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Abstract: This paper proposes a new design of a decentralized output-feedback tracking control for a 

class of switched large-scale systems with external bounded disturbances. The controller proposed herein 

is synthesized to satisfy the robust H


 tracking performance with local disturbance attenuation levels. 

Based on multiple switched Lyapunov functions, sufficient conditions proving the existence of the 

proposed controller are formulated in terms of Linear Matrix Inequalities (LMI). A deep simulation is 

proposed to illustrate the effectiveness of the obtained results.   
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1. INTRODUCTION 

During the latter decades, switched interconnected large-scale 

systems have attracted considerable attention since they 

provide a convenient modelling approach for many physical 

systems. Thus, several studies dealing with the stability 

analysis and stabilization issues for both linear and nonlinear 

switched interconnected large-scale systems have been 

explored by (Chiou, 2006; Belkhiat et al., 2015; Jabri et al., 

2010, 2011; Mahmoud and Al-Sunni, 2010; Sun et al., 2009; 

Thanh and Phat, 2014; Wang and Tong, 2015). Hence, the 

main challenge in treating such problems consists in 

determining the conditions ensuring the stability of the whole 

systems with consideration to the interconnections effects 

between its subsystems. For example, sufficient stability 

conditions for a class of switched large-scale time-delay 

systems have been delivered in (Chiou, 2006). Moreover, the 

problem of decentralized control for a class of switched 

interconnected large-scale systems with value-bounded 

uncertainties has been investigated in (Sun et al., 2009). By 

using Linear Matrix Inequalities (LMI) techniques, 

decentralized state-feedback controllers and decentralized 

switching laws have been designed to make this class of 

system asymptotically stable. In the same way, stabilization 

issue for discrete-time large-scale switched system has also 

been studied in (Jabri et al., 2010). Otherwise, the problem of 

a low-order H


 output-feedback controller design, with a 

decentralized switching rule, for a class of interconnected 

continuous-time switched systems subject to disturbances has 

been treated in (Mahmoud and Al-Sunni, 2010)’s work . The 

main objective of the work seeks to guarantee the asymptotic 

stability of the whole system with local disturbance 

attenuation. Furthermore, the problem of decentralized 

stabilization for a class of large-scale switched Takagi-

Sugeno (T-S) systems has been investigated in (Jabri et al., 

2011). To overcome the nonlinearity problem, the large-scale 

switched nonlinear system was divided into a set of low-order 

interconnected switched T-S Fuzzy subsystems. Then, in 

order to stabilize the overall system, a set of switched non-

PDC (Parallel Distributed Compensation) controllers has 

been employed. In the same context, the problem of H


 

control design, under asynchronous switching, for a class of 

switched discrete-time T-S Fuzzy large-scale systems has 

been explored by (Wang and Tong, 2015). Moreover, (Thanh 

and Phat, 2014) have studied the problem of decentralized 

stability for a class of switched nonlinear large-scale systems 

with time-varying delays in interconnections. By using a set 

of Lyapunov-Krasovskii functional, a delay-dependent 

sufficient condition for designing switching law has been 

established in terms of LMI. Recently, the design of an 

adaptive fuzzy output feedback control was developed by 

(Zhang and Yang, 2017) for a class of switched nonlinear 

large-scale systems with unknown dead zone. Based on the 

above, the main advantage of the decentralized control 

scheme is the tremendous reduction of computational load 

and the design easiness of locally feedback stabilization. 

Likewise, tracking control is one of the most important issues 

currently under consideration by researchers in linear and 

nonlinear control theory in (Cabecinhas et al., 2014; Guan et 

al., 2014). This kind of control has a close relationship with 

the stability analysis and stabilization issues. Generally, 

tracking control deal with the stabilization and the 

minimization of the error between the system output (or state) 

and the reference signal via designing a controller. As regards 

the switched systems, few results have been reported on the 

tracking control problem (Belkhiat et al., 2014; Li et al., 

2009; Lian and Ge, 2013; Liu and Xiang, 2014; Long and 

Zhoa, 2015; Tong et al., 2016). For example, the work carried 

out by (Liu et al., 2014) has focused on performing an 

exponential 
1

L  output tracking control for Switched Linear 

Systems (SLS) with time-varying delays. Similarly, the 
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output tracking control has been studied for a class of 

switched systems containing stabilizable and unstabilizable 

subsystems in (Li et al., 2009). Moreover, in (Liu and Xiang, 

2014), a controller design approach has been proposed for a 

class of switched systems with time-varying delay. This one 

takes into account the effect of the asynchronous switching 

phenomena and satisfies the robust H


 output-feedback 

tracking performance. In the same context, a robust H


 

output tracking control for a class of SLS using switched 

Proportional-Derivative (PD) controller has been designed in 

the reference (Belkhiat et al., 2014). Based on the multiple 

Lyapunov functions and the adaptive fuzzy back-stepping 

technique, sufficient conditions for the adaptive fuzzy 

tracking control problem have been derived in (Long and 

Zhoa, 2015) for a class of switched uncertain nonlinear 

systems with unstable subsystems. Recently, an adaptive 

fuzzy decentralized tracking control for a class of switched 

nonlinear large-scale systems with unknown nonlinear 

functions has been performed in (Tong et al., 2016). The 

proposed approach has dealt with the problems related to 

dead zones and unmeasurable. In a nutshell, it is worth 

pointing out that the aforementioned results are mainly 

restricted to the tracking control of lower-dimensional 

switched systems. Moreover, although some progress have 

been made in several fields of interconnected switched 

systems such as the stability and stabilization issues, the 

tracking control problem of switched interconnected large-

scale systems subject to external disturbances has rarely been 

explored so far, that which motivates the present study.  

