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New models for the location of controversial

facilities: A bilevel programming approach

Martine Labbé†, Marina Leal‡ and Justo Puerto‡
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Abstract. Motivated by recent real-life applications in Location Theory in which

the location decisions generate controversy, we propose a novel bilevel location

model in which, on the one hand, there is a leader that chooses among a number

of fixed potential locations which ones to establish. Next, on the second hand,

there is one or several followers that, once the leader location facilities have been

set, chooses his location points in a continuous framework. The leader’s goal is to

maximize some proxy to the weighted distance to the follower’s location points,

while the follower(s) aim is to locate his location points as close as possible to

the leader ones. We develop the bilevel location model for one follower and for

any polyhedral distance, and we extend it for several followers and any `p-norm,

p ∈ Q, p ≥ 1. We prove the NP-hardness of the problem and propose different

mixed integer linear programming formulations. Moreover, we develop alternative

Benders decomposition algorithms for the problem. Finally, we report some com-

putational results comparing the formulations and the Benders decompositions on

a set of instances.

Keywords: Bilevel optimization, locational analysis, combinatorial optimiza-

tion.

1. Introduction

Location is a research area devoted to the optimal placement of facilities [2, 6,

12, 13, 14, 19, 21], including among many others emergency systems [4, 6, 24], ser-

vice providers [1, 5], infrastructures, etc., and it is a basic building block of most

transportation, communication or logistic problems. An optimal location can be
1



2 M. LABBÉ, M. LEAL and J. PUERTO

chosen according to different criteria depending on the rationale behind the consid-

ered model. The most popular ones are the minimization of the total or maximum

transportation cost [2, 6], the maximization of some coverage goal [1, 4, 5, 6], or the

minimization of the undesirable effects induced by the facilities [7, 8, 12].

Location Theory includes a number of real-life applications in which the location

decisions generate controversy. This controversy must be understood as a disagree-

ment among users with different, non-aligned or opposite interests. Examples of this

controversial location can be found in the literature, for example, in the areas of semi-

obnoxious facility location or in problems that involve the location and protection of

critical infrastructures or facilities sensitive to intentional attacks.

In the last decades, the consciousness-raising in environmental issues has grown

substantially, specially in those aspects that affect human health or have adverse

effects on people. As a consequence of this awareness-raising, the location of (semi-)

obnoxious facilities has been extensively studied. Obnoxious facilities are those that

generate a disservice to the people nearby while producing an intended product or

service [10]. However, if only these undesirable effects are taken into account when

locating them, these facilities would never be opened or would be located too far

from the population centers making use of the produced services, thus generating

huge costs. For that reason, in the last years, there has been an increasing focus

in analyzing the problem of locating semi-obnoxious facilities [7, 12, 18]. Semi-

obnoxious facilities has been defined as useful but unwelcome facilities that produce

environmental concerns. That is, facilities that population centers (demand points)

want them away, but there are some interests (political, economical ...) in locating

them close the demand points, generating in this way, location controversy. Classical

examples of this kind of facilities are chemical and power plants, airports, waste

dumps, detoxification centers, etc., as listed in [18].

Another area that has also attracted increasing attention of researchers in the last

years is the location and protection of vulnerable facilities (with high risk of dis-

ruption) and the protection of critical facilities, including not only those related to

disruptions produced by natural disasters or natural failures, but also those referred

to disruptions produced by man-made attacks [8, 9, 23]. Critical infrastructure is a

term to describe assets that are essential for the functioning of a society and economy.
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Most commonly associated with the term are facilities for heating, water supply, pub-

lic health, security services, telecommunication, economic sector, etcetera. Clearly,

the location and protection of these types of facilities generates also controversy,

since the population is aware of the risks that may appear close to those facilities

due to the confrontation between two antagonist parties: attackers and defenders

with visibly opposite goals.

The above-mentioned problems have been usually addressed via biobjective (mul-

tiobjective) approaches, difference of objective functions, maximin optimization and,

if there exists a hierarchical structure in the decision-making process, by means of

bilevel optimization.

Motivated by the increasing interest in real-world applications generating location

controversy, we introduce a new model for its study and analysis.

The situation that we want to address models the existence of two parties acting

sequentially in a decision-making process. On the one hand, there is a leader who

wants to locate some primary facilities and must choose among a number of fixed

potential locations where to establish them. On the other hand, there is one (or

several) follower(s) that, once the primary facilities have been set, chooses the place-

ment of some secondary facilities, in a continuous environment. The leader’s goal is

to maximize some proxy of the overall weighted distance to the follower’s secondary

facility locations. Meanwhile, the follower(s) aim is to locate their secondary facili-

ties as close as possible to the primary ones, minimizing a cost proportional to the

distance from the secondary facilities to the primary ones set by the leader.

The reader may observe that this model fits perfectly to the cases mentioned above.

The paper is structured as follows. The following section introduces the model,

sets the notation and proves the NP-hardness of the considered problem. In Section

3, we develop the mathematical programming formulations and resolution algorithms

for the problem with one follower and any block norm. Two different approaches,

based on the representation of the norms, have been considered. Furthermore, due to

their importance, they have been applied to the case of the `1 and `∞ norm. In the

next Section 4, we extend the model to several followers and non-polyhedral norms.

