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Abstract

In this paper, we present a new attention model for the
recognition of human action from RGB-D videos. We pro-
pose an attention mechanism based on 3D articulated pose.
The objective is to focus on the most relevant body parts in-
volved in the action. For action classification, we propose a
classification network compounded of spatio-temporal sub-
networks modeling the appearance of human body parts
and RNN attention subnetwork implementing our attention
mechanism. Furthermore, we train our proposed network
end-to-end using a regularized cross-entropy loss, leading
to a joint training of the RNN delivering attention glob-
ally to the whole set of spatio-temporal features, extracted
from 3D ConvNets. Our method outperforms the State-of-
the-art methods on the largest human activity recognition
dataset available to-date (NTU RGB+D Dataset) which is
also multi-views and on a human action recognition dataset
with object interaction (Northwestern-UCLA Multiview Ac-
tion 3D Dataset).

1. Introduction

Human action recognition from RGB-D videos has been
an important task in computer vision. It facilitates many
practical applications like smart home, patient monitoring,
video surveillance and so on. Challenges in this domain
include actions with similar motion and appearance, for
e.g., wearing and taking off a shoe; stacking and unstacking
objects. Existing approaches based on handcrafted fea-
tures [40, 29] and 2D convNet [6] based feature descriptors
lack temporal structure to recognize subtle variations.
Constructing 3D models from videos is a difficult and
expensive task. Initially, holistic approaches have been
proposed to extract a global representation of human body
structure, shape and movements [14, 19] followed by a
progression of using local representation by extraction
of local features [40]. The availability of multimodal
information motivated the authors in [8] to propose mul-
timodal action recognition algorithms using RGB and

depth sequences. The emergence of deep learning has
encouraged researchers to propose multistream networks
using the fusion of appearance and motion [10, 35, 6],
recurrent networks to model the evolution of 3D spatial
location [32, 13] and recently, spatio-temporal networks
like 13D [4] and C3D [38] to extract features from spatial
and temporal dimension simultaneously. However, these
existing methods are still struggling to recognize similar
actions especially in Activities of Daily Living (ADL).
We are particularly interested in ADL recognition. Such
problem introduces specific challenges: high intra-class
variance, high amount of actions which are similar, actions
are performed in the same environment i.e. apartment.
Some datasets such as UCF-101 [37] which are focused
on action recognition from videos uploaded to the internet
are different in a way that their inter-class variance is high
(i.e. “ride a bike” vs. ”sword exercise’”’). Focus on human
body parts to distinguish similar actions in ADL has been
shown in [6, 2, 16]. The recent evolution of 3D con-
vNet [38] along with the mechanism of using pre-trained
models on ImageNet [18] and Kinectics [4] motivate us
to extend the Pose based CNN features for end-to-end
action classification. Therefore, we propose a weighted
aggregation of human body parts to train an end-to-end 3D
model for action classification. To weight the body parts
for action classification is a mutually recursive problem.
Body part selection for action classification depends on
action and vice-versa. So, we propose a pose based spatial
attention mechanism to weight the body parts for action
classification.

Fig. 1, shows a schema of our proposed network.
The action “donning” is recognizable by looking at the
motion of the object grasped by the hands (which is the
jacket).  Spatio-temporal features extracted from these
body parts could be sufficient to model the action. In this
work we address action recognition from clipped videos
with RGB sequences and their corresponding 3D joints
as input. For actions like “jumping”, “running”, and so
on, simple aggregation (summation with equal weightage)
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Figure 1: Schema of our proposed network for an action
”donning”. The 3D pose information determines the atten-
tion weights to be given to the spatio-temporal features ex-
tracted from the RGB videos corresponding to three rele-
vant body parts of the person performing the action.

of the human body parts models the action better than
using the human parts individually. But for actions like
“drinking” and “making a phone call” simple aggregation
of the human body parts diminishes the distinctness of the
spatio-temporal features for action classification because
of providing equal weightage to relevant and irrelevant
body parts. So, we propose an RNN attention mechanism
to provide appropriate weights to the relevant human body
parts involved in the action. Such attention mechanism
further improves the action classification.