Hence, this paper presents the design of a decentralized 

tracking controller for a class of switched interconnected 

large-scale system under synchronous switching and with 

external bounded disturbances. The considered class consists 

of set of low-order interconnected subsystems. Each 

subsystem contains several switching modes which are 

described by using linear system. As regards the 

interconnections among different subsystems, two 

components, combining the state vectors and the external 

disturbances, are taken into account in the mathematical 

model representing the considered class. According to the 

existing literature, the contributions of this paper are the 

followings: 

 provides a new synthesis approach to design a decentralized 

output-feedback tracking control for a class of switched 

interconnected large-scale systems subject to external 

disturbances. By using the descriptor redundancy 

formulation, the proposed approach resolves the crossing 

terms problem related to using the output-feedback control 

strategy.   

 ensure with the designed controller, on the one hand, the 

stability of the overall switched interconnected large-scale 

systems and, on the other hand, the robust H


 output-

feedback tracking performance with for each low-order 

subsystem a specific disturbance attenuation level. 

 provides sufficient conditions to design the proposed 

controller, formulated in terms of LMI thanks to the 

multiple switched Lyapunov functions. 

The remainder of the paper is organized as follows. Section 2 

presents the considered class of switched interconnected 

large-scale system, followed by the problem statement. The 

design of the decentralized controller is presented in section 

3. A numerical example is proposed to illustrate the 

efficiency of the proposed approach in section 4. The paper 

ends with conclusions, appendix and cited references. 

2. SYSTEM’S DESCRIPTION AND PROBLEM 

STATEMENT 

We consider the class of the switched interconnected large-

scale system S . It is composed of N  low-order switched 

subsystems denoted by 
i

S  such that each subsystem 
i

S  has 

its own mode number 
i

M . Thus, the switched interconnected 

large-scale system S  can be represented as follows for 

1, ,i N  : 
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where   ni

ix t   is the i th state vector,   mi

iu t   is the 

i th input vector,   mi

iw t  is the 
2

L -norm bounded 

external disturbance associated to the i th subsystem. 

  n
x t 
   and   m

w t 
   denote respectively the state 

vector and the 
2

L -norm bounded external disturbance of the 

 th subsystem with 1, , N    and i  .   pi

iy t   is 

the measurement (output) associated to the i th subsystem. j  

denoted the mode of each i th subsystem. ,

n ni i

i jA
 , 

,

n mi i

i jB
 , ,

p ni i

i jC
  are constant matrices, 

, ,

n ni

i jF 


  and 
, ,

n mi

i jwF 



  are constant matrices 

which describe the influences of the  th subsystem on the 

i th one. Finally  ,i j t  are the switching rules. They are 

assumed to be real time available.  

The switching rules  ,i j t  are defined that the i th 

subsystem is active in the l th  mode, that is to say: 

 
 

,

,

1

0
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    (3) 

Note that, the mode’s evolution of each i th subsystem is 

independent of the rest of the subsystems. Hence, the global 

system is represented by Fig. 1. In the sequel, we will deal 

with the output-feedback tracking problem for the considered 

class of large-scale system. The tracking control objective is 

to drive the outputs of the system (1)-(2) via static output-

feedback controllers to track reference signals as close as 
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possible. Hence, to specify the desired trajectory for the 

overall large-scale system S , we present the following 

reference model for 1, ,i N  : 

       
,

1,
i i i i i

N

i

r r r r i r rx t A x t B r t F x t
 

  

        (4) 

   
i i ir r ry t H x t     (5) 

with   ni

ir
x t   and 

mi

ir   are the i th reference state 

vector and the i th 
2

L -norm bounded reference input vector, 

respectively.   n

rx t 


  and   pi

ir
y t   denote 

respectively the 
th  state vector and the i th reference 

measurement (output). 
n ni i

ir
A

 , 
n mi i

ir
B

 , 
p ni i

ir
H

  

are constant matrices, where 
n ni i

ir
A

  are specified as 

asymptotically stable matrices.  
 

 

Fig. 1. System representation. 

In order to drive our system S  and to ensure the H


 

tracking performance, decentralized switched controller is 

proposed in this work. The key idea is to synthesize a global 

controller composed of N  local switched controllers. Each 

local controller is associated to a switched subsystem. The 

purpose of the local controllers is to ensure the stability and 

the output-feedback tracking performance of subsystems, 

while taking into account the problems related to the 

interconnections among the subsystems. In this work, the 

local switched controllers and the switched subsystems are 

synchronously orchestrated. Thus, the set of N  local 

switched controllers are defined as follows for 1, ,i N  : 

     
1

, ,

M

j

i

i i j i j iu t t K e t


         (6) 

where       pi

ii r ie t y t y t    are the tracking errors, 

,

m pi i

i jK
  are the gain controllers1. 

In general, the classical way to write output-feedback 

dynamics consists on substituting the controller's equation (6) 

into the system's equation (1), this leads to, for 1, ,i N  : 
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Thus, the problem considered in this study can be resumed as 

follows: 

                                                 
1 The index time (t) will be omitted in the next when there is 

no ambiguity.  
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Problem 1: The objective is to design the controllers (6) such 

that the switched interconnected large-scale system (1)-(2) 

has a robust H


 output-feedback tracking performance. 

Definition 1: The switched interconnected large-scale system 

(1)-(2) is said to have a robust H


 output-feedback tracking 

performance, if the following conditions are satisfied: 

 Condition 1 (Stability condition): With zero disturbances 

input condition 0iw  , for 1, ,i N  , the closed-loop 

dynamics (7) is stable. 

 Condition 2 (Robustness condition): For all non-zero 

 
2

0iw L  , under zero initial condition  
0

0ix t   , it 

holds that for 1, ,i N  , 

0 0 1,

2
N

i

T T T T

i i i i i i i iJ e e dt w w r r w w dt
 

 
 

 

  
  
 

      (8) 

By observing the closed-loop dynamics (7), it can be seen 

that several crossing terms among the gain controllers ,i jK  

and the system's matrices ( , , ,i j i j i jB K C  and , , ii j i j rB K H , for 

1, ,i N  , 1, , ij M  ) are present. Hence, in view of the 

wealth of interconnections characterizing our system, these 

crossing terms lead surely to very conservative conditions for 

the design of the proposed controller. In order to decouple the 

crossing terms appearing in the equation (7) and to provide a 

LMI conditions, we use an interesting property called the 

descriptor redundancy (Tanaka et al., 2017). Thus, the 

equations (1)-(2), (4)-(5) and (6) are combined as follows for 

1, ,i N  : 

1 1
i , j i , , j

M N

j , i

i

i i , j i , j i i , j i w i i , , j wx A x B u B w F x F w


 
  

  

    
     

 

1

ii i i i i ,

N

, i

r r r r r rx A x B r F x
 

  

     and 0
ii i r ie e y y     

Then, we consider the following augmented variables: 

i

T T T T

i i r ix x x e    , ,

T T T T

i i iw w w r      

and 
T T T T

rx x x e
      . 