Section 5 is devoted to the computational study of the different methods discussed

in the previous sections. Finally, Section 6 concludes the paper.
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2. The model

We consider a situation with two different types of location entities: the primary

facilities (critical infrastructures, goods to protect, demand-points, etc.), and the

secondary facilities (terrorists nets, thefts, semi-obnoxious facilities, detoxification

centers, recycling or power plants, etc.). The primary facilities wish to be located

as far as possible from the secondary facilities, meanwhile the secondary facilities

aim to be located as close as possible to the primary ones. The model we present

consists in choosing the location of the primary facilities (these are set first), taking

into account that, the secondary facilities will be located afterwards knowing their

location. For the ease of presentation, we restrict ourselves to the case where a

unique secondary facility will be located. The reader is referred to Section 4 for the

extension to several facilities.

We will model this hierarchical structure using Bilevel Optimization. Bilevel pro-

gramming targets hierarchical optimization problems in which part of the constraints

translate the fact that some of the variables constitute an optimal solution of another

optimization problem. There exist a leader that acts first, and then a follower that

reacts to the leader’s decision.

We assume that there is a leader (setting the primary facilities) that chooses

among a set of potential locations B the placement of some new primary facilities.

We also consider that there is a set NB of primary facilities already established,

and there exists a budget constraint on the overall investment for the location of the

new primary facilities. On the other hand, once the primary facilities are set, the

follower chooses the location of the secondary facility in a continuous framework. The

proximity between the primary and secondary facilities is measured as a weighted

sum of a distance to all primary facilities.

We denote by cj the cost of opening the primary facility j, for all j ∈ B, by C the

maximum budget, by fj ∈ Rn the given location point j ∈ B ∪NB, and by wj the

weight factor that scales the distance from the secondary facility to fj according to

its importance. We define the binary decision variables yj = 1 if fj, j ∈ B, is open,

and yj = 0 otherwise.

For the follower problem we define the decision variable x ∈ Rn that specifies the

location of the secondary facility.
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Therefore, the bilevel problem can be modeled as:

max
∑
j∈B

wjd(x, fj)yj +
∑
j∈NB

wjd(x, fj)(BLP)

st.
∑
j∈B

cjyj ≤ C,(1)

yj ∈ {0, 1} j ∈ B,(2)

x ∈ arg min
x

∑
j∈B

wjd(x, fj)yj +
∑
j∈NB

wjd(x, fj),

where d(x, fj) denotes any distance induced by some norm:

d(x, fj) = ‖x− fj‖.

Observe that BLP is a bilevel max-min problem, in which the objective function

of both levels is a proxy of the distance between the primary and the secondary

facilities. The resulting bilevel problem contains a knapsack problem at the upper

level, and a continuous single-facility location problem at the lower level.

To state the complexity of the problem, we provide the following result.

Theorem 1. The bilevel location model BLP is NP-hard.

Proof. Let us consider the distance induced by a norm ‖ · ‖, and an instance such

that |NB| = 1 and wj0 >
∑

j∈B wj for j0 ∈ NB.

For this instance, we know, using the majority theorem, see for example [15], that

the optimal solution of the continuous location problem is x∗ = f 0
j . Then, if we

denote r∗j = ‖f 0
j − fj‖, Problem BLP can be written as:

max
∑
j∈B

wjyjr
∗
j

s.t.∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1} ∀j ∈ B,

which is a knapsack problem, known to be NP-hard [11]. �
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3. Mathematical programming formulations and resolution

algorithms

This section is devoted to present useful mathematical programming formulations

for BLP in order to solve it with off-the-self solvers. In addition, we will present

alternative add-hoc algorithms, based on decompositions, that prove to be more

efficient than the solvers acting on the Mixed Integer Linear Programming (MILP)

above-mentioned formulations.

For the sake of presentation, we assume in this section that we measure distances

via block norms. The family of block norms, also called polyhedral norms, includes

all norms ||.||P whose unit ball P is a symmetric with respect to the origin, convex

bounded polyhedral set containing the origin in its interior. We will denote then

by ext(P ) the set of extreme points of P and by P o : the polar set of P , that is,

P o := {x ∈ Rn : 〈x, p〉 ≤ 1, ∀p ∈ P}. The reader may note that the commonly

used `1 and `∞ norms belong to this family.

In order to deal with the problem we develop two different procedures: the first

one is based on the evaluation of the norm through its primal expression, using its

unit ball defined by P , and the second one evaluates the norm through its dual

expression, using its dual unit ball P o.

These two different forms used to handle the problem are justified, as we will see,

by the fact that depending on the cases one can be more efficient than the other due

to the structure of the set of extreme points of P and P o. We will illustrate this

behavior in the following sections with the `1 and `∞ norms.

3.1. First approach: Evaluating norms with its primal expression. It is

well-known (see for example [20] and [22]), that the value of ||x||P is given as:

||x||P = min
∑

b∈ext(P )

µb,(PrimalNormP)

s.t. x =
∑

b∈ext(P )

µbb,

µb ≥ 0, b ∈ ext(P ).
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This representation of the norm gives rise to a trilevel problem. Using such repre-

sentation we develop a MILP Formulation and a Benders like algorithm in order to

solve BLP, using off-the-shelf solvers.

