache coherence protocols (Section 6).

2. Array-based Systems

An array-based system is described in [7] as first-order
logic formulas on arrays. Such a system can be described
as a set of basic types, a set X of system variables asso-
ciated to type (built as usual with basic types and standard
constructions), a formula init representing the initial states
and a set ∆ of transition rules τ i(X,X ′) (X ′ is the set X
where all the variables are primed which represents the next

state reached after the application of a transition). Since we
work on parameterized programs, our arrays are indexed by
an infinite type proc.

We describe the Dekker mutual exclusion algorithm
as an array-based system. Each process has two boolean
variables, want (stating that the process wants to enter in
critical section or not) and crit (stating that the process is
in critical section or not). There is a global variable turn

of type proc that tracks which process can go into the
critical section. Since we work in the array-based systems
fragment, we represent the local variables as arrays indexed
by processes and containing booleans. The set X contains
two arrays, want[proc] : bool and crit[proc] : bool and the
global variable turn : proc. Initially, no process is or wants
to be in critical section. Three transitions can be triggered,
one to require an access to the critical section, one to enter
in it and one to exit it. According to the previous description,
we write this algorithm as in Figure 1.

Since we focus on safety problems (nothing bad

happens), we need to define what is considered as bad

states. In that case these states would be defined with the
following formula :

unsafe ≡ ∃p1, p2. p1 6= p2 ∧ crit[p1] ∧ crit[p2]

Our goal is then to prove that no state represented by
unsafe is reachable from init (which can be seen as : there

exists no path init = X0

p1

−→ X1

...
−→ . . .

pn

−→ Xn = unsafe
with pi ∈ {req, enter, exit}). To do so on parameterized
system, one of the main algorithm came from Ghilardi et al.
with MCMT [8] and builds the set of all reachable states by
backward reachability (starting, then, from the unsafe state)

turn : proc
crit[proc] : bool
want[proc] : bool

init : ∀p. ¬want[p] ∧ ¬crit[p]

req : ∃p.
¬want[p]
want

′[p]

enter : ∃p.
want[p] ∧ turn = p
crit

′[p]

exit : ∃p1, p2.
crit[p1]
¬want′[p1] ∧ ¬crit′[p1]
∧turn′ = p2

Figure 1. Dekker algorithm as array-based system

and checks if this set contains an initial state. In this paper,
we implement a different algorithm which offers a wider
range of possibilities in terms of reachabilty construction.

3. Program unwinding

This algorithm starts also from the unsafe formula but
tries to build an invariant of the system that does not contain
it. Before going into details, we give a brief explanation.
This invariant is iteratively built as an inductive invariant Θ
that does not contain unsafe :

• if Θ ∧ ∆ ∧ ¬Θ′ is unsatisfiable then we found an
inductive invariant

• if Θ ∧∆ ∧ ¬Θ′ is satisfiable, our candidate invariant
is not inductive and we try to refine it until we either
discover that there is no such refinement or we find
some.

For Dekker’s algorithm, for example, let’s take Θ =
¬unsafe = ∀p1 6= p2.¬crit[p1] ∨ ¬crit[p2] :

• Θ ∧ ∆ ∧ ¬Θ′ is satisfiable (if we
take, for example, the following state : ϕ1 =
crit[p1] ∧ want[p2] ∧ turn = p2 ∧ ¬crit[p2],
ϕ1 |= Θ but if we apply enter to it we obtain the
state ϕ2 = crit[p1] ∧ crit[p2] ∧ . . . and ϕ2 6|= Θ.)

• We need to create Θ′ = Θ ∧ ρ which is a refinement
of Θ that does not contain ϕ1.

To do so, we build an unwinding of the algorithm as a
quadruple 〈V,E,W ,B〉, where:

• 〈V,E〉 is a rooted graph with edges labeled by
transitions from ∆;

• W associates a formula (called world of the vertex)
to each vertex;

• B associates a formula (called bad part of the vertex)
to each vertex.

This graph contains three initial vertices :

ǫ : the root vertex, W(ǫ) = init and B(ǫ) = ⊥;
β : the unsafe vertex, W(β) = ⊤ and B(β) =

unsafe;

ω : the sink vertex, W(ω) = ⊥ and B(ω) = ⊥.