In summary, we have made the following main contribu-
tions in this work.

e A method to classify actions from RGB-D videos fo-
cusing on human body parts with 3D ConvNet as the
classification network.

e We introduce a novel RNN attention model. The atten-
tion model based on the temporal sequences of the ar-
ticulated poses assigns soft weights to the human body
parts.

e We propose a joint strategy to tightly couple the 3D
ConvNet based classification network and the RNN at-
tention model using a regularized cross-entropy loss.

e We validate our proposed method on NTU RGB-D
dataset, the largest available human activity dataset
and an object-interaction human action recognition
dataset: the Northwestern-UCLA Multiview Action
3D Dataset outperforming the state-of-the-art results.

2. Related Work

In the past, action recognition has been dominated by
local features, say dense trajectories [40] combined with
fisher vector encoding [28]. The introduction of kinect sen-
sors along with retrieving 3D poses from the depth map en-
couraged vision researchers to explore depth based data to
recognize actions. Advances in deep learning models for

image classification [5] led to the evolution of using these
deep networks for spatial feature extraction followed by
video aggregation techniques along the temporal domain.
Authors in [35, 6, 10] propose late fusion of appearance and
motion to recognize actions. These methods fail to compute
tight correlation between appearance and motion. More-
over, optical flow takes care of instantaneous motion but
fails to model the long-term temporal information. So, se-
quence models like RNNs are proposed to model long-term
spatio-temporal relationships [13].

RNN: s for action recognition - Authors in [9] encode tem-
poral information by extracting spatial features from CNN
network to feed LSTM. The LSTMs fail to perform effi-
ciently on high dimensional spatial input from CNN net-
works. This inspires the authors in [32] to model the evo-
lution of 3D spatial coordinates of human body joints for
understanding the action dynamics. The availability of 3D
data helped to boost performance for action recognition in
cross-view setting as in [44]. Authors in [45] evaluated
action recognition performance by optimizing the features
computed on top of the 3D joints to feed the LSTM. Such a
diversity of LSTM networks yielding high performance ac-
tion recognition accuracy demonstrates its ability to model
the body dynamics of the actor performing an action. This
motivates us to use pose based RNN to estimate the impor-
tance of body parts involved in an action.

3D ConvNets for action recognition - The current stud-
ies on 3D ConvNets describe them as a good descriptor be-
ing generic, compact, simple and efficient [38]. 3D convo-
lutional deep networks can model appearance and motion
simultaneously. In 3D ConvNets, convolution and pool-
ing operations are performed spatio-temporally while in 2D
ConvNets they are performed only spatially. This study mo-
tivates us to use the recently effective I3D [4] network. Un-
like [4], our proposed method computes the action recog-
nition with attention mechanism along the tracks of human
body parts.

Attention-based models for action recognition - Hu-
man perception focuses on the most relevant parts of the im-
age to acquire information to recognize actions. This phe-
nomenon is known as attention mechanism in artificial in-
telligence. Recently, two classes of attention have emerged,
hard and soft attention.

Hard attention is the principle of taking hard decisions
while choosing parts of the input data. This selection re-
duces the task (object recognition) complexity as the Region
of Interest (Rol) can be placed in the center of the fixation
and irrelevant features of the visual environment outside the
fixed region are naturally ignored. Authors in [27] have pro-
posed a visual hard-attention for image classification and
together with a recurrent network to select the appropriate
region location to be focused on. The extraction of infor-
mation from local region chosen by a glimpse sensor (hard



cropping of Rol) is guided by an agent controller receiv-
ing an award for taking a correct decision. The parameters
deciding where to look next are learned using Reinforce-
ment Learning. Similar hard-attention mechanism has been
used in multiple object recognition, object localization and
saliency map generation [3]. [43] uses hard-attention for ac-
tion detection letting attention to decide which frame to ob-
serve next and when to emit an action prediction. All these
are stochastic algorithms which cannot be learned easily
through gradient descent and backpropagation preventing
global optimization of the network. But a major problem
with Reinforcement Learning methods is that, they have a
high variance (in terms of the gradient of the reward com-
puted) which scales linearly with the number of layers in
the RNN network. Thus using attention models in recent
deep networks requires a differentiable loss for global op-
timization of the model. Moreover, the whole network can
be trained end-to-end by standard back-propagation.

