A Fast Randomized Geometric Algorithm for Computing Riemann-Roch Spaces

Aude Le Gluher 1 Pierre-Jean Spaenlehauer 1
1 CARAMBA - Cryptology, arithmetic : algebraic methods for better algorithms
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : We propose a probabilistic Las Vegas variant of Brill-Noether's algorithm for computing a basis of the Riemann-Roch space $L(D)$ associated to a divisor $D$ on a projective plane curve $\mathcal C$ over a sufficiently large perfect field $k$. Our main result shows that this algorithm requires at most $O(\max(\mathrm{deg}(\mathcal C)^{2\omega}, \mathrm{deg}(D_+)^\omega))$ arithmetic operations in $k$, where $\omega$ is a feasible exponent for matrix multiplication and $D_+$ is the smallest effective divisor such that $D_+\geq D$. This improves the best known upper bounds on the complexity of computing Riemann-Roch spaces. Our algorithm may fail, but we show that provided that a few mild assumptions are satisfied, the failure probability is bounded by $O(\max(\mathrm{deg}(\mathcal C)^4, \mathrm{deg}(D_+)^2)/\lvert E\rvert)$, where $E$ is a finite subset of $k$ in which we pick elements uniformly at random. We provide a freely available C++/NTL implementation of the proposed algorithm and we present experimental data. In particular, our implementation enjoys a speed-up larger than 9 on several examples compared to the reference implementation in the Magma computer algebra system. As a by-product, our algorithm also yields a method for computing the group law on the Jacobian of a smooth plane curve of genus $g$ within $O(g^\omega)$ operations in $k$, which slightly improves in this context the best known complexity $O(g^{\omega+\varepsilon})$ of Khuri-Makdisi's algorithm.
Liste complète des métadonnées

https://hal.inria.fr/hal-01930573
Contributeur : Pierre-Jean Spaenlehauer <>
Soumis le : jeudi 22 novembre 2018 - 10:07:41
Dernière modification le : mardi 18 décembre 2018 - 16:18:26

Lien texte intégral

Identifiants

  • HAL Id : hal-01930573, version 1
  • ARXIV : 1811.08237

Collections

Citation

Aude Le Gluher, Pierre-Jean Spaenlehauer. A Fast Randomized Geometric Algorithm for Computing Riemann-Roch Spaces. 2018. 〈hal-01930573〉

Partager

Métriques

Consultations de la notice

48