F. Alexandre, Biological Inspiration for Multiple Memories Implementation and Cooperation, International Conference on Computational Intelligence, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00099046

F. Alexandre and M. Carrere, Modeling Neuromodulation as a Framework to Integrate Uncertainty in General Cognitive Architectures, The Ninth Conference on Artificial General Intelligence, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01342902

F. Alexandre, M. Carrere, and R. Kassab, Feature, Configuration, History : a bioinspired framework for information representation in neural networks, International Conference on Neural Computation Theory and Applications, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01095036

J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere et al., An integrated theory of the mind, Psychol Rev, vol.111, issue.4, pp.1036-1060, 2004.

F. G. Ashby, L. A. Alfonso-reese, A. U. Turken, and E. M. Waldron, A neuropsychological theory of multiple systems in category learning, Psychological review, vol.105, issue.3, pp.442-481, 1998.

J. Ba, R. ;. Caruana, M. Welling, C. Cortes, and N. D. Lawrence, Proceedings of the Neural Information Processing Systems Conference, pp.2654-2662, 2014.

M. A. Belova, J. J. Paton, S. E. Morrison, and C. D. Salzman, Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala, Neuron, vol.55, issue.6, pp.970-984, 2007.

L. Calandreau, P. Trifilieff, N. Mons, L. Costes, M. Marien et al., Extracellular hippocampal acetylcholine level controls amygdala function and promotes adaptive conditioned emotional response, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.26, issue.52, pp.13556-13566, 2006.

M. Carrere and F. Alexandre, A pavlovian model of the amygdala and its influence within the medial temporal lobe, Frontiers in Systems Neuroscience, vol.9, issue.41, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01145790

M. Carrere and F. Alexandre, Modeling the sensory roles of noradrenaline in action selection, The Sixth Joint IEEE International Conference Developmental Learning and Epigenetic Robotics, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401882

S. Ciocchi, C. Herry, F. Grenier, S. B. Wolff, J. J. Letzkus et al., Encoding of conditioned fear in central amygdala inhibitory circuits, Nature, vol.468, issue.7321, pp.277-282, 2010.

R. M. French, Semi-distributed representations and catastrophic forgetting in connectionist networks, Connection Science, vol.4, issue.3-4, pp.365-377, 1992.

S. J. Gershman, D. M. Blei, and Y. Niv, Context, learning, and extinction, Psychological review, vol.117, issue.1, pp.197-209, 2010.

K. A. Goosens and S. Maren, Contextual and Auditory Fear Conditioning are Mediated by the Lateral, Basal, and Central Amygdaloid Nuclei in Rats, Learning & Memory, vol.8, issue.3, pp.148-155, 2001.

M. E. Hasselmo, The role of acetylcholine in learning and memory, Curr Opin Neurobiol, vol.16, issue.6, pp.710-715, 2006.

J. Hastad and M. Goldmann, On the power of small-depth threshold circuits, Computational Complexity, vol.1, pp.113-129, 1991.

C. Herry, S. Ciocchi, V. Senn, L. Demmou, C. Muller et al., Switching on and off fear by distinct neuronal circuits, Nature, vol.454, issue.7204, pp.600-606, 2008.

J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences, pp.2554-2558, 1982.

R. Kassab and F. Alexandre, Integration of exteroceptive and interoceptive information within the hippocampus: a computational study, Frontiers in Systems Neuroscience, vol.9, issue.87, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01237876

R. Kassab and F. Alexandre, A Modular Network Architecture Resolving Memory Interference through Inhibition, Computational Intelligence, vol.669, pp.407-422, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01251022

P. S. Kaushik, M. Carrere, F. Alexandre, and S. B. Raju, A biologically inspired neuronal model of reward prediction error computation, 2017 International Joint Conference on Neural Networks, pp.3577-3584, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01528658

L. and A. G. , Human contingency judgments : Rule based or associative, Psychological Bulletin, vol.114, issue.3, pp.435-448, 1993.

F. Laberge, S. Muhlenbrock-lenter, W. Grunwald, and G. Roth, Evolution of the Amygdala: New Insights from Studies in Amphibians, Brain Behav Evol, vol.67, issue.4, pp.177-187, 2006.

L. Pelley and M. E. , The role of associative history in models of associative learning: a selective review and a hybrid model, The Quarterly Journal of Experimental Psychology, vol.57, issue.3, pp.193-243, 2004.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

J. Ledoux, The amygdala, Current Biology, vol.17, issue.20, pp.868-874, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00634626

S. S. Li and G. P. Mcnally, The conditions that promote fear learning: Prediction error and Pavlovian fear conditioning, Neurobiology of Learning and Memory, vol.108, issue.0, pp.14-21, 2014.

D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information, 1982.

J. L. Mcclelland, B. L. Mcnaughton, and R. C. O'reilly, Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory, Psychological review, vol.102, issue.3, 1995.

M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry, 1969.

R. C. O'reilly and Y. Munakata, Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain, vol.1, 2000.

W. M. Pauli and R. C. O'reilly, Attentional control of associative learning-a possible role of the central cholinergic system, Brain Research, vol.1202, pp.43-53, 2008.

I. P. Pavlov, Conditioned Reflexes (V.Anrep, trans.), 1927.

R. Paz, E. P. Bauer, and D. Paré, Measuring correlations and interactions among four simultaneously recorded brain regions during learning, Journal of neurophysiology, vol.101, issue.5, pp.2507-2515, 2009.

Z. W. Pylyshyn, Computation and Cognition, 1984.

R. Rescorla and A. Wagner, A theory of pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement, Classical Conditioning II: Current Research and Theory, pp.64-99, 1972.

P. R. Roelfsema and A. Van-ooyen, Attention-gated reinforcement learning of internal representations for classification, Neural computation, vol.17, issue.10, pp.2176-2214, 2005.

F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Neurocomputing: Fundations of Research, pp.89-92, 1958.

N. Schmajuk and J. Dicarlo, Stimulus configuration, classical conditioning and the hippocampus, Psychological Review, vol.99, pp.268-305, 1992.

L. Squire, Declarative and nondeclarative memory: multiple brain systems supporting learning and memory, Journal of cognitive neuroscience, vol.4, issue.3, pp.232-243, 1992.

S. J. Thorpe and M. Fabre-thorpe, Seeking Categories in the Brain, Science, vol.291, issue.5502, pp.260-263, 2001.

A. J. Yu and P. Dayan, Uncertainty, Neuromodulation, and Attention, Neuron, vol.46, 2005.