3.1.1. A MILP formulation. Let us assume that x = (x1, . . . , xn), fj = (fj1, . . . , fjn),

for all j ∈ B ∪NB and b = (b1, . . . , bn) for all b ∈ ext(P ). By representing ||x||P as

in PrimalNormP, BLP can be written as the following bilevel problem:

max
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj(BLP-P)

s.t.
∑
j∈B

cjyj ≤ C,(1)

yj ∈ {0, 1} j ∈ B,(2)

r ∈ arg min
x,r

∑
j∈B

wjyjrj +
∑
j∈NB

wjrj,(3)

rj =
∑

b∈ext(P )

µjb, j ∈ B ∪NB,(4)

xi =
∑

b∈ext(P )

µjbbi + fji, j ∈ B ∪NB, i = 1, ..., n,(5)

µjb ≥ 0, b ∈ ext(P ), j ∈ B ∪NB,(6)

rj ≥ 0, j ∈ B ∪NB,(7)

xi ∈ R, i = 1, ..., n.(8)

In the above formulation, variables rj, defined in constraint (4), represent the

distance between x and fj and constraints (5) set the correct representation of co-

ordinates of the secondary facility in terms of the reference system induced by fj

and the extreme points of P . Constraints (1) and (2), as in BLP, are knapsack

constraints, corresponding to the choice of the location of the primary facilities, ac-

cording to a budget constraint. Constraints (3)-(8) define the lower level problem,

the continuous location problem, in which the representation of the norm has been

included.
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Proposition 1. Problem BLP-P can be reformulated as the following single level

problem BLP-P’.

max
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj(BLP-P’)

s.t.
∑
j∈B

cjyj ≤ C,(1)

yj ∈ {0, 1} j ∈ B,(2) ∑
j∈B

wjyjrj +
∑
j∈NB

wjrj =
n∑
i=1

∑
j∈B∪NB

βjifji(9)

rj =
∑

b∈ext(P )

µjb, j ∈ B ∪NB,(4)

xi =
∑

b∈ext(P )

µjbbi + fji, j ∈ B ∪NB, i = 1, ..., n,(5)

µjb ≥ 0, b ∈ ext(P ), j ∈ B ∪NB,(6)

rj ≥ 0, j ∈ B ∪NB,(7)

xi ∈ R, i = 1, ..., n,(8)

αj ≤ wjyj, j ∈ B,(10)

αj ≤ wj, j ∈ NB,(11) ∑
j∈B∪NB

βji = 0, i = 1, ..., n,(12)

− αj −
n∑
i=1

biβji ≤ 0, j ∈ B ∪NB, b ∈ ext(P ).(13)

Proof. Given a solution y, representing a feasible set of locations for the primary

facilities in BLP-P, the inner problem in BLP-P is a feasible Linear Program (LP)

with finite solution, and its dual is:

max
n∑
i=1

∑
j∈B∪NB

βjifji(Dual-P)

s.t. αj ≤ wjyj, j ∈ B,(10)
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αj ≤ wj, j ∈ NB,(11) ∑
j∈B∪NB

βji = 0, i = 1, ..., n,(12)

− αj −
n∑
i=1

biβji ≤ 0, j ∈ B ∪NB, b ∈ ext(P ).(13)

Then, Problem BLP-P is equivalent to the single level formulation BLP-P’ since

constraint (9) is the strong duality condition stating that the primal and dual ob-

jectives of the lower level problem must be equal, and the blocks of constraints

(1)-(2), (4)-(8) and (10)-(13) represent, respectively, the upper level problem con-

straints, the lower level primal problem constraints and the lower level dual problem

constraints. �

We can observe that the above formulation contains some bilinear terms: rjyj.

In order to transform that formulation into a mixed integer linear problem, the

bilinear terms can be linearized (see [17]) giving rise to an exact MILP formulation

for the bilevel problem. To this end, we substitute the terms rjyj by the variables

r̂j; ∀j ∈ B ∪NB and add the following set of constraints:

(14)

r̂j ≤ rj, j ∈ B ∪NB,
r̂j ≤Mjyj, j ∈ B ∪NB
r̂j ≥ rj −Mj(1− yj), j ∈ B ∪NB
r̂j ≥ 0, j ∈ B ∪NB.

The previous block of constraints requires to set a valid value for the “big-M”-

constants. It is easy to observe that Mj can be chosen equal to the maximum distance

between fj and any other point in B ∪NB.

3.1.2. Benders like algorithm for solving BLP. Now, we propose an alternative

method to solve the bilevel location problem under a block norm which is based

on a decomposition of the problem.

For a given solution y, the inner problem in BLP-P is an LP whose set of con-

straints does not depend on the variables associated to the master (leader) problem
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(does not depend on y). Then, if we denote by P the set of extreme points of the

inner problem, solving such problem is equivalent to evaluate the objective function

at the points in P and to take the minimum objective function value. Then, the

continuous location inner problem can be rewritten as the following optimization

problem:

max q

s.t. q ≤
∑
j∈B

n∑
i=1

wjyjr
τ
j +

∑
j∈NB

n∑
i=1

wjr
τ
j , ∀ rτ ∈ P.