Hence, the large-scale system (1)-(2), the reference model (4)

-(5) and the controllers (6) can be reformulated as follows for 

1, ,i N  : 

   

, ,
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The controllers are; for 1, ,i N  : 

1
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     (10) 

The tracking errors are given by; for 1, ,i N  : 

 
1

, ,

M

j

i

i i j i j ie C x t


     (11) 

with 
, ,0 0i j i jK K   
 , 

, , 0
ii j i j rC C H   

 ,  

0 0

0 0

0 0 0

i

i

n

i n

I

E I

 
 
 
  

, 

,

,

,

0 0

0 0

i j

i j

i

i

i j r

r p

A

A A

C H I



 

 
 
 
 
 

 , 

,

, 0

0

i j

i j

B

B 

 
 
 
  

 , 

, ,

,, ,

0 0

0 0

0 0 0

i j

ii j r

F

F F



 

 
 
 
  

 , 

 

 

, , ,

, ,

1
0

1

1
0 0

1

0 0 0

i j i j

i j i

w w

w r

B F
N

B B
N










 
 
 
 
 
 
 
  

 . 

Note that the system (9) is called switched interconnected 

descriptor system (    dimrank E E ). 

By substituting the equation (10) into the equation (9), the 

closed-loop dynamics can be written as follows for 

1, ,i N  : 

 
 

, ,

1 1,

, , ,

,

, , ,

1

1
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j i

i i j i j i j i

i i i j
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   (12) 

At this stage of the work, it is worth pointing out that the 

output-feedback tracking control problem of the system (1)-

(2) can be converted into the stabilization problem of the 

augmented system (9). However, it is very complicated to 

work on the first problem due to the large number of crossing 

terms. Therefore, we will achieve our study by using the 

augmented system (9). Thus, the problem 1 can be 

reformulated as follows: 

Problem 2: The objective is to design the controllers (10) 

such that the closed-loop switched interconnected descriptor 

systems (12) is stable with H


 disturbance attenuation 

performance. 

At the end of this section, we introduce the following 

definition and some mathematical materials needed in the 

development of our results. Then, based on the works done 

within the context of the switched linear systems and large-

scale systems in (Zhang and Feng, 2008; Belkhiat et al., 

2014), we propose the following definition. 

Definition 2: The closed-loop switched interconnected 

descriptor systems (12) is said stable with H


 disturbance 

attenuation performance, if the following conditions are 

satisfied:  
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 Condition 1 (Stability condition): With zero disturbances 

input condition 
, 0iw   , the closed-loop dynamics (12) is 

stable. 

 Condition 2 (Robustness condition): For all non zero 

 
2, 0iw L   , under zero initial condition  

0
0ix t   , 

it holds that for 1, ,i N  ,  

0iJ    (13) 

With 

0 0 1,

2

, , , ,

N

i

T T T

i i i i i i i i i i iJ x x dt w w w w dt
 

   
 

 

    
  
 

       , 

i  are positive scalars which represents the disturbance 

attenuation level associated to the switched subsystem iS 2, 

0 0 0

0 0 0
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0 0
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I
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0 0 0

0 0

0 0 0

ii mI 

 
 
 
  

.  

Indeed, the definition 2 is similar to the definition 1. It gives 

the conditions that should be satisfied to solve the problem 2, 

implicitly the problem 1. The first condition concerns the 

internal stability of the closed-loop dynamics, whereas the 

second one concerns the H


 disturbance attenuation 

performance. Furthermore, noting that the local criterion iJ  

given in definition 2 by the equation (13) is the same one 

given in definition 1 by equation (8). 

Moreover, we provide the following lemma which is helpful, 

in the sequel, in formulating our results in terms of LMI. 

Lemma 1: (Zhou and Khagonekar, 1988): 

Let us consider A  and B  two matrices with appropriate 

dimensions, there exists a scalar 0   such that the 

following inequality holds: 

1T T T T
A B B A A A B B       (14) 

In the following, we describe the design of the proposed 

output-feedback tracking control.  

3. ROBUST TRACKING CONTROL DESIGN 

The main goal of this work is to propose sufficient LMI 

conditions in order to determine the gain matrices ,i jK , for 

1, ,i N   and 1, , ij M  , so that the robust H


 output-

feedback tracking performance is satisfied. The main result is 

summarized in the following theorem 3.  

                                                 
2 I   denotes an identity matrix with appropriate dimension.  

3 As usual, in a matrix,    indicates a symmetrical 

transpose quantity. 

Theorem 1: Assuming that the current mode is present by j  

and the up-coming mode by j


. Given positive scalars i , 

, ,
1

i j j
   , ,i   for 1, ,i N  , 1, , N   , i  , 

1, , ij M   and 1, , ij M
   , j j
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 5 5
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9

,i jX , 

such that the LMIs (15) and (16) hold. Then, the closed-loop 

switched interconnected descriptor system (12) is stable with 

H


 disturbance attenuation levels 

1

2
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. Moreover, the 

controller gains are constructed by   19
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  (16) 

with , ,i j and ,i jX  are described below. 

Proof: Without loss of generality, we assume that the 

switched interconnected descriptor system (9) is regular and 

impulse free in (Sajja et al., 2013). Indeed, the present proof 

is divided in two parts corresponding to the conditions 1 and 

2 are given in the definition 2. 