Soft attention weighs each part of the Rol dynamically,
taking the entire image into account. Initially, authors as
in [39] trained soft mask branch followed by multiplying the
sigmoid normalized mask features with the original convo-
lutional features to generate attention aware features. Then
authors dealing with videos portrayed the use of soft atten-
tion mechanism in the temporal domain by refining the pre-
dictions from past instances using sequential RNN models
as in [23, 34, 36]. [34] have proposed a recurrent mecha-
nism for action recognition from RGB data, which assigns
weights to different parts of a convolutional features map
extracted from CNN network along time. Instead of us-
ing RGB images, authors in [23] use 3D joints with spatio-
temporal attention mechanism for action recognition. They
have proposed an end-to-end network with three RNN net-
work, one for classification, one for selectively focus on dis-
criminative joints of the skeleton (spatial attention), and one
for assigning weights to the key sequences (temporal atten-
tion). Author in [36] have used similar technique as [23] re-
placing the input of classification RNN with patches around
human hand. Their attention model soft assigns weights
to the RGB hand patches taking advantage of articulated
pose. Most of these methods provide spatial attention on
the input spatial features extracted from 2D ConvNets fed to
the RNN and temporal attention on the output latent spatio-
temporal features. Recently, [3] have proposed a visual at-
tention module that learns to predict glimpse sequences cor-
responding to the Rol in the image along with tracking them
over time using a set of trackers, which are soft-assigned
with external memory. In short, their method includes se-
lecting the glimpses from spatio-temporal features and soft-
assigning them to multiple recurrent networks (workers).
However, there is no tight coupling between extracting the
feature and their attention mechanism failing to globally op-
timize their proposed network. Thus all the spatio-temporal

attention mechanisms for action recognition use recurrent
networks for classification.

However, 3D ConvNets outperforms combination of 2D
ConvNets + RNN [9] by a large margin. So, we propose
a tight coupling of RNN based attention mechanism and 3D
ConvNets to focus on the most important body region and
for action classification. Temporal attention is computed
internally by 3D ConvNets by optimizing the feature maps
globally on the whole video. Up to our knowledge, this is
the first time the attention mechanism weights the compet-
itive video representation instead of weighting the image
representation at each time step to feed an RNN to classify
the action. The novelty lies also in joint training the RNN
along with I3D subnetworks to extract the discriminative
body parts.

3. Proposed Method

We propose and end-to-end 3D Conv network with soft

RNN attention for action classification. We exploit the 3D
articulated poses of the actor performing action to deter-
mine which part of the body can best model an action cat-
egory. Fig. 2 shows its overall architecture, which consists
of three I3D [4] subnetworks for extracting spatio-temporal
features from human body parts (left hand, right hand and
full body) and RNN attention subnetwork to assign differ-
ent degrees of importance to the body parts. The input to
the network being the RGB video with the sequence of cor-
responding 3D joints. The challenge in this task includes
identifying the appropriate feature space where the spatio-
temporal features from the tracks of human body parts are
required to be aggregated. Another challenge includes the
joint training of the attention block to weight the relevant
body parts.
In the following, we discuss the body part representation
establishing their importance, RNN attention from the ar-
ticulated human poses and joint training these subnetworks
together to model the actions.

3.1. Body Part representation

Different body parts have different degrees of impor-
tance for a particular human action. Fine-grained human ac-
tion recognition can be performed by extracting cues from
RGB streams. We employ a glimpse sensor to crop the
tracks of human body parts, for instance - full body, left
hand and right hand from the pixel coordinates detected
by the middleware. Unlike [6], we restrict the glimpse
sensor to crop these three body parts instead of five since
the hands and the full body are of higher relevance to the
actions performed in general. The cropping operation is
fully-differentiable since the exact locations of the human
pose are inputs to the model. We aim to aggregate the la-
tent spatio-temporal video representation from the human
body parts in order to leverage the relevant body parts for
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Figure 2: Proposed End to End action classification net-
work. The input to the network is RGB videos with 3D
skeleton. Actor body regions like left hand, full body and
right hand are extracted from their corresponding 2D pose
information. RNN based attention model takes 3D skele-
ton input (trained on action classification) to attend spa-
tial attention on the spatio-temporal features from I3D (ex-
tracted from global average pooling layer after all inception
blocks).

action modeling. Before aggregating, the parts based sub-
networks, as depicted in fig. 2, are pre-trained on the actor
body parts individually leading to generation of high-level
spatio-temporal features from each parts.