We call V ǫ = {v ∈ V, ǫ
∗

−→ v ∈ E} (i.e. the set of
vertices that are linked to the root). W(v) |=τ W(v′) ≡
W(v) ∧ τ |=W(v′)

The idea behind this unwinding it that if we manage to
create a graph G of a system S = 〈init,∆〉 where every
vertex in V ǫ does not contain a bad part and from which no
more transition can be taken, then the disjunction of their
worlds (Θ =

∨
v∈V ǫW(v)) is an invariant of the system

(init |= Θ and Θ |=∆ Θ).

We now propose a set of non-deterministic rules for
building this unwinding. Let 〈X, init,∆, unsafe〉 be an
array-based system. Initially, G is defined as follow :

- V = {ǫ, ω, β}
- E = ∅

The unwinding works by the non-deterministic applica-
tion of the following rules :

Rule 1 (Extend). If ∃v ∈ V, τ ∈ ∆. W(v) |=τ ⊤ and

∄v′.v
τ
−→ v′ ∈ E then E = E ∪ {v

τ
−→ β}

Rule 2 (Refine). If ∃v, v′ ∈ V, τ ∈ ∆. v
τ
−→ v′ ∈ E,

B(v′) 6= ⊥, ∃ϕ.W(v) |=τ ϕ and ϕ |= ¬B(v′) then we

create a new vertex v′′ such that W(v′′) =W(v′) ∧ ϕ and

E = E ∪ {v
τ
−→ v′′} \ {v

τ
−→ v′}

Rule 3 (Propagate). If ∃v, v′ ∈ V, τ ∈ ∆. v
τ
−→ v′ ∈ E,

B(v′) 6= ⊥, ∃γ. γ |=W(v), and γ |=τ B(v′) then B(v)← γ

Rule 4 (Cover). If ∃v, v′ ∈ V, τ ∈ ∆. v
τ
−→ v′ ∈ E, v′′ ∈ V

such that W(v′′) |= W(v′) and W(v) |=τ W(v′′) then

E = E ∪ {v
τ
−→ v′′} \ {v

τ
−→ v′}

Rule 5 (Sink). If ∃v ∈ V, τ ∈ ∆.W(v) |=τ ⊥ and ∄v′.v
τ
−→

v′ ∈ E then E = E ∪ {v
τ
−→ ω}

S is safe if and only if no rule can be applied to G,
an unwinding S and B(ǫ) = ⊥. Intuitively, since no more
transitions can be taken and all the vertices connected to the
root are not bad, root will never be able to lead to unsafe.

4. Example

The example shown in Figure 2 describes the first four
runs of the unwinding on the Dekker’s algorithm (we de-
cided not to show ω since it just serves as a sink for the
transitions that can not be taken from a vertex) :

(a) initially, the only rule that can be applied is
the Extend rule from ǫ (with W(ǫ) ≡ init ≡
∀p. ¬want[p] ∧ ¬crit[p]) with req;

(b) we can only apply, then, the Refine rule because
init 2req unsafe ≡ B(β). We create a new vertex
called v1;

(c) we can chose, here, to apply the Extend rule from
the new vertex with any transition. We chose to take
the transition req;

⊤ U

I ⊥

req

(a)
Extend

⊤ U

I ⊥

¬U ⊥

req

(b) Refine

⊤ U

I ⊥

¬U ⊥

req

req

(c) Extend

⊤ U

I ⊥

¬U ⊥

req

req

(d) Cover

⊤ U

I ⊥

¬U γ1
¬U ∧
¬γ1

γ2

¬U ∧ ¬γ1¬γ2 ⊥

req

req

enter

req

req

enter exit

(e) Final state

Figure 2. First four steps of the unwinding and final state of the graph (sink rules are not shown)

(d) W(v1) 2req B(β) and W(v1) |=req W(v1) so we
can apply the cover rule;

(e) if we keep applying these rules, we reach a fixpoint
at the third created vertex.

5. Implementation

We implemented this unwinding in Cubicle 1. To do
so we had to chose a deterministic strategy depending on
multiple parameters :

• the order in which the rules are applied;
• which vertex and transition should be taken for the

Extend rule;
• which formula ϕ should we take for the Refine rule;
• which formula γ should we take for the Propagate

rule;
• which vertex v′′ should we take for the Cover rule.