In order to apply Benders decomposition, and using the above formulation, Prob-

lem BLP-P can be reformulated as:

max q

s.t.
∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1}, j ∈ B,

q ≤
∑
j∈B

n∑
i=1

wjyjr
τ
j +

∑
j∈NB

n∑
i=1

wjr
τ
j , ∀ rτ ∈ P.

Our approach to solve the above problem is to sequentially identify and add ex-

treme points in P to the problem until a certificate of optimality is fulfilled (eventually

in the worse case after adding all extreme points).

To describe the algorithm, we denote by P a subset of points in P. With the

purpose of obtaining upper bounds for BLP-P, in the algorithm, we define the

following Master Problem:

max q(MP)

s.t. q ≤
∑
j∈B

n∑
i=1

wjyjr
τ
j +

∑
j∈NB

n∑
i=1

wjr
τ
j , rτ ∈ P ,
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cjyj ≤ C,

yj ∈ {0, 1} ∀j ∈ B.

Lower bounds for the Problem BLP-P are obtained in the algorithm by solving

the following subproblem:

q(ȳ) = min
∑
j∈B

wj ȳjrj +
∑
j∈NB

wjrj,(PP-P (ȳ))

rj =
∑

b∈ext(P )

µjb, j ∈ B ∪NB,

xi =
∑

b∈ext(P )

µjbbi + fji, j ∈ B ∪NB, i = 1, ..., n,

µjb ≥ 0, b ∈ ext(P ), j ∈ B ∪NB,

rj ≥ 0, j ∈ B ∪NB,

xi ∈ R, i = 1, ..., n.

If r̄ is an optimal solution of the above problem for a given solution ȳ feasible to

the master problem MP, the inequality q ≤
∑
j∈B

n∑
i=1

wjyj r̄j +
∑
j∈NB

n∑
i=1

wj r̄j either

generates a new lower bound for MP or, if the optimal solution coincides with the

previous one, it is a certificate of optimality. Based on this recursion, we propose the

following algorithm:

Algorithm 1: Benders decomposition Algorithm

Initialization: Choose a solution y0 satisfying the knapsack constraint, and

solve the problem PP-P (ȳ) for ȳ = y0. Let r0 be an optimal solution for

PP-P (ȳ). Take P = {0} and go to iteration ν = 1.

Iteration ν = 1, 2, . . .: Solve the Master Problem MP. Let y∗ be an optimal

solution of such problem and q∗ the corresponding optimal value.

• Solve PP-P (ȳ) for ȳ = y∗.If q∗ = q(y∗). END.
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• Otherwise, let r∗ be an optimal solution of PP-P (ȳ) . Take rν = r∗,

P := P ∪ {ν}, and go to iteration ν := ν + 1.

3.1.3. The case of the `1-norm. In this section, we apply the above reasoning to the

particular important case of problem BLP-P under the rectangular distance, that is,

the distance induced by the `1-norm. We take advantage of some specific properties

of this norm to exploit further its algorithmic implications. As before, n denotes the

dimension of the space.

The set of extreme points of the unit ball of the `1 norm is ext(P ) = {e1, ..., en,−e1, ...,−en},
where ei the i-th vector of the canonical basis. Further, the `1-norm of a vector x is

given by ‖x‖1 =
∑n

i=1 |xi|.
By introducing variables rji representing the non linear terms |xi − fji|, we adapt

BLP-P to the `1-norm case.

max
∑
j∈B

wjyj

n∑
i=1

rji +
∑
j∈NB

wj

n∑
i=1

rji(BLP−`1)

s.t.∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1}, j ∈ B,

x ∈ arg min
x

∑
j∈B

wjyj

n∑
i=1

rji +
∑
j∈NB

wj

n∑
i=1

rji(15)

rji ≥ xi − fji, j ∈ B ∪NB, i = 1, ..., n,(16)

rji ≥ fji − xi, j ∈ B ∪NB, i = 1, ..., n,(17)

As in Subsection 3.1.1, we can derive a MILP by using the primal dual optimality

conditions and then linearizing the bilinear terms yjrji by introducing new variables

r̂ji. In this formulation, dual variables αji correspond to contraints (16). The dual

variables associated to constraints (17) have been eliminated.
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max
∑
j∈B

wj

n∑
i=1

r̂ji +
∑
j∈NB

wj

n∑
i=1

rji(BLP-`1-1)

s.t.
∑
j∈B

cjyj ≤ C,(1)

yj ∈ {0, 1}, j ∈ B,(2) ∑
j∈B

n∑
i=1

wj r̂ji +
∑
j∈NB

n∑
i=1

wjrji =
∑

j∈B∪NB

n∑
i=1

−fjiαji+

+
∑
j∈B

n∑
i=1

fji(wjyj − αji) +
∑
j∈NB

n∑
i=1

fji(wj − αji),(18)

rji ≥ xi − fji, j ∈ B ∪NB, i = 1, ..., n,(19)

rji ≥ fji − xi, j ∈ B ∪NB, i = 1, ..., n,(20)

xi ∈ R, i = 1, ..., n,(8)

r̂ji ≤Mjiyj, j ∈ B, i = 1, ..., n,(21)

r̂ji ≤ rji, j ∈ B, i = 1, ..., n,(22)

r̂ji ≥ rji − (1− yj)Mji, j ∈ B, i = 1, ..., n,(23)

r̂ji ≥ 0, j ∈ B, i = 1, ..., n,(24)