Taking as input a stack of cropped images from a video V4,
the glimpse representation g; of the body part ¢ is computed
by spatio-temporal convolutional network f,, with parame-
ters 0,

9i = fg(CTOP(Vt,i)§9g) 1= {17273} (D

3.2. RNN Attention Model

The action of a person can be described by a series of ar-
ticulated human poses represented by the 3D coordinates of
joints. We use the temporal evolution of human skeletons
to model the attention to be given to different body parts.
The 3D skeleton from depthmap captured by kinect sensor
is exploited to pre-train the stacked pose based RNN for ac-
tion classification to learn the temporal dynamics of skele-
ton joints for different action classes. This pre-training of
the recurrent network is required to extract latent features
with spatio-temporal structure for soft weighting the human
body parts involved in an action. The stacked pose based
RNN consists of three LSTM layers as used in the state-of-
the-art with ¢ = (241, ..., ¢, ) for z;; € R3 and a full
set of J joints, as input. Further a dense fully connected
layer is added on top of it along with tanh activation to ob-
tain the scores s depicting the importance of different body

\ Attention Weights \
AN

Normalize

3D Skeleton

Figure 3: A detailed picture of RNN attention model which
takes 3D skeleton poses input and computes weight atten-
tion on the spatio-temporal features from different body re-
gion of the actor.

parts indicated as
S = Wgtanh(Whhs + bg) + bus (2)

where W, W), are the learnable parameters, b, b, s are the
bias. h® is the concatenated hidden state vector of all the
timesteps from the last LSTM layer as illustrated in fig. 3.
The novelty of our spatial attention block lies in obtaining
the attention scores from the latent spatio-temporal infor-
mation of the whole video instead of obtaining them over
time from the output of cell states at each timestep. The ob-
jective of such video based attention mechanism is to soft
weight the spatio-temporal video representation which is a
4-D hypercube. The obtained scores are normalized using
a softmax layer to obtain the attention probabilities. For
the k*" body part, the activation as the part selection gate is
computed as

exp(sk)

= SK exp(s;) )

The RNN attention model provides weights to the dif-
ferent body parts based spatio-temporal representation. The
parts based features are integrated with the spatio-temporal
features computed by the I3D network. A remaining ques-
tion is to choose the appropriate spatio-temporal feature
space in I3D to aggregate the body part features. The spatio-
temporal features from the last layer of I3D are used for ag-
gregating the body parts because these features are spatio-
temporally rich and distinct with respect to action cate-
gories. The aggregation of these body part features lead



to the formation of distinguishable spatio-temporal features
Fas

F = S o “)

where g is the 4-D spatio-temporal representation from
body part k. For aggregation, we also explore assigning at-
tention at different levels of spatio-temporal feature space in
I3D with both summation and concatenation operations for
aggregation, discussed later in ablation studies. The former
tends to squash feature dynamics by pooling strong feature
activations in one body part with average or low activations
in other body part, the latter leads to formation of highly
rich, discriminative features with low generalization.

3.3. Joint training the subnetworks

Joint training the 13D subnetworks consisting of several

inception blocks and RNN attention model is a challenge
due to the vanishing gradient problem and different back-
propagation strategy (BPTT in case of LSTM). Thus we
pre-train all the subnetworks separately and joint train them
freezing the RNN layers to backpropagate. This strategy
along with the formulated cross entropy loss discussed be-
low enables the network to assign weights to the body parts,
thus modeling the actions.
Regularized Objective Function - We formulate the ob-
jective function of the end-to-end network with a regular-
ized cross-entropy loss and K being the number of body
parts as,

