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Abstract

In this paper we present our ongoing hopping bot project. The hopper is stabilized with three reaction wheels; the main
idea of the project is to develop a balancing system suitable for a dynamic stabilization of a bipedal walk for a non-
anthropomorphic robot. We present an energy efficient hardware and software design of the stabilization system as well
as a choice of electrical and mechanical parameters of the device.

1 Introduction
The idea of hopping bots is not new, we can cite Raibert’s
Hopper [5] that is stabilized by tilting its leg in two direc-
tions. Salto-1P jumper [7] is stabilized with a reaction lever
in one direction and with two propellers for two others.
In contrast to these approaches we chose three reaction
wheels because it allows to stabilize bigger (two-legged)
robots. The difference with Cubli [2] or its follow-
ups [1, 6] is the ability to move forward by hopping. It
allows us to focus on the stabilization system and then to
adapt the system for robots of different size and weight.
Another novelty of this work is the mechatronic design of
the reaction wheels aligned the body principal axes and
sharing the same center of inertia. It leads to a better ener-
getic efficiency of the stabilization system.
The context for the project is given by AnyWalker robotic
chassis [3, 4] developed by our team (Figure 2, left). In
its current state AnyWalker is able to walk using a static
balance, it can climb stairs and walk over a complex ter-
rain. We wish to improve walking abilities AnyWalker by
introducing a dynamic stabilization.
Here we focus on the stabilization system only, therefore
the bot is substantially simplified, it has one leg only and
three reaction wheels. It allows us to remove from con-
sideration complex disturbances like leg torsion/flexion or
joint backlash (note that AnyWalker uses low-end servo
drives).
Our bot will be able to advance with every hop by adding
cyclic disturbances in the equilibrium attitude estimation,
refer to the Figure 1 for an illustration. In these prob-
lem settings we can control the mechatronic system on the
low level without generating trajectories or solving inverse
kinematic problems. Direct control of the reaction wheels
momenta allow us to avoid multi-layering in our software
system thus effectively removing large delays and lag from
the control loop.
The quality criterion used in this project is the energetic

The work was carried out within the framework of the state task of
the Ministry of Education and Science, project No. 8.2321.2017 “Devel-
opment and adaptation of control systems for compensation of dynamic
deflecting effects on mobile objects in a state of dynamic equilibrium”.

Figure 1 One hop animation sequence. Note how the
hopping allows the balancer to advance.

Figure 2 Left: AnyWalker robot developed by our team.
Middle and right: hardware implementation of the self-
balancing reaction wheels inverted pendulum.

efficiency of the dynamic stabilization. To achieve the goal
we optimize for the electromechanical parameters given a
hardware design choice, refer to the Figure 2. Please note
that in its current state the hardware implementation does
not have the hopping mechanism attached, thus serving as
an inverted pendulum.

2 Theoretical background for the
stabilization system

In what follows we use the notation:

• C is the moment of inertia of the pendulum without
flywheels relative to its axis of symmetry.

• A is the moment of inertia of the pendulum with-
out flywheels relative to any axis perpendicular to the
symmetry axis passing through the pendulum support.

• Aw is the moment of inertia of the flywheel relative
to any axis perpendicular to its axis of rotation and



passing through the point H.
• Cw is the moment of inertia of the flywheel relative to

its axis of rotation.
• m is the mass of one flywheel.
• l is the distance from the fulcrum to the flywheel cen-

ters.
• b is the distance from the center of mass of the pen-

dulum without flywheels to the fulcrum.
• M is the mass of a pendulum without flywheels.
• cv is the back-emf ratio.
• cu is the gain coefficient.
• g is the gravitational acceleration.
• ε is friction coefficient in the fulcrum.

2.1 Object dynamics equation
Hopper is a two-dimensional inverted pendulum. It is con-
trolled by three reaction wheels. In our case, they all have
a common center, see the Figure. We derive the differential
equations of motion hopper by the method of Lagrangian
mechanics.