αji ≤ wjyj, j ∈ B, i = 1, ..., n,(25)

αji ≤ wj, j ∈ B, i = 1, ..., n,(26)

αji ≥ 0, j ∈ B ∪NB, i = 1, ..., n,(27) ∑
j∈B

(−2αji + wjyj) +
∑
j∈NB

(−2αji + wj) = 0, i = 1, ..., n.(28)

The reader can observe that valid big-M constant in this formulation are Mji =

maxk∈B∪NB |fki − fji|, for all i = 1, . . . , n and j ∈ B.

An alternative formulation can be derived for Problem BLP−`1 by using the

fact that the inner location problem can be decomposed into n independent linear

programs, one for each coordinate. Using the optimality conditions for each such

problem and the linearization technique described above, we obtain a formulation
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BLP-`1-2 identical to BLP-`1-1 except that constraint (18) is replaced by the group

of contraints:

∑
j∈B wj r̂ji+

∑
j∈NB wjrji =

∑
j∈B∪NB −fjiαji+

∑
j∈B fji(wjyj−αji)+

∑
j∈NB fji(wj−

αji), i = 1, ..., n.

Algorithm 1 can also be adapted to the case of the `1-norm. Then, q(ȳ) is obtained

by solving the lower level problem defined by (15) - (17) but it can be solved in

O(n|B ∪ NB|) time since, for each coordinate, it amounts to find the median of a

discrete distribution.

We can also use the separability property in the proposed Benders Algorithm, by

solving in each iteration n subproblems qi(y) (one for each coordinate), and consid-

ering the following Master Problem:

(MP-`1-i)

max
∑n

i=1 qi

s.t.

qi ≤
∑
j∈B

wjyjz
τ
ij +

∑
j∈NB

wjz
τ
ij ∀τ ∈ P , ∀i = 1, ..., n,∑

j∈B

cjyj ≤ C,

yj ∈ {0, 1} ∀j ∈ B,

We will compare the performance of the four approaches in the computational

study presented in Section 5.

3.2. Second approach: Evaluating the norm by its dual expression. Since

the polar set of a polyhedron is a polyhedron, P o induces the so-called dual norm

of || · ||P that can also be used to evaluate || · ||P . In this case, || · ||P is the optimal

solution of the following linear program (see for example [20] or [22]):

||x||P = min r(NormP0)

s.t.
n∑
i=1

uixi ≤ r, u ∈ ext(P 0)
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Depending on the number and structure of the set of extreme points of P and P o,

it may be more convenient to compute || · ||P , by using its primal or dual expres-

sion. Fruther, this dual representation leads to different MILP formulations and the

Benders approach can also be adapted.

3.2.1. MILP formulation: Using the dual representation of the norm, BLP can be

formulated as:

max
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj(BLP-P0)

s.t.
∑
j∈B

cjyj ≤ C,(1)

yj ∈ {0, 1} j ∈ B,(2)

r ∈ arg min
x,r

∑
j∈B

wjyjrj +
∑
j∈NB

wjrj,(9)

rj ≥
n∑
i=1

ui(xi − fji), u ∈ ext(P 0), j ∈ B ∪NB,(29)

rj ≥ 0, j ∈ B ∪NB,(7)

xi ∈ R, i = 1, ..., n,(8)

where variables rj, defined in constraint (29), represent the distance between x and

fj. Constraints (1) and (2) relate the choice of the location of the primary facilities,

according to a budget constraint, and constraints (9), (29), (7) and (8) define the

inner subproblem, in which the representation of the norm via its dual expression

has been included.

Proposition 2. Problem BLP-P0 can be formulated as the following single level

problem BLP-P0’.

max
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj(BLP-P0’)

s.t.
∑
j∈B

cjyj ≤ C,
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yj ∈ {0, 1} j ∈ B,∑
j∈B

wjyjrj +
∑
j∈NB

wjrj =
∑

u∈ext(P 0)

∑
j∈B∪NB

( n∑
i=1

−fjiui
)
γuj,

rj ≥
n∑
i=1

ui(xi − fji), u ∈ ext(P 0), j ∈ B ∪NB,

rj ≥ 0, j ∈ B ∪NB,

xi ∈ R, i = 1, ..., n,∑
u∈ext(P 0)

γuj ≤ wjyj, j ∈ B,

∑
u∈ext(P 0)

γuj ≤ wj, j ∈ NB,

∑
u∈ext(P 0)

∑
j∈B∪NB

(−ui)γuj = 0, i = 1, ...n,

γuj ≥ 0 u ∈ ext(P 0), j ∈ B ∪NB

The proof of this proposition follows the same lines as that of Proposition 1 and

is thus omitted.