Based on this problems, we came out with the following
algorithm (we write v = (W,B) to denote the fact that
W(v) = W and B(v) = B) :

Algorithm 1 Graph unwinding - main loop

procedure FAR-CUBICLE(S = 〈init,∆, unsafe〉)
ǫ← (init,⊥)
β ← (⊤, unsafe)
ω ← (⊥,⊥)
V ← {ǫ, β, ω}
E = ∅
PUSH(Q, ǫ) ⊲ Q is a priority queue
while NOT_EMPTY(Q) do

v ←POP(Q)
for all τ ∈ ∆ do

if W(v) |=τ ⊤ then

E = E ∪ {v
τ
−→ β}

UNWIND(v
τ
−→ β)

else E = E ∪ {v
τ
−→ ω}

return safe

This algorithm picks a vertex v from a priority queue
(which initially contains only the root vertex) and for all the
transitions, adds an edge to the graph from this transition to
the sink vertex if the formula represented by v is inconsistent
with the transition or to the unsafe vertex if the transition

1. cubicle.lri.fr/far

Algorithm 2 Graph unwinding - unwinding procedure

procedure UNWIND(v
τ
−→ v′)

if B(v) = ⊥ ∧ B(v′) 6= ⊥ then

switch CLOSE(v
τ
−→ v′) do

case Covered v”
E = E ∪ {v

τ
−→ v′′} \ {v

τ
−→ v′}

UNWIND(v
τ
−→ v′′)

case Bad ϕ
if v = ǫ then return unsafe
else

B(v)← ϕ

for all u
τ ′

−→ v do
UNWIND(u

τ
−→ v)

case Refined v”
E = E ∪ {v

τ
−→ v′′} \ {v

τ
−→ v′}

PUSH(Q, v′′)

can be taken. If the edge goes to a vertex v′ that is not the
sink, the procedure UNWIND is called on it. This procedure
checks if B(v) 6= ⊥ or if the B(v′) = ⊥ and if both these
conditions are false it tries to close the edge. An edge is
closed if :

• W(v) |=τ B(v′). In this case, all the edges coming
to it must be unwinded again;

• there exists another vertex v′′ such that v |=τ v′′ and
⊑′′ |=W(v′). In this case, the edge from v to v′ is
deleted and a new one from v to v′′ is created and
unwinded;

• W(v) 6|=τ B(v′). A counter example ϕ is found a
new node v′′ is created with W(v′′) ≡ W(v′) ∧ ϕ
and pushed in the queue.

If all the edges are closed and the queue is empty, the system
is safe. If the propagation of bad parts reaches the root
vertex, the system is unsafe.

As we can see on line 5 of the CLOSE procedure, the
formula γ chosen for the Propagate rule is the pre image
of the bad formula of the vertex v′. Also, on line 7 of the
CLOSE procedure, the formula ϕ chosen for the Refine rule
is a generalization of the negation of the bad part of the ver-
tex v′. These are, of course, implementation choices. Other
implementation could involve model finding, interpolants ...
In our case, the generalization is a naive one consisting in
taking the smallest part of the resulting formula that was

Algorithm 3 Graph unwinding - closing edge procedure

1: procedure CLOSE(v
τ
−→ v′)

2: if ∃v′′. W(v′′) |=W(v′) ∧ W(v) |=τ W(v′′) then
3: return Covered v′′

4: else if W(v) |=τ B(v′) then

5: return Bad PRE(B(v′), τ)
6: else
7: v′′ ← (W(v′) ∧ GENERALIZE(¬B(v′)),⊥)
8: return Refined v”

not already taken and that still satifies the conditions of the
Refine rule.