C K

L= yilogdi+ M D> _(1— )’ + X[ W, 5
i=1 k=1

where y = (y1, ..., yc) represents the groundtruth labels.
y;=1 if it belongs to i class and y;=0for j # 4. ¢; denotes
the probability of the sample belonging to class i, where
gi = p(Ci|X). A1 and Aq are the regularization parameters.
The first regularization item forces the model to pay atten-
tion at each human parts. This is because the model is prone
to ignoring some body parts completely though they have
valuable contribution in modeling the actions. So, we im-
pose a penalty as o, ~ 1 encouraging the model to pay
equal attentions to different tracks of human parts. The sec-
ond regularization item is to reduce overfitting of the net-
works. W, denotes the weight matrix in connecting the
layer u and v.
The optimization is difficult due to the mutual influence
of the I3D subnetworks and the pose based RNN atten-
tion model. The methodology of separate pre-training of
the pose based subnetworks ensures faster convergence of
the networks. The training procedure is described in algo-
rithm 1.

Algorithm 1 Joint Training of the RNN attention subnet-
work with body part I3D subnetworks

Input: RGB video, 3D joint coordinates, model train-
ing parameters N1, N2 (e.g., N1 =10, N2 = 25).

1: Initialize I3D subnetworks with model weights trained
on IMAGENET and Kinetics.
//Pre-train 13D subnetworks.

2: Finetune I3D network with RGB data from different
body parts individually.

//Pre-train Stacked Pose based RNN.

3: Train the three layered stacked LSTM network for ac-
tion classification taking as input 3D skeleton of actors
in video frames.

//nitialize other attention module parameters.

4: Add a Fully connected layer tanh and a softmax layer
on top of stacked LSTM and initialize the attention
scores with equal values and the remaining network pa-
rameters using Gaussian.

5: Jointly train the Pose based RNN network with part-
wise I3D network for N1 iterations to obtain the atten-
tion scores.

//Jointly Train the Whole Network

6: Fine-tune the whole network by fixing the learned Pose

LSTM subnetwork for further N2 iterations.

Output: the learned network.

4. Experimental Analysis

Dataset Description - We performed our experiments
on the following two human action recognition datasets:
NTU RGB+D Dataset [32] and Northwestern-UCLA
Multiview Action 3D Dataset [41].

NTU RGB+D Dataset (NTU) - The NTU dataset is
currently the largest action recognition dataset containing
samples with varied subjects and camera views. It was
acquired with a Kinect v2 sensor and contains 56880 video
samples with 4 million frames labeled with 60 distinct
action classes. The actions were performed by 40 different
subjects and recorded from 80 viewpoints. Each person in
the frame has 25 skeleton joints which were pre-processed
to have position and view invariance [32]. We followed
the Cross-Subject (CS) and Cross-View (CV) split protocol
from [32].

Northwestern-UCLA Multiview Action 3D Dataset (N-
UCLA) - This dataset is captured simultaneously by three
Kinect vl cameras. It contains RGB, depth and human
skeleton for each video sample. It contains 1194 video
samples with 10 different action categories performed by
10 distinct actors. Most actions in this dataset contains
interaction between human and object which is difficult
to model making this dataset even more challenging
as described in [3]. We performed our experiments by



following Cross-View (CV) protocol from [41], we take
samples from two camera views for training our model and
test on the samples from the remaining view. V;’, means
that samples from view 1 and 2 are taken for training, and
samples from view 3 are used for testing.

Implementation Details - For all the experiments, we
have fixed K = 3, with the body parts being left hand,
right hand and full body. The I3D network is pre-trained
on ImageNet [18] and kinetics [4]. Data augmentation
and training procedure for training the I3D networks on
individual body parts follow [4]. For training the RNN
attention network we use three layer stacked LSTM. Each
LSTM layer consists of 512 and 128 LSTM neurons for
NTU and N-UCLA respectively. Similar to [32], we cut the
videos into sub-sequences of 20 and 5 frames and sample
sub-sequences for NTU and N-UCLA respectively. We use
50% dropout to avoid overfitting. We set A; to 0.00001 and
0.0001 for the NTU and N-UCLA datasets respectively,
and Ag to 0.001 for both the datasets. For training the
entire network, we use Adam Optimizer [17] with an initial
learning rate set to 0.0005. This learning rate is adjusted
automatically during optimization. We used minibatches of
size 16 on 4 GPUs. We sample 10% of initial training set
as a validation set, for hyper-parameters optimization and
for early stopping. For training the model for N-UCLA we
used NTU pre-trained I3D subnetworks and fine-tuned on
it. During testing, 5 sub-sequences are tested and finally
average their logits.