 Condition 1: At this step of the study and according to the 

definition 2, we assume that we work under zero disturbance 

input condition , 0iw   . Then, our objective is to provide 

sufficient conditions ensuring that the closed-loop dynamics 

(12) is stable. For this purpose, we consider the following 

candidate multiple switched Lyapunov functions: 

      1,...,
1

,
N

i i ii N
i

V x t t x t


    (17)  

with      , ,

1

, ,
iM

i i i j i j i

i

t x t t x t  


    

and         1

, ,, T T

i j i i i i j it x t x t E X x t


    

Thus, the closed-loop dynamics (12) is stable under arbitrary 

switching signal if the following conditions (18), (19) and 

(20) are verified: 
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    1,...,
0i i N

V x t     (18) 

    1,...,
0i i N

V x t      (19) 

 There exists, for 1, ,i N  , 1, , ij M  , 

1, , ij M
   , j j

 , 
, ,

1
i j j

    such that: 

     ,, , ,
, ,i i j ii j j j i j j j j

t x t t x t      
     (20) 

where the decreasing rates 
, ,

1
i j j

    are positive scalars 

describing the Lyapunov-like evolution at the switching time  

j j
t 

 from the current mode j  to the up-coming j and  
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1 1
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i i j TT

i i j i i
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. 

In the sequel, we deal with the stability under arbitrary 

switching signal of the closed-loop switched interconnected 

descriptor system in three steps. In the first one, our purpose 

is to provide the conditions ensuring that the equality (18) is 

satisfied. Thus, we develop the inequality (18) as follows: 

            1

, ,1,...,
1 1

0
iMN

T T

i i j i i i j ii N
i j

V x t t x t E X x t



 

     

  (21) 

We can remark that the inequality (21) is verified if, for 

1, ,i N  , 1, , ij M  , the following conditions are 

verified:  
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 1 5 9

, , , ,i j i j i j i jX diag X X X .  

with 

0 0

0 0

0 0 0

i

i

n

i n

I

E I

 
   
  

 and i , jX  is considered as 

1 2 3

4 5 6

7 8 9

i , j i , j i , j

i , j i , j i , j i , j

i , j i , j i , j

X X X

X X X X

X X X



 
 
 
  

. 

Multiplying (22), left by 
T

i , jX  and right by its transpose, the 

inequalities (22) are equivalent to: for 1, ,i N  , 

1, ,
i

j M  , 

0
T T

i , j i i i , jX E E X     (23) 

The latter inequalities (23), implicitly the conditions (18), are 

verified if the following two conditions, (24) and (25), are 

satisfied for 1, ,i N  , 1, ,
i

j M  , 

 1 1
0

T

i , j i , jX X   and  5 5
0

T

i , j i , jX X    (24) 

and 0
l

i , jX I


  , for  2 3 4 6l , , , .  (25) 

Remark 1: The matrices 
k

i , jX , for  7 8 9k , , , are called 

decision matrices and they can be chosen freely. Moreover, 

these matrices are necessary to obtain in the sequel the LMI 

conditions ensuring the robustness of the tracking control.  

In the second step of the stability study of the closed-loop 

switched interconnected descriptor system, we aim to 

develop the inequality (19).  

     
    

   

1

, , , ,

,1, ,

1

, , , , , ,

1 1 1,

1

1 0
i

TT T

i i j i j i j i j i

i i ji N

TT T T

i j i j i i i j i j

MN N

i j i

x A X X A x
NV x t

x F X x x X F x   

 



 



    


 

 

 
 
 
 
 

 

 
 

    

  (26) 

with , , , ,i j i j i j i jA A B K    . 

Using lemma 1 and assuming that, for 1, ,i N  , , 0i i  , 

the inequality (26) becomes: 

   

     
1

1 1

1,

1

, , , , , 2

,
11

, , , , , , ,

0

i i

N

MN
p

N
i j

i

i

TT

i j i j i j i j p i n p

T

i j i i
T T

i j i i j i j i j

A X X A I

x x

X F F X
 

  









 

 

 



 

 





   
  
  
  
     





 

 

  (27) 
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Inequality (27) is verified,  
i

x t , for 1, ,i N  , 

1, , N   , i  , 1, ,i ij M  , if: 

   

    
1

1,

1

, , , , , 2

11

, , , , , , , 0

i i

N

p

N

i

TT

i j i j i j i j p i n p

T T

i j i i j i j i j

A X X A I

X F F X
 

  







 

 



 

 

 



  
  (28) 

Then, multiplying the inequality (28), left by  Ti , jX  and 

right by i , jX , it yields: 

   

   
1,

1

1

, , , , , , , , ,

, , 2 , 0
i i

N

i

p

T T T

i j i j i j i j i i j i j

N
T

i j p i n p i j

X A A X F F

X I X

 
  



 







 

 





 

  (29) 

Remark 2: At this step, it should be stressed that the 

conditions (29) are not LMI and they cannot be resolved with 

the LMI solvers. To skip to LMI formulation, some 

mathematical developments should be performed. However, 

we end the second step of the stability study at this 

development level. Indeed, this matter will be discussed in 

greater detail in the sequel, where we will show that the 

conditions (29), implicitly the conditions (19), will be 

omitted from the Theorem 1. In the third step of the stability 

study, we focus on the stability conditions (20). Their aim is 

to ensure the global behavior of the like-Lyapunov function 

at the switching time 
j j

t 
. 

According to the condition (20), we can write: 

   
1 1

,, , , i ji j i j j
X X 

 
   (30) 

for 1, ,i N  , 1, , ij M  , 1, , ij M
   , j j

 , 

, ,
1

i j j
   . 

Left and right multiplying the latter condition (30) by ,i jX , 

we can obtain: 

  1

, , ,, , ,
0i j i j i ji j i j j

X X X X 


   (31) 

Applying Schur's complement, the LMIs (15) presented in 

the Theorem 1 are provided.  

In the next part of the proof, we are focused on dealing with 

the robustness of the proposed stabilization control according 

to the condition 2 of the definition 2. 