2.1.1 Coordinate systems
All the coordinate systems used are the right-handed
Cartesian coordinate systems. We will use the following
coordinate systems: fixed with respect to the Earth and
“frozen” into a pendulum. The origins of both the fixed
and the “frozen” coordinate systems are at the pendulum
support point, called O. The first axis of the fixed coordi-
nate system is directed vertically upwards with respect to
the Earth. The third axis of the “frozen” system is the axis
of symmetry of the pendulum.
The position of the frozen system with respect to the fixed
system will be determined using the Euler angles: ψ is the
precession angle, θ is the nutation angle, ϕ is the intrinsic
rotation angle. In what follows, we will be interested in the
equilibrium point ψ = π

2 , θ = π

2 , ϕ = 0, which corresponds
to the vertical position of the third axis of the “frozen” in
coordinate system.
We denote the basis of the fixed coordinate system by
~i1,~i2,~i3, and the basis of the “frozen” basis of the system
by~e1,~e2,~e3.
Let ~ω be the angular velocity of rotation of the frozen sys-
tem relative to the fixed one. Its expansion in the basis
~e1,~e2,~e3 has the form ~ω = ω1~e1 +ω2~e2 +ω3~e3, where

ω1 = ψ̇ sinθ sinϕ + θ̇ cosϕ,

ω2 = ψ̇ sinθ cosϕ− θ̇ sinϕ,

ω3 = ψ̇ cosθ + ϕ̇.

2.1.2 The kinetic and the potential energy
We denote by T0 the kinetic energy of the pendulum with-
out the kinetic energy of the flywheels. It is known that

T0 =
1
2
~ω ·J (~ω),

where J is the inertia operator of a pendulum without
flywheels. In the “frozen” coordinate system, it has the

following matrix J = diag(A,A,C). Here A and C are con-
stants (parameters of the pendulum). We have

T0 =
1
2

A(ω2
1 +ω

2
2 )+

1
2

Cω
2
3 .

Consider a flywheel whose axis of rotation is parallel to
the vector~ek. We call it k-th flywheel. Its kinetic energy is
denoted Tk, and its inertia operator with respect to point of
H will is denoted by Jk.
By König’s decomposition theorem we have

Tk =
1
2
(~ω + α̇k~ek) ·Jk(~ω + α̇k~ek)+

1
2

m~v2
H ,

where α̇k is the rotation speed of the k-th flywheel relative
to the body of the inverted pendulum.
Consider a coordinate system with the origin at the point
H, whose axes are are parallel to the basis~e1,~e2,~e3. In this
system, the matrices of the operators Jk, k = 1,3 have the
following form:

J1 = diag(Cw,Aw,Aw),

J2 = diag(Aw,Cw,Aw),

J3 = diag(Aw,Aw,Cw),

where Aw, Cw are the flywheel parameters. Let l be the
length of OH. Taking into account ~vH = ~ω ×OH = ~ω ×
l~e3, we obtain

Tk =
1
2
(~ω + α̇k~ek) ·Jk(~ω + α̇k~ek)+

1
2

ml2 (~ω×~e3)
2 .

The total kinetic energy of the pendulum with flywheels

T =
3

∑
k=0

Tk = T0 +
3
2

ml2 (~ω×~e3)
2+

3

∑
k=1

1
2
(~ω + α̇k~ek) ·Jk(~ω + α̇k~ek) =

=

(
1
2

A+
3
2

ml2 +Aw +
1
2

Cw

)
(ω2

1 +ω
2
2 )+(

1
2

C+Aw +
1
2

Cw

)
ω

2
3 +

1
2

Cw

3

∑
k=1

α̇
2
k +Cw

3

∑
k=1

α̇kωk.

The total potential energy is given by the following expres-
sion

Π = (3ml +bM)gsinψ sinθ = Y sinψ sinθ ,

where
Y = (3ml +bM)g.

