J. María, J. A. Cáceres, B. Carrillo, and . Perthame, Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states, J. Math. Neurosci, vol.1, issue.1, p.7, 2011.

A. José, . Carrillo, D. M. María, M. P. González, M. E. Gualdani et al., Classical solutions for a nonlinear Fokker-Planck equation arising in computational neuroscience, Comm. Partial Differential Equations, vol.38, issue.3, pp.385-409, 2013.

J. Carrillo, B. Perthame, D. Salort, and D. Smets, Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience, Nonlinearity, vol.28, issue.9, pp.3365-3388, 2015.

E. Catsigeras and P. Guiraud, Integrate and fire neural networks, piecewise contractive maps and limit cycles, J. Math. Biol, vol.67, issue.3, pp.609-655, 2013.

A. De-masi, A. Galves, E. Löcherbach, and E. Presutti, Hydrodynamic limit for interacting neurons, J. Stat. Phys, vol.158, issue.4, pp.866-902, 2015.

F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré, Global solvability of a networked integrate-and-fire model of McKean-Vlasov type, Ann. Appl. Probab, vol.25, issue.4, pp.2096-2133, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00747565

F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré, Particle systems with a singular mean-field selfexcitation. Application to neuronal networks, Stochastic Process. Appl, vol.125, issue.6, pp.2451-2492, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01001716

G. Sylvain-delattre, E. Giacomin, and . Luçon, A note on dynamical models on random graphs and Fokker-Planck equations, J. Stat. Phys, vol.165, issue.4, pp.785-798, 2016.

P. Erd?-os and A. Rényi, On random graphs. I, Publ. Math. Debrecen, vol.6, pp.290-297, 1959.

P. Erd?-os and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl, vol.5, pp.17-61, 1960.

N. Fournier and E. Löcherbach, On a toy model of interacting neurons, Ann. Inst. Henri Poincaré Probab. Stat, vol.52, issue.4, pp.1844-1876, 2016.

D. T. Gillespie, Exact stochastic simulation of coupled chemical-reactions, vol.81, pp.2340-2361, 1977.

E. Gobet, Weak approximation of killed diffusion using Euler schemes, Stochastic Process. Appl, vol.87, issue.2, pp.167-197, 2000.

A. J. Graham and D. A. Pike, A note on thresholds and connectivity in random directed graphs, Atl. Electron. J. Math, vol.3, issue.1, pp.1-5, 2008.

B. Hambly, S. Ledger, and A. Søjmark, A McKean-Vlasov equation with positive feedback and blow-ups, 2018.

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol, vol.117, issue.4, pp.500-544, 1952.

L. Lapicque, Recherches quantitatives sur l'excitationélectriqueexcitationélectrique des nerfs traitée comme une polarisation, J. Physiol. Pathol. Gen, vol.9, pp.620-635, 1907.

T. J. Lewis and J. Rinzel, Dynamics of spiking neurons connected by both inhibitory and electrical coupling, J. Comput. Neurosci, vol.14, issue.3, pp.283-309, 2003.

S. Nadtochiy and M. Shkolnikov, Particle systems with singular interaction through hitting times: application in systemic risk modeling, 2017.

S. Nadtochiy and M. Shkolnikov, Mean field systems on networks, with singular interaction through hitting times, 2018.

Y. Ogata, On Lewis' simulation method for point processes, IEEE Trans. Inform. Theory, vol.27, pp.23-31, 1981.

S. Ostojic, N. Brunel, and V. Hakim, Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities, J. Comput. Neurosci, vol.26, issue.3, pp.369-392, 2009.

I. Palásti, On the strong connectedness of directed random graphs, Studia Sci. Math. Hungar, vol.1, pp.205-214, 1966.

A. Sznitman, InÉcoleIn´InÉcole d' ´ Eté de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math, vol.1464, pp.165-251, 1991.

. Laboratoire-jean-kuntzmann, Université Grenoble Alpes (UFR IM2AG)