 Condition 2: In this subsection, we provide some sufficient 

conditions concerning the robustness of the proposed tracking 

control with local disturbance attenuation levels. Under zero 

initial condition  
0

0ix t   and for any non-zero 

 , 2 0iw L   , our objective is to formulate the 

conditions (13) of the definition 2 in terms of LMI. 

We can define, based on the condition (13), the global 

criterion 
1

N

i

iJ J


 . Such as T T

i i i i ix x e e   , the global 

criterion can be written as: 

01 1,

2

, , , ,

N N

i i

T T T

i i i i i i i i iJ e e w w w w dt
 

   


  

    
  
  
  

        (32) 

Thus, our objective now is to provide the sufficient 

conditions ensuring that both the global criterion J  and the 

local criterions iJ  (for 1, ,i N  ) are negative.  

Let us consider the candidate multiple switched Lyapunov 

function (17). Hence, the equation (32) can be reformulated 

as follow: 

 

 

01 1,

1

2

, , , ,

,

,

N N

i i

i

T T T i i
i i i i i i i i i

N

i i

d t x
J e e w w w w dt

dt

t x

 
   








  



    



      
   

 




   



 

  (33) 

Such that  ,i it x   are positive for 1, ,i N  , the criterion 

J  is negative, if the following condition is verified: 

 
1 1,

2

, , , ,

,
0

N N

i i

T T T i i
i i i i i i i i i

d t x
e e w w w w

dt 
   




  

    
      
   

 


      (34) 

By using the equation (12), the latter condition (34) can be 

reformulated such us: 

 

 
    

   
   

1

1

1

1

, , , ,

1,

2

, , , , , , ,

, , , ,

, , , , , , ,

, , ,

1

1

M

j

T

T

T

i

i

i j i j

N

i

T T T T

i j i i j i j i i i i i i i i

T T

i i j i j i j i j i

T T T

i j i j i j i i i j i j

T T T

i w i j i i j w

x C C x w w w w

x A X X A x
N

x F X x x X F x

w B X x x X B
 

 
   

   



 





 

 

 

 

   




  

 

 
 
 

       

 

    

    
,

1

1 1,

0

i

M N
i

j i

i

N

w 

 



  



 
 
 
  
  
  
  
  
  
  
  


 

 

  (35) 

As in the previous parts, one used lemma 1and assuming that, 

for 1, ,i N  , , 0i i  , the inequality (35) becomes: 

   

    

   
, , , ,

1

1,

1,

1,

1

, , , , , 2

,
11

, , , , , , ,

2

, ,

1

, , ,

N

i i

i j i

N

p

N

i

i

i

TT

i j i j i j i j p i n p

T

i j i i
T T T

i j i i i i j i j i j

N
T

i i i i i

TT T T

i w i j i i i j w

A X X A I

x x

X F F X C C

w w

w B X x x X B
 

 

 

 

  

 













 

 

 

 



 

 

 

 

   

 

 
 
 
 
 
 

 
 
 









 
  

 

   
1,

1 1

,

0

j

N

i

iMN

i j

iw
 


 

 


 
 
 
 
 
 
 
 
 
 
 
 



 

 

  (36) 
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The latter equation (36) can be reformulated such as: 

 

 1

, ,
1,

1

1,

11 ,

,
2, ,

, ,

0

T

j

i j
i

N

MN i

N
i

i

T

i j w

i i

i j

i i
i i i

i j

X B
x

w

x

w


 

 

 






 



 






    



 
                   
















 

  (37) 

with 

   

    

1

11 , , , , , 2

1

1
1

, , , , , , ,

1,

i i

N
T

T

i j i j i j i j p i n p

p

N
T

T T

i j i i i i j i j i j

i

A X X A I

X F F X C C  
 





 




 

 

   

 



   
 

Based on the inequality (37), the global criterion J , given by 

equation (33), is negative if the following sufficient condition 

is verified for 1, ,i N  , 1, , N   , i  , 

1, , ij M  ; 

, , 0i jT     (38) 

In other words, the verification of the inequality , , 0i j  , 

for 1, ,i N  , 1, , N   , i  , 1, ,
i

j M  , implies 

that each local criterion iJ , for 1, ,i N  , is satisfied 

separately as required in the definition 2.  

Applying the inverse of Schur's complement, we can write 

, , 0i j   as follows; for 1, ,i N  , 1, , N   , i  , 

1, , ij M  : 

   

   

    

, , , ,
1, 1,

1

, , , , , ,

1
1

, ,
1,

1
1

, , , , , , 2

1, 1

0

i j i j

i i

N

i i

TT T

i j i j i j i j i j i j

N N
T T

i j w i i i w i j
i

N N
T

T

i j i i i i j p i n p

i p

A X X A C C

X B B X

X F F X I

 
    

  
 



 

   

 


 

 

 


  

 

   
  
  

  

  

  

 

 

 

 

  (39) 

with   12

i i 


 . 

Multiplying the latter inequality (39), left by  Ti , jX  and 

right by i , jX , we obtain the following inequalities for 

1, ,i N  , 1, , N   , i  , 1, , ij M  : 

     

 
1

, , , ,

1,

1, 1, 1,

1

, , , , , , , , , , ,

, , ,
1

0
i j i j

N

i

N N N

i i i

T TT T T

i j i j i j i j i j i j i j i j i i i

N
T T

p i i j i j w i i i w
p

X A A X X C C X F F

X X B B
 

 

     

  

 


 

     





  

    
    

  



   

   

 

  (40) 

Remark 3: At this step of study, a significant simplification, 

that relates both inequalities (29) and (40), can be considered. 

Indeed, regarding the inequality (29), we can remark that it is 

bounded by the inequality (40). Then, the inequality (29) will 

be systematically verified when the inequality (40) is 

satisfied. For this reason, the inequality (29) is omitted from 

the Theorem 1 as mentioned above in the remark 2. Hence, 

the Theorem 1 contains only the condition (40) formulated in 

terms of LMI (readers are referred to the appendix section). 