We can observe that in the above formulation there appear the same bilinear terms

that we have already obtained in Section 3.1.1. Therefore, the same linearization (14)

can be applied to obtain the corresponding MILP formulation.

3.2.2. Benders like algorithm for solving BLP-P0. The Benders Algorithm proposed

in Section 3.1.2 can also be applied when the norm is induced by the polar polyhe-

dron, with the same Master Problem MP and the following primal problem:

min q(y) =
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj,(PP-P0)

s.t. rj ≥
n∑
i=1

uki(xi − fji), u ∈ ext(P 0), j ∈ B ∪NB,

r ≥ 0, x ∈ Rn,

xi ∈ R, i = 1, ..., n.
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3.2.3. The case of the `∞-norm. This is Section, we apply the above results to the

important case of the infinity norm. The set of extreme points of the infinity norm is

ext(P ) =
{

(a1, ..., an) ∈ Rn : ai ∈ {1,−1}, i = 1, ..n,
}
, so that |ext(P )| = 2n. Then

formulation BLP-P’ would include 2n(|B| + |NB|) µje variables, and more than

2n(|B| + |NB|) constraints. However, the number of extreme points of the polar

polyhedron is much smaller: ext(P 0) = {e1, ..., en,−e1, ...,−en} and |ext(P 0)| = 2n.

Further, the `∞-norm of a vector x is given by ‖x‖∞ = maxi=1,...,n |xi|. This allows

to adapt BLP-P to the `∞-norm case as follows:

max
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj(BLP−`∞)

s.t.
∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1}, j ∈ B,

x ∈ arg min
x

∑
j∈B

wjyjrj +
∑
j∈NB

wjrj,

rj ≥ xi − fji, j ∈ B ∪NB, i = 1, ..., n,

rj ≥ fji − xi, j ∈ B ∪NB, i = 1, ..., n.

Further, a MILP formulation can also be derived.

max
∑
j∈B

wj r̂j +
∑
j∈NB

wjrj(BLP-`∞-1)

s.t.
∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1}, j ∈ B,∑
j∈B

wj r̂j +
∑
j∈NB

wjrj =
n∑
i=1

∑
j∈B∪NB

fji(−γeij + γ−eij),

rj ≥ xi − fji, j ∈ B ∪NB, i = 1, ..., n,

rj ≥ fji − xi, j ∈ B ∪NB, i = 1, ..., n,
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rj ≥ 0, j ∈ B ∪NB,
n∑
i=1

(γeij + γ−eij)≤wjyj, j ∈ B,

n∑
i=1

(γeij + γ−eij)≤wj, j ∈ NB,∑
j∈B∪NB

(−γeij + γ−eij) = 0, i = 1, ..., n,

γeij ≥ 0, j ∈ B ∪NB, i = 1, ..., n,

γ−eij ≥ 0, j ∈ B ∪NB, i = 1, ..., n,

r̂j ≤Myj, j ∈ B

r̂j ≤ rj, j ∈ B,

r̂j ≥ rj − (1− yj)M, j ∈ B,

r̂j ≥ 0, j ∈ B.

Finally, The proposed Benders algorithm can also be applied to the problem under

the `∞ norm. The resulting inner subproblem is given by the lower level problem of

BLP−`∞.

4. Extensions

This section is devoted to present extensions of the problem BLP to several sec-

ondary facilities and non-polyhedral norms. We analyze the problem with K > 1

secondary facilities which means to locate K new facilities also in the lower level

problem. Moreover, we extend the problem BLP to deal with norms `τ for τ ∈ Q,

τ ≥ 1 which requires to apply conic programming and conic duality to obtain results

similar to the ones presented in previous sections.

4.1. The model with K secondary facilities (independent followers) . We

are interested to incorporate to the problem BLP the possibility to locate several

secondary facilities rather than only one, and the goal of each secondary facility is to

minimize the overall distance to the primary facilities. In the following, we analyze
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problem BLP with K secondary points to be located in the lower level problem,

that is, we consider that instead of locating one secondary facility, K of these points

must be located. For this extension we assume that we are given vectors of weights

wk ∈ Rn
+, for k = 1, . . . , K, and we define K vectors of decision variables xk ∈ Rn,

for k = 1, . . . , K; where xk are the coordinates of the location of the k-th secondary

point. With this notation, the new problem can be written as:

max
∑
k∈K

(∑
j∈B

wkj d(xk, fj)yj +
∑
j∈NB

wkj d(xk, fj)

)
(BLP-K)

s.t.
∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1}, j ∈ B,

xk ∈ arg min
xk

∑
j∈B

wkj d(xk, fj)yj +
∑
j∈NB

wkj d(xk, fj) ∀k = 1, ..., K.

In the particular case in which w1 = w2 = ... = wk, we observe that by symmetry,

there is an optimal solution where the secondary facilities co-locate.

Coming back to the general problem BLP-K, the evaluation of the norm can

be done via the primal or dual expression. In both cases, in order to develop a

MILP formulation for the model with K secondary facilities, we can apply the same

technique that in the previous section. Given a solution y of the upper level problem,

the continuous location problem of each follower is linear and thus, the strong duality

theorem can be applied as before. This implies that K different one-secondary facility

problems are added to the leader problem. In conclusion, the same approach used

with the one-secondary facility location problem is replicated K times and the same

results follow.