6. Benchmarks

We compared our implementation to the backward
reachability algorithm already implemented in Cubicle
(without the invariants inference implemented with BRAB
[4], [6]) and obtained the following results (the timeout
was set to 5 minutes and the α version uses an abstraction
engine related to the approximation implemented in BRAB
to get better refinement):

Protocol Cubicle FAR FAR-α

dekker 0.04s 0.04s 0.03s
mux_sem 0.04s 0.05s 0.03s
german-ish 0.06s 0.1s 0.55s
german-ish2 0.13s 0.11s 0.65s
german-ish3 1.2s 8.3s 0.65s
german-ish4 3.5s 2.5s 0.75s
german-ish5 1.9s 8.2s 0.60s
german 18s 5.8s 4.25s

szymanski_at TO 13s 2.60s
szymanski_na TO TO 16s

As we can see in this table, this algorithm is competitive
and even better when good refinements can be found.

7. Related Works

There has been a lot of research in software model
checking and Property-Driven Reachability. This type of al-
gorithm was first introduced by Bradley in [2] and McMillan
revisited his Lazy Annotation (which shares similarities with
PDR algorithms) in [9] or the recent approach from Cimatti
et al. [10] and Z3 with a PDR approach in [11] and [12].
Even though some of these tools are supposed to work on
parameterized systems, we were either not able to find them
or they were not able to prove our examples.

8. Conclusion

We presented the problem of parameterized protocol ver-
ification and gave an algorithm to automatically do it. This
new algorithm was implemented in Cubicle and successfully
applied to many cache coherence protocols.

This algorithm could be improved with a better gen-
eralisation engine (allowing to explore less vertices), an
incremental approach (the parameterized aspect of our lan-
guage makes it hard to remember the state of our SMT
solver). Other optimizations could involve a novel way of
refining our formulas (it is clear that the best refinements
are inductive invariants but it is still an open problem as
how to find these).

Some optimizations were not documented in this article
such as

• Set-theoretic test : some formulas are trivially unsat-
isfiable and don’t require call to the SMT solver;

• relevant instantiations : handling universally quan-
tified formulas can lead to multiple useless instanti-
ations that are trivially unsatisfiable or valid and do
not help the SMT solver to solve the whole formula.
This optimization allows to gain a significant time
in the SMT solver.

• selecting good bads : handling bad parts from the
ones with less processes involved allows to control
the number of processes that have to be instantiated
when checking the satisfiability of formulas. It is
mandatory, if we want to have a competitive algo-
rithm, that we handle the bad parts cleverly (this can
be done in the priority queue).

References

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay, “General
decidability theorems for infinite-state systems,” in LICS, 1996.

[2] A. R. Bradley, “Sat-based model checking without unrolling,” in
VMCAI, 2011, pp. 70–87.

[3] K. L. McMillan, “Lazy abstraction with interpolants,” CAV, pp. 123–
126, 2006.

[4] A. Mebsout, “Inférence d’invariants pour le model checking de sys-
tèmes paramétrés,” Ph.D. dissertation, 2014.

[5] S. Conchon, A. Goel, S. Krstić, A. Mebsout, and F. Zaïdi, “Cubicle:
A Parallel SMT-Based Model Checker for Parameterized Systems -
Tool Paper,” in CAV, 2012, pp. 718–724.

[6] ——, “Invariants for finite instances and beyond,” in FMCAD, 2013,
pp. 61–68.

[7] S. Ghilardi and S. Ranise, “Backward reachability of array-based sys-
tems by SMT solving: Termination and invariant synthesis,” LMCS,
vol. 6, no. 4, 2010.

[8] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli, “Towards SMT
model checking of array-based systems,” in Automated Reasoning,

4th International Joint Conference, IJCAR 2008, 2008, pp. 67–82.

[9] K. L. McMillan, “Lazy annotation revisited,” in Computer Aided

Verification - 26th International Conference, CAV 2014, 2014, pp.
243–259.

[10] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Infinite-state in-
variant checking with IC3 and predicate abstraction,” Formal Methods

in System Design, vol. 49, no. 3, pp. 190–218, 2016.

[11] K. Hoder and N. Bjørner, “Generalized property directed reachabil-
ity,” in Theory and Applications of Satisfiability Testing - SAT 2012

- 15th International Conference, 2012, pp. 157–171.

[12] K. Hoder, N. Bjørner, and L. M. de Moura, “µZ- an efficient engine
for fixed points with constraints,” in Computer Aided Verification -

23rd International Conference, CAV 2011, 2011, pp. 457–462.