Remark 4: Based on the study above, the design procedure 

of the switched decentralized tracking control for 

interconnected switched systems is summarized as follows:  

Step.1. Construct the mathematical model of the real system 

according to equations (1) and (2) 

Step.2. Choose stable interconnected systems as a reference 

model according to equations (4) and (5). 

Step.3. Solve the LMI conditions (15) and (16) of the 

theorem 1, using LMI solver, in order to obtain the matrices 
1

,i jX , 
5

,i jX , 
9

,i jX  and ,i jY  such that the positive scalars i , 

,i   and 
, ,

1
i j j

    are chosen freely. 

Step.4. Construct the controller gains   19

, , ,i j i j i jK Y X


 . 

Step.5. Implement the obtained switched decentralized 

controller in the control scheme. 

4. SIMULATION AND RESULTS 

In this section, we illustrate the effectiveness of the proposed 

decentralized tracking control via a numerical simulation. For 

that, we consider the following switched interconnected 

large-scale system S  composed of three continuous-time 

switched subsystems 1S , 2S  and 3S : 

Subsystem 1S  is: 

   
       

     

2

1

1

1 2 1 3

1 1 1 1 1 1 2 2

1 1

13 3 2 3j

,j

, ,j , ,j

, j , j w , , j

, j

, , j w w

A x t B u t B w t F x t

x t t
F x t F w t F w t




  


  

 
 
  



   
2

1 1, 1, 1
1

j j
j

y t C x t
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with, for mode 1, 11

0 1 1

0 5 1 1
,

- .
A

. .




 
  

, 11

2

0
,B 

 
  

, 

1 1

0 1

0 1,w

.
B

.

    
, 1 2 1

0 01 0 2

0 0 1
, ,

. .
F

.

 
  

, 1 3 1

0 1 0

0 1 0 1
, ;

.
F

. .

 
  

, 

1 2 1

0 01

0 1, ,w

.
F

.

 
  

,
1 3 1

0 1

0 1, ,w

.
F

.

 
  

and  11 4 0,C    

and for mode 2 , 1 2

1 0 25

0 39 1 5
,

- .
A

. - .

 
  

, 1 2

0

0 3
,B

.

 
  

, 

1 2

0 1

0 1,w

.
B

.




 
  

, 1 2 2

0 1 0

0 2 0 1
, ,

.
F

. .

 
  

, 1 3 2

0 1 0

0 02 0 1
, ,

.
F

. .

 
  

,  

1 2 2

0 1

0 1, ,w

.
F

.

 
  

, 
1 3 2

0 1

0 1, ,w

.
F

.

 
  

 and  1 2 0 3,C  . 

Subsystem 2S  is: 

   

     

   
   

2 2

2 3 2 1

2

1

2 2 2 2

2 2 2 1 1 2 3 3

3 1

, j

, , j , , j

j

, j , j w

, j , , j , , j

w w

A x t B u t B w t

x t t F x t F x t

F w t F w t




 

  

 

 
 
 
 
 



   
2

1

2 2, 2, 2
j

j jy t C x t


     

with, for mode 1, 2 1

4 6 2

1 5 0 1
,

- .
A

. .




 
  

, 2 1

2 5

0
,

.
B 

 
  

, 

2 1

0 2

0 1,w

.
B

.



 
  

, 2 1 1

1 0 2

0 01 0 1
, ,

.
F

. .

 
  

, 2 3 1

1 0 2

0 01 0
, ,

.
F

.

 
  

,

2 11

1

0 1
w , ,F

.

 
  

,
2 3 1

1

0, ,wF 
 
  

and  2 1 3 5 0,C . ,  

and for mode.2, 2 2

4 0 2

1 2 3
,

- .
A

. -

 
  

 , 2 2

0

0 6
,B

.

 
  

, 

2 2

0 2

0 1,w

.
B

.




 
  

, 2 1 2

0 1 1

0 5 0 1
, ,

.
F

. .

 
  

, 2 3 2

0 4 1

0 02 0 1
, ,

.
F

. .

 
  

, 

2 1 2

0 1

0 1, ,w

.
F

.

 
  

, 
2 3 2

0 4

0 1, ,w

.
F

.

 
  

 and  2 2 0 3 2,C .  

Subsystem 3S  is: 

   

     

   
   

3 3

3 1 3 2

3 3 3 3
2

3 3 3 1 1 3 2 2
1

1 2

, j

, , j , , j

, j , j w

, j , , j , , j
j

w w

A x t B u t B w t

x t t F x t F x t

F w t F w t




 

  

 

 
 
 
 
 

  

   
2

3 3, 3, 3
1

j j
j

y t C x t


     

with, for mode 1, 3 1

14 6 11

10 5 12 1
,

- .
A

. .




 
  

, 3 1

2 75

0 1
,

.
B

.

 
  

, 

3 1

1 2

0 1,w

.
B

.



 
  

, 3 11

0 01 0 7

0 0 1
, ,

. .
F

.




 
  

, 3 2 1

0 1 0

1 0 1
, ,

.
F

.




 
  

,

3 1 1

0 01

0 1, ,w

.
F

.




 
  

,
3 2 1

0 1

0 1, ,w

.
F

.




 
  

 and  3 1 2 65 0,C .  

and for mode 2, 3 2

15 9 9 2

10 2 13
,

- . .
A

. -

 
  

, 3 2

0

0 76
,B

.

 
  

, 

3 2

0 45

0 1,w

.
B

.




 
  

, 3 1 2

0 01 0 1

0 8 0 1
, ,

. .
F

. .



 
  

, 3 2 2

0 1 0 01

2 0 1
, ,

. .
F

.

 
  

, 

3 1 2

0 01

0 1, ,w

.
F

.

 
  

, 
3 2 2

0 1

0 1, ,w

.
F

.

 
  

 and  3 2 0 3 45,C . .  

The initial states are given as follow: 

   
1 0 10 20

T
x  ,    

2 0 10 20
T

x   ,    3 0 15 23
T

x   . 

As stated above, each subsystem has its own mode’s 

evolution independently from other subsystems. Noting that 

the large-scale system S  is unstable. 