Furthermore, the Benders algorithm can also be extended to the case with K

followers. The Master Problem for this extension must be slightly modified:

max
∑
k∈K

qk(MP-K)
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s.t. qk ≤
∑
j∈B

n∑
i=1

wkj yjr
kτ
j +

∑
j∈NB

n∑
i=1

wkj r
kτ
j ∀τ ∈ P , ∀k ∈ K,

∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1} ∀j ∈ B.

In addition, in this formulation, there are K primal subproblems with the same

structure but with different set of w weights. Therefore, in each iteration of this

Benders approach, K primal subproblems must be solved.

4.2. The problem under the `τ -norm . This section extends the analysis of the

problem to the case where the inner subproblem measures distances with `τ -norms

with τ ∈ Q, τ ≥ 1. Recall that ||x||τ = (
∑n

i=1 |xi|τ )1/τ .
The problem to be considered in this case is

max
∑
j∈B

wj||x− fj||τyj +
∑
j∈NB

wj||x− fj||τ(BLP-`τ )

st.
∑
j∈B

cjyj ≤ C,(1)

yj ∈ {0, 1} j ∈ B,(2)

x ∈ arg min
x

∑
j∈B

wj||x− fj||τyj +
∑
j∈NB

wj||x− fj||τ ,

Let ρ ∈ Q be such that 1/τ + 1/ρ = 1.

In order to reformulate Problem BLP-`τ we give the following proposition, using

the representation given in Blanco et al [3].

Proposition 3. The problem BLP-`τ can be reformulated as a the single level mixed

integer conic program.

max
∑
j∈B

wj||x− fj||τyj +
∑
j∈NB

wj||x− fj||τ(ConicP)
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s.t.
∑
j∈B

cjyj ≤ C,

yj ∈ {0, 1} j ∈ B,∑
j∈B

wj||x− fj||τyj +
∑
j∈NB

wj||x− fj||τ =
∑

j∈B∪NB

n∑
i=1

Vjifji,

x+ − x− − Zj = fj, ∀ j ∈ B ∪NB,

||Zj||τ ≤ rj, ∀ j ∈ B ∪NB,

x+, x− ∈ Rn
+, Zj ∈ Rn, r ∈ Rn,∑

j∈B∪NB

Vji + λ1i = 0, ∀ i = 1, . . . , n,

−
∑

j∈B∪NB

Vji + λ2i = 0, ∀ i = 1, . . . , n,

− Vji + µji = 0, ∀ j ∈ B ∪NB, i = 1, . . . , n,

||µj||ρ ≤ γj, ∀ j ∈ B ∪NB,

γj = wjyj, if i ∈ B,

γj = wj, if i ∈ NB,

λ1, λ2 ∈ Rn
+, µj ∈ Rn, ∀j ∈ B ∪NB, γ ∈ Rn.

Proof. We observe that the inner location problem can be formulated as the following

conic linear program in standard form [16]:

min
∑
j∈B

wjyjrj +
∑
j∈NB

wjrj

s.t. x+ − x− − Zj = fj, ∀ j ∈ B ∪NB,

||Zj||τ ≤ rj, ∀ j ∈ B ∪NB,

x+, x− ∈ Rn
+, Zj ∈ Rn, r ∈ Rn.

Therefore, its conic dual can be written in the following form:

max
∑

j∈B∪NB

n∑
i=1

Vjifji
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s.t.
∑

j∈B∪NB

Vji + λ1i = 0, ∀ i = 1, . . . , n, ,

−
∑

j∈B∪NB

Vji + λ2i = 0, ∀ i = 1, . . . , n, ,

− Vji + µji = 0, ∀ j ∈ B ∪NB, i = 1, . . . , n,

||µj||ρ ≤ γj, ∀ j ∈ B ∪NB,

γj = wjyj, if j ∈ B,

γj = wj, if j ∈ NB,

λ1, λ2 ∈ Rn
+, µj ∈ Rn, ∀j ∈ B ∪NB, γ ∈ Rn.

Clearly, the inner primal and dual problems satisfy Slater condition so that strong

duality applies. This allows us to insert the optimality conditions in BLP-`τ to

obtain the final single level program ConicP. �

5. Computational Results

In the following we report some numerical results conducted to compare the effi-

ciency of the different methods proposed to solve BLP, and to check experimentally

their scope.

The computational experiments were carried out on a personal computer with Intel

B. Core (TM) i7-4720HQ, 2.60 gigahertz with 16384 megabytes RAM. The MILP

formulations and algorithms were implemented and solved by using Xpress Version

8.0.

The distances considered for the numerical experiments were computed using the

`1 and `∞ norms. Therefore, we implemented the MILP formulations and algorithms

proposed in Sections 3.1.3 and 3.2.3, in which we adapted the general methods in

Section 3 to the models with these two particular distances.

For the computational study we generated different random instances taking into

account the following factors: the dimension of the space, n, the cardinality of B

and NB, which are the set of potential locations for the new primary facilities and

the set of existing primary facilities, respectively, and also the maximum budget C.