2.1.3 Generalized forces
We introduce generalized coordinates: q1 =ψ−π/2, q2 =
θ −π/2, q3 = ϕ , q4 = α1, q5 = α2, q6 = α3. We denote
the corresponding generalized forces: Q1, Q2, Q3, Q4, Q5,
Q6.
Let ~Mk be the moment developed by the engine of k-th
flywheel. We have ~Mk = Mk~ek. We use the follow-
ing model for flywheels engines Mk = cuuk− cvα̇k, k =



1,2,3. Thus, the active moment of force ~Mk will act on the
k-th flywheel, The moment of force that act on the pendu-
lum is as follows:

~M0 = ~Mfr− ~M1− ~M2− ~M3,

where ~Mfr = ε~ω , ε is a negative constant.
Then the generalized forces are as follows: Q1 = ε(q̇1−
q̇3 sinq2), Q2 = ε q̇2, Q3 = ε(q̇3− q̇1 sinq2), Q4 =M1, Q5 =
M2, Q6 = M3.

2.1.4 Lagrange equations of the second kind
The Lagrangian L is defined by the formula L = T −Π.
Lagrange equations of the second kind have the form

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= Qi, i = 1, . . . ,6.

Performing elementary calculations and substituting ex-
pressions for all partial derivatives, we obtain these equa-
tions in an explicit form. Transforming to the normal form,
we obtain the following expressions:

q̈k = Gk, k = 1, . . . ,6,

where

G1 =−
1

2Pcos2 q2
(F1 +F3 sinq2) , G2 =−

1
2P

F2,

G3 =−
1

2P3

(
F1

P3 sinq2

Pcos2 q2
+F3

(
1+

P3 sin2 q2

Pcos2 q2

))
,

Gk =
Mk−3

Cw
−

3

∑
j=1

∂ωk−3

∂q j
q̇ j−

3

∑
j=1

∂ωk−3

∂ q̇ j
G j, k = 4,5,6.

Fi =
3

∑
k=1

∂ 2W
∂ q̇i∂qk

q̇k +
∂W
∂qi

+Cw

3

∑
k=1

α̇k
∂ωk

∂qi
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∂qi
−Qi+

Cw

(
3
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(Mk
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−

3
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∂ωk
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)
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3
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α̇k

3

∑
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q̇ j

)
,

i = 1,2,3, P = 1
2 A+ 3

2 ml2 +Aw, P3 =
1
2C+Aw,

W =

(
P+

1
2

Cw

)(
ω

2
1 +ω

2
2
)
+

(
P3 +

1
2

Cw

)
ω

2
3 .

2.2 Linearized equations of dynamics
Linearizing the equations of motion in the neighborhood
of the point qi = q̇i = 0, i = 1, . . . ,6, uk = 0, k = 1,2,3, we
obtain the following equations:

q̈1 =
1

2P
(Y q1 + ε q̇1 +M2) , (1)

q̈2 =
1

2P
(Y q2 + ε q̇2 +M1) , (2)

q̈3 =
1

2P3
(ε q̇3 +M3) , (3)

α̈1 =−
Y q2 + ε q̇2

2P
+

(
1

Cw
+

1
2P

)
M1,

α̈2 =−
Y q1 + ε q̇1

2P
+

(
1

Cw
+

1
2P

)
M2,

α̈3 =−
ε q̇3

2P3
+

(
1

Cw
+

1
2P3

)
M3.

Similarly, we can write Lagrange equations of the second
kind for the “Cubli” arrangement of flywheels, in which
the geometric position of the flywheels is given by the or-
thogonal transformation with the matrix

B =


√

2
3 0 −

√
1
3

−
√

1
6

√
1
2 −

√
1
3

−
√

1
6 −

√
1
2 −

√
1
3


in basis ~e1, ~e2, ~e3. In this case the linearization of the La-
grange equations has the following form:

q̈1 =
Y q1 + ε q̇1

2P
− M2−M3

2
√

2P
,

q̈2 =
Y q2 + ε q̇2

2P
− 2M1−M2−M3

2P
√

6
,

q̈3 =
ε q̇3

2P3
+

M1 +M2−M3

2P3
√

3
,

α̈1 =−
Y q2 + ε q̇2

P
√

6
+

ε q̇3

2P3
√

3
+(

1
Cw

+
1

3P
+

1
6P3

)
M1 +

P−P3

6PP3
M2−

P+P3

6PP3
M3,

α̈2 =−
Y q1 + ε q̇1

2P
√

2
+

Y q2 + ε q̇2

2P
√

6
+

ε q̇3

2P3
√

3
+

P−P3

6PP3
M1 +

(
1

Cw
+

1
3P

+
1

6P3

)
M2−

P+P3

6PP3
M3,

α̈3 =
Y q1 + ε q̇1

2P
√

2
+

Y q2 + ε q̇2

2P
√

6
− ε q̇3

2P3
√

3
−

P+P3

6PP3
M1−

P+P3

6PP3
M2 +

(
1

Cw
+

1
3P

+
1

6P3

)
M3.