As mentioned above, we consider the following reference 

large-scale model to specify the desired trajectory for the 

overall large-scale system S . This reference model is 

composed of three subsystems: 

1
st
 Subsystem: 

         
11 1 1 1 1,2 2 1,3 3r r r r r r r rx t A x t B r t F x t F x t      

 
1 1 1r r ry H x t  

with
1

1 5 0 25

0 125 0 125
r

- . .
A

. .




 
  

,
1

0 1

2
r

.
B 

 
  

,
1 2

0 1 0 2

0 0 1,r

. .
F

.

 
  

, 
1 3

0 1 0

0 1 0 1,r

.
F

. .

 
  

 and  
1

1 0 3rH .  . 

2
nd

 Subsystem: 

         
22 2 2 2 2,1 2 2,3 3r r r r r r r rx t A x t B r t F x t F x t      

 
2 2 2r r ry H x t  

with 
2

3 0 5

0 3 0 3
r

- .
A

. .




 
  

, 
2

1

1
rB



 
  

, 
2 1

1 0 2

0 01 0 1,r

.
F

. .

 
  

, 

2 3

1 0 2

0 01 0
,r

.
F

.

 
  

 and  
2

2 0 6rH .  . 

3
rd

 Subsystem: 

         
3 3 3 3 3,1 1 3,2 23r r r r r r r rx t A x t B r t F x t F x t     

 
3 3 3r r ry H x t  
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with
3

13 6 5

8 10
r

- .
A 



 
  

, 
3

1 01

1
r

.
B



 
  

, 
3 1

0 1 0 2

0 1 0,r

. .
F

.

 
  

, 

3 2

0 2 0 2

0 01 0,r

. .
F

.

 
  

 and  
3

2 3 0 6rH . .  . 

Now, by using the Matlab LMI toolbox, a solution of the 

Theorem 1 is obtained and leads to the design of the proposed 

control. This latter is composed of three local switched 

controllers of the form (6) and defined as follows: 

1
st
 controller:      

2

1

1 1, 1, 1
j

j ju t t K e t


     for the 

attenuation level 1 2 7.   and the decreasing rates 

1, j , j
=0.99  , we obtain the following gains: 11 39 54,K .  

and 1 2 54 03,K . . 

2
nd

 controller:      
2

1

2 2, 2, 2
j

j ju t t K e t


     for the 

attenuation level 2 2 3.   and the decreasing rates 

2 , j , j
=0.81  , we obtain the following gains: 2 1 17 66,K .  

and 2 2 28 90,K . . 

3
rd

 controller:      
2

1

3 3, 3, 3
j

j ju t t K e t


     for the 

attenuation level 3 2 5.   and the decreasing rates 

3, j , j
=0.87  , we obtain the following gains: 3 1 18 35,K .  

and 3 2 29 27,K . . 

The following reference signals are considered under this 

simulation: 

   
 

1

1 0 5

20 0 02 5 10

7 0 01 10 15

t s

r t sin . * t t s

square . * t t s

 

   

  






,  

 
 

2

20 0 008 0 7 5

0 5 7 5 15

cos . * t t . s
r t

. . t s

  


 





,  

 
 

 
3

10 0 005 0 5

1 5 10

20 0 008 10 15

  

  

  






square . * t t s

r t t s

cos . * t t s

,  

and the external disturbances signal  iw t , for 1; 2;3i  , are 

considered as a white noise sequence. 

The outputs  iy t  and  
ir

y t , for 1 3i , ,  , are shown in 

Fig. 2. The tracking errors evolution, computed between the 

outputs of the large-scale system S  and the reference model, 

are depicted in Fig. 3. As expected, the outputs  iy t  of the 

large-scale system S  can track the desired trajectories 

 
ir

y t  (for 1, , 3i   )  after a finite time interval. Thus, the 

obtained results demonstrate that the proposed controller can 

guarantee the H


 output-tracking performance.  

 

Fig. 2. Outputs trajectory (system and reference model). 

5. CONCLUSION 

In this paper, the problem of the decentralized output-

feedback tracking control, intended to drive a class of 

switched interconnected large-scale systems subject to 

disturbances, has been studied. Two kinds of the 

interconnections between different subsystems have been 

considered: interconnections depending on state vector and 

those depending on unknown disturbances. By effectively 

using the descriptor redundancy formulation, some new 

sufficient conditions, which guarantee that the proposed 

controller had the H


 output-feedback tracking performance, 

have been derived. These conditions have been reformulated 

in terms of LMI thanks to the multiple switched Lyapunov 

functions. Some concrete simulations are achieved to 

illustrate the effectiveness of the proposed approach. 

Moreover, considering the performances obtained in this 

work in terms of output-feedback tracking control under 

synchronous switching, relaxation of this assumption and 

extension of the proposed approach to general switched 

systems under asynchronous switching will be the focus of 

future work. 
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Fig. 3. Evolution of tracking errors. 

APPENDIX A 

In this section, we are focused on formulating the inequality 

(40) in terms of LMI. We recall that 0
ii
  , the latter 

inequality (40) can be written as follows for 1, ,i N  , 

1, , N   , i  , 1, , ij M  : 

   

, , , ,

1,

1, 1, 1,

1

, , , , , , , , ,
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i i i

T T T T

i j i j i j i j i i i i j i i j

T

w i i i w

X A A X F F

B B

X I X

 

 

     

  



 

     





 

   



    
  



  

 

 
 

 (41) 

with 
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Then, by applying the Schur's complement, the latter 

equation (41) can be written for 1, ,i N  , 1, , N   , 

i  , 1, , ij M  : 

   
, , ,
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with: 
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We substitute ,i jA , ,i jC , ,iF 
 , 

, ,i jwB


 , i , jX , iI  in the 

inequality (42), we can obtain the inequality (43). 