Ablation Study - Table 1 and 2 shows the performance
of different image patches based on tracks of human body
parts. The statistics show a considerable improvement in the
classification accuracy on focusing at the individual body
parts rather than using the whole images and thus including
unnecessary background information. In table 1, we also
quantitatively analyze the best position in the I3D [4] net-
work to aggregate the latent spatio-temporal features from
the different human body parts. By sum_r, we mean the ag-
gregation of the spatio-temporal features after (9—r) incep-
tion blocks pre-trained on individual body parts in I3D and
then using r inception blocks to further extract meaningful
information from the aggregated features. Our observation
depicts that aggregation at the last inception block without
the need of further inception blocks best models the action
implying that aggregation of high-level rich features trained
on individual body parts does not need further 3D convolu-
tional operations to extract distinguishable spatio-temporal
features. For aggregation, we explore the use of summation
(sum_r) and concatenation (concat_r) operator at the end
of I3D network (since concatenation at earlier layers is not
feasible because of curse of dimensionality). Experimental
results (in table 1 and 2) shows the effectiveness of summa-

tion operation of spatio-temporal features unlike the usual
concatenation operation of spatial features as in [2]. In ad-
dition to that table 2 also show the effectiveness of using
the I3D subnetworks trained on NTU as a pre-trained sub-
networks for N-UCLA.

Table 1: Ablation study on NTU RGB+D dataset with
Cross-Subject (CS) and Cross-View (CV) protocol.

| Methods | CS | ¢V | Avg |
Full image 70.93 | 80.53 | 75.73
Left hand 84.31 | 84.75 | 84.53
Right hand 82.94 | 81.83 | 82.38
Full body 85.47 | 87.26 | 86.36
sum_2 89.30 | 92.02 | 90.66
sum_1 90.39 | 92.19 | 91.29
sum_0 90.8 92.5 | 91.65
concat_0 89.05 | 92.07 | 90.56
sum-+attention 93 954 94.2

Table 2: Ablation study on Northwestern-UCLA Multiview
Action 3D with Cross-View ijQ protocol.

Methods V132 V132
(NTU pre-trained)

Full image 83.95 87.93
Left hand 77.37 80.60
Right hand 78.50 80.38
Full body 85.99 88.79
sum_0 86.80 91.37
concat_(0 86.63 90.30
sum+attention | 87.50 93.10

Effectiveness of the Proposed Attention Model - In
fig. 4, we illustrate the attention scores and corresponding
average classification rate of human body parts, their
aggregation and proposed attention model for some action
categories. The body part with highest classification rate
is correctly delivered with attention weights resulting
in improved classification rate of our proposed sum +
attention model. However, the other body parts may not
receive meaningful attention scores because of the activity
regularizer we propose to dynamically focus on all the
body parts which may overlap with one another.

In fig. 5, we illustrate the statistical results of unsuccessful
attention scores attained and their effect on our attention
network. Failure in attaining spatial attention on human
body parts does not affect the attention model and performs
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Figure 4: Examples of successful attention scores attained
in (a) and their corresponding average classification accu-
racy on individual body parts, their aggregation and our pro-
posed attention model in (b).
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Figure 5: Examples of unsuccessful attention scores at-
tained in (a) and their corresponding average classification
accuracy on individual body parts, their aggregation and our
proposed attention model in (b).

similar to the aggregation model for actions like "drinking
water” and “brushing teeth”. This is because of the
dominance of all the human body parts involved in the
action. For action like “fouching head”, wrong attention
delivered to the appearance based spatio-temporal features
degrades the performance of the attention model. For
actions like “handshaking” and ”jumping up”, failure in
attention still improves the performance using our attention
model. This is because of uneven weights delivered to
different body parts with almost similar relevance to model
the action.