2.3 Synthesis of the control
The control u1, u2, u3 of flywheel motors is selected by the
LQR method, while the functional is minimized:

J =
∫

∞

0

2

∑
i=1

q2
i dt +

∫
∞

0

3

∑
i=1

(u2
i + q̇2

i + α̇
2
i )dt .

This procedure is carried out both for our case and for the
case of the flywheels à la Cubli.



2.4 Energy consumption comparison
While conducting numerical experiments we have used
the following values of the electromechanical parameters
of the inverted pendulum : m = 0.2kg; l = 0.085m; b =
0.08m; M = 0.4kg; cv = 5 · 10−5N · m · s; cu = 0.025N ·
m/V ; Aw = 2.85 ·10−4kg ·m2; Cw = 5.7 ·10−4kg ·m2; A =
1.6 ·10−3kg ·m2; C = 1.52 ·10−3kg ·m2; g= 9.81m/s2; ε =
−0.001N ·m · s.
We conducted a series of numerical experiments for the
inverted pendulum to estimate the energy costs required for
elimination of various initial disturbances. In this article
we present the results of only a few of them. The results of
others are similar.
The table shows the energy costs for Cubli-like and our fly-
wheel arrangement geometry (the last two columns) for the
indicated values of the initial perturbations for the variables
q1, q2, q̇1, q̇2. The initial perturbations for the remaining
variables q3, q̇3, α̇1, α̇2, α̇3 were set to zero for those five
experiments.

N q1 q2 q̇1 q̇2 Ec Eo
1 0.1 0 0 0 13.1 10.9
2 0 0.1 0 0 11.6 10.9
3 0.1 0.1 0 0 27.1 21.8
4 0 0 0.1 0 0.184 0.156
5 0 0 0 0.1 0.165 0.156

Here Ec =
∫

∞

0

3

∑
i=1
|uiα̇i|dt is the energy cost of the Cubli-

like stabilization system, and Eo =
∫

∞

0

3

∑
i=1
|uiα̇i|dt is the

energy cost of our stabilization system. The experimental
data show that our flywheel arrangement is more energy-
efficient.
As for the optimization for the mechanical parameters of
the flywheels, it is easy to see that in our case the equations
of motion (1)–(3) are independent one from another. We
can therefore optimize the flywheel parameters in simple
1D inverted pendulum settings. Given flywheel parame-
ters, we can find maximum initial angle such that we can
stabilize the pendulum with input constraints. Then we
vary the parameters to maximize this angle.

3 Experimental study

Figure 2 shows the hardware implementation of the
2D inverted pendulum. We used STM32F407 as a
main controller, it queries IMU6050-based accelerome-
ters/gyroscopes via an i2c bus and filters the data via Madg-
wick sensor fusion algorithm. Reaction wheels are con-
trolled with Maxon EPOS2 50/5 torque amplifier, three
Maxon EC45-flat motors are used to drive the wheels. Fig-
ure 3 shows a stabilization example starting from initial
inclination q1 = q2 = 0.1.
We conducted a series of numerical experiments to see if
we achieve a stabilization of a hopping bot and we witness
an asymptotically stable behavior with simple linear regu-
lators. One hop animation sequence is shown in Figure 1.
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Figure 3 Stabilization of our hardware implementation of
the 2D inverted pendulum.

4 Conclusion
To conclude, we propose a hardware design and corre-
sponding theoretical basis for building robots stabilized
with three reaction wheels. The hopper we propose here
can be built at a fraction of cost of a bigger walking robot,
while maintaining the complexity of the control, thus mak-
ing it well suitable for the control education process.
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