Remark 5: It is important to note that the inequality (43) is 

not a LMI due to the presence of the quadratic terms 

(
7

, ,i j i jK X , 
8

, ,i j i jK X , 
9

, ,i j i jK X ). A way to skip to LMI 

conditions is to act on decision matrices mentioned in the 

remark 1. Hence, we choose (for 1, ,i N  , 1, , ij M  ) 

matrices 
7

, 0i jX   and 
8

, 0i jX  . Therefore, using the 

following change of variable 
9

, , ,i j i j i jY K X , under 

condition that the matrices 
9

,i jX  are non-singular, the LMI 

(16) given in the Theorem 1 is provided. 
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with 

   
   

   

1,

1, 1,
, , , , , ,

1 7 1

, , , , , , ,

1 7

, , ,7 1 8

, , , , , , , , , , , , ,
9

, , ,

5

,

1

T

N

i

N N

i i
i j i j i j i j

i

T TT T T

i j i j i j i j i j i j i j
T TT

i j i j i jT

i j i j i j i j i i j i j i j i j i j

i j i j i j

T Ti
i w w w w

T

i j r

X A X K B A X

X C X

B K X F F B K X

B K X

B B F F

N

X A A

 

   
 

   




 

   



 

 
   



 


 



 

   

     
1,

, ,

5 1 5 8

, , , ,

9 9

, ,

N

i
i i i i

T TT T

r i j i r r i j r i j p

T

i j i j

X F F X H X I

X X

 
 

 


 

   

 
 
 
 
 
 
 
 
 
 
 
  



  

REFERENCES 

Belkhiat D. E. C., Jabri D., Fourati H. (2014), Design of a 

Robust Tracking PD Controller for a Class of Switched 

Linear Systems with External Disturbances, In 

proceeding 19th IFAC World Congress, Cape Town, 

South Africa. 

Belkhiat D. E. C., Jabri D.,  Kilani, I. (2015), Fault Tolerant 

Control for a Class of Switched Linear Systems using 

Generalized Switched Observer Scheme, Journal of 

Control Engineering and applied Informatics, 17 (4), 90-

101. 

Cabecinhas D., Cunha R., Silvestre C. (2014), A nonlinear 

quadrotor trajectory tracking controller with disturbance 

rejection, Control Engineering Practice, 26 (1), 1-10. 

Chiou J. –S. (2006), Stability analysis for a class of switched 

large-scale time-delay systems via time-switched 

method. Control Theory and applications, IEEE 

Proceedings, 153 (6), 684-688. 

Guan Z-H., Wang B., Ding L. (2014), Modified tracking 

performance limitation of unstable linear SIMO feedback 

control systems, Automatica, 50 (1), 262-267. 

Jabri D., Manamanni N., Guelton K., Abdelkrim M.-N. 

(2010), Decentralized stabilization of discrete-time large 

scale switched systems, In proceeding 18th 

Mediterranean Conference on Control & Automation 

(MED), pp.1230-1234, Marrakech, Morocco. 

Jabri D., Guelton K., Manamanni N. (2011), Decentralized 

control for large scale switched Takagi-Sugeno systems, 

IEEE International Conference on Fuzzy Systems (Fuzz), 

pp. 322-328, Taipei, Taïwan. 

Li Q. K., Zhao J., Dimirovski G. M. (2009), Tracking control 

for switched time-varying delays systems with 

stabilizable and unstabilizable subsystems, Nonlinear 

Analysis: Hybrid Systems, 3 (2), 133-142. 

Lian J., Ge Y. (2013), Robust H   output tracking control 

for switched systems under asynchronous switching, 

Nonlinear Analysis: Hybrid Systems, 8 (1), 57-68. 

Liu S., Xiang Z. (2014), Exponential L1 output tracking 

control for positive switched linear systems with time-

varying delays, Nonlinear Analysis: Hybrid Systems, 11 

(1), 118-128. 

Long L., Zhao J. (2015), Adaptive fuzzy tracking control of 

switched uncertain nonlinear systems with unstable 

subsystems, Fuzzy Sets and Systems, 273 (1), 49–67. 

Mahmoud M. S., AL-Sunni F. M. (2010), Interconnected 

continuous-time switched systems: Robust stability and 

stabilization, Nonlinear Analysis: Hybrid Systems, 4 (3), 

531-542. 

Sajja S., Corless M., Zeheb E., Shorten R. (2013), Stability of 

a class of switched descriptor systems, In proceeding. 

American Control Conference (ACC), Washington DC, 

USA. 

Sun C., Fang B., Huang W. (2009), Decentralized control for 

a class of uncertain switched interconnected large-scale 

systems, International Conference on Mechatronics and 

Automation ICMA, pp.822-827, Changchun, China. 

Tanaka K., Ohtake H., Wang H. O. (2007), A descriptor 

system approach to fuzzy control system design via 

fuzzy Lyapunov functions, IEEE Trans Fuzzy Syst, 15 

(3), 333-341.   

Thanh N., Phat V. N. (2014), Decentralized stability for 

switched nonlinear large-scale systems with interval 

time-varying delays in interconnections, Nonlinear 

Analysis: Hybrid Systems, 11(1), 22-36. 

Tong S., Zhang L., Li Y. (2016), Observed-based adaptive 

fuzzy decentralized tracking control for switched 

uncertain nonlinear large-scale systems with dead zones, 

IEEE Transactions on Systems, Man, and Cybernetics: 

Systems, 46 (1), 37-47.  

Wang T., Tong S. (2015), Decentralized control design for 

switched fuzzy large-scale systems with H   

performance, Neurocomputing, 165 (1), 330–337.  

Zhang H.B., Feng G. (2008), Stability analysis and H   

controller design of discrete- time fuzzy large-scale 

systems based on piecewise Lyapunov functions, IEEE 

Trans.Syst.ManCybern. Part B, 38 (5), 1390–1401. 

Zhang L., Yang G H. (2017). Adaptive fuzzy output 

constrained decentralized control for Switched nonlinear 

large-scale systems with unknown dead zones, Nonlinear 

Analysis: Hybrid systems, 23 (1), 61-75.  

Zhou K., Khargonekar P. (1988), Robust Stabilization of 

linear systems with norm-bounded time-varying 

uncertainty, Sys. Control Letters, 10 (1), pp. 17-20. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