Comparison to Other state-of-the-art - We have
shown performance comparison of our end-to-end action
recognition model with the other state-of-the-art methods
which use multiple modalities, including RGB, depth and
pose in Table 3 and 4 for the NTU RGB+D and N-UCLA
datasets, respectively. Our RNN attention model is able
to extract out discriminative spatio-temporal features by
efficiently weighing the relevant body parts needed for

| sum

B sum+Attention
80
70
60
50

&
o

modeling an action. Its effectiveness is seen by the increase
in performance for the two action recognition datasets.
Sample visual results displaying the attention scores
attained for each body parts can be seen in fig. 6.

Table 3: Results on NTU RGB+D dataset with cross-subject
and cross-view settings (accuracies in %).

’ Methods \ CS \ CvV \ Avg ‘
Lie Group [29] 50.1 | 52.8 | 51.5
Skeleton Quads [11] 38.6 | 414 | 40.0
Dynamic Skeletons [15] | 60.2 | 65.2 | 62.7
HBRNN [16] 59.1 | 64.0 | 61.6
Deep LSTM [32] 60.7 | 67.3 | 64.0
p-LSTM [32] 62.9 | 70.3 | 66.6
ST-LSTM [23] 69.2 | 77.7 | 73.5
STA-LSTM [36] 732 | 81.2 | 77.2
Ensemble TS-LSTM [20] 74.6 | 81.3 | 78.0
GCA-LSTM [24] 74.4 | 82.8 | 78.6
JTM [42] 76.3 | 81.1 | 78.7
MTLN [47] 79.6 | 84.8 | 82.2
VA-LSTM [44] 79.4 | 87.6 | 83.5
view-invariant [25] 80.0 | 87.2 | 83.6
DSSCA-SSLM [33] 74.9 - -
STA-Hands [2] 82.5 | 88.6 | 85.6
Glimpse Cloud [3] 86.6 | 93.2 | 89.9
PEM [26] 91.7 | 952 | 934
Proposed Method 93.0 | 954 | 94.2

Table 4: Results on Northwestern-UCLA Multiview Action
3D dataset with cross-view settings (accuracies in %).

| Methods | Vs ]
DVV [22] 58.5
CVP [46] 60.6
AOG [41] 45.2
HPM+TM [31] 91.9
Lie Group [29] 74.2
HBRNN [16] 78.5
view-invariant [25] 86.1
Ensemble TS-LSTM [20] | 89.2
Hankelets [21] 45.2
nCTE [12] 75.8
NKTM [30] 85.6
Glimpse Cloud [3] 90.1
Proposed Method 93.1

Runtime - The model has been trained on a GPU clus-
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Figure 6: Example of video sequences with their respective attention scores. The action categories presented are drinking
water with left hand (1st row), kicking (2nd row) and brushing hair with left hand (last row).

ter having 4 GTX 1080 Ti GPUs. Pre-training the part-wise
I3D network on the NTU dataset with CS setting takes 15
hours. Pretraining the Stacked pose based LSTM takes 1
hour. Pre-training the RNN Network for developing atten-
tion for the human body parts take 19 hours and further fine-
tuning takes 9 hours. At test time, a single forward pass of
an image frame over the full model takes 17ms on a single
GPU. We use Keras [7] with tensorflow [1] as back-end for
the implementation.

5. Conclusion

We present an end-to-end network for human activ-
ity recognition leveraging spatial attention on human body
parts. We propose an RNN attention mechanism to ob-
tain an attention vector for soft assigning different impor-
tance to human body parts using spatio-temporal evolution
of the human skeleton joints. We designed the joint training
strategy to efficiently combine the spatial attention model
with the spatio-temporal video representation by formulat-
ing a regularized cross-entropy loss to achieve fast conver-
gence. The proposed method outperforms the state-of-the-

art performance on the NTU and N-UCLA datasets. We
also demonstrated the attention learned and its effect on the
classification performance for different action classes. So
in future work, we plan to extend this method which is cur-
rently working with a fixed number of body parts (K) by an
automated learning of the attention parts.
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