We considered the following levels for each factor:
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• n = 2, 3, 10, 20,

• |B| = 1000, 2000, 5000, 10000,

• |NB| = 1

4
|B|, 1

3
|B|, 1

2
|B|,

• C =
1

C ′
|B| = 1

4
|B|, 1

3
|B|.

The weights wj were generated randomly in the interval [0, 1], and each coordinate,

fji, of the location of the primary facilities fj was generated randomly in the interval

[−1000, 1000], for all the instances.

For each combination of levels, 5 different instances were generated and solved.

The CPU time limit to solve the problems was set to 1800 seconds.

In Figures 1 and 2 we show the performance profile graphs of the number of

solved instances for the different proposed models for the `1-norm (Figure 1) and

`∞-norm (Figure 2). We represent in the abscissa axis the time (in seconds) and in

the ordinate axis the number of solved instances. Figure 1 reports the results for the

`1-norm and it compares the two MILP formulations BLP-`1-1 and BLP-`1-2, the

basic Benders algorithm, that we denote by Bend-`1, and the Benders algorithm

using the separability property, denoted as Bend-`1-sep. Figure 2 shows the results

for the `∞-norm and it compares the MILP formulation, BLP-`∞-1, and Benders

algorithm, denoted as Bend-`∞.

We can observe in Figures 1 and 2 that the Benders algorithms are more efficient

than the MILP formulations, in both cases with the `1-and-`∞-norm cases. The

Benders algorithms solve all the instances in very short time, whereas none of the

MILP formulations could solve to optimality all the instances. We can see in the fig-

ures that the formulations BLP-`1-1 and BLP-`1-2 solve around 300 out of the 480

instances in 1800 seconds, and formulation BLP-`∞-1 solves around 400 instances

in the same time.

The average number of cuts added in the Benders algorithm is 5, 03 for Bend-`1,

4, 75 for Bend-`1-sep and 4, 28 for Bend-`∞. The maximum number of Benders

cuts, 14, was added for the Bend-`1-sep for an instance with n = 10, |B| = 5000,

|NB| = 6667 and C =
1

4
|B|.

For the `1-norm case, in Figure 1, we can see that the Benders algorithm Bend-`1

solves all the instances in approximately 200 seconds, whereas the Benders algorithm
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using the separability property, Bend-`1-sep, needs a bit more time. Nevertheless

the performance of both methods is very similar. The same trend can be observed

for the MILP formulations, the one without the separability property could solve

in the end more instances within the same time limit. However, BLP-`1-2 works

better for the big instances, n = 10, 20 (see Figure 3 in the Appendix).

With respect to the `∞-norm case, Figure 2 shows that the Benders algorithm

solves all the instances in less than 51 seconds, meanwhile BLP-`∞-1 only solves, in

the same time, approximately one half of the instances.

More details about the Computational Results can be found in Tables 1 and 2

in the Appendix. We report the average CPU times (CPU), and the numbers of

problems, out of 5, solved to optimality (#OPT), for each type of instance and each

formulation or algorithm.
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Figure 1. Performance profile graph of #solved instances for the
different proposed models for the `1 norm.

6. Conclusions

This paper considers models for the location of controversial facilities. Controver-

sial facilities must be understood as those facilities such that their placement induces

a disagreement among users with different, non-aligned or opposite interests. Semi-

obnoxious facility location and the location and protection of critical infrastructures
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Figure 2. Performance profile graph of #solved instances for the
different proposed models for the `∞ norm.

or facilities sensitive to intentional attacks are typical examples of this area of re-

search.

We model these situations by a bilevel optimization problem. The first level locates

primary facilities trying to be as far away as possible from the secondary ones,

which in turns, wish to be as close as possible to the primary ones. We develop

mathematical programming formulations for the above mentioned bilevel programs

as well as some algorithms that perform very-well in all our experiments that range

from small problems on the plane (n=2) with up to |B| = 10000, possibilities for the

primary facilities until dimension n = 20 and |B| = 10000.
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INSTANCES BLP-`1-1 BLP-`1-2 Alg-`1 Alg-`1-sep BLP-`∞-1 Alg-`∞
n |B| |NB| C’ #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU

2 1000 250 3 5 10,82 5 10,36 5 0,41 5 0,50 5 2,13 5 0,56
2 1000 250 4 5 4,80 5 5,89 5 0,62 5 0,52 5 2,22 5 1,03
2 1000 333 3 5 13,39 5 10,07 5 0,35 5 0,41 5 2,19 5 0,65
2 1000 333 4 5 7,57 5 4,98 5 0,55 5 0,62 5 2,47 5 1,05
2 1000 500 3 5 11,70 5 12,76 5 0,38 5 0,43 5 8,53 5 0,81
2 1000 500 4 5 7,86 5 6,35 5 0,54 5 0,52 5 3,02 5 0,95
2 2000 500 3 5 36,59 5 37,27 5 0,75 5 1,44 5 6,34 5 0,79
2 2000 500 4 5 13,36 5 11,66 5 0,65 5 0,73 5 9,15 5 1,36
2 2000 667 3 5 217,01 5 152,79 5 0,68 5 0,85 5 7,20 5 0,92
2 2000 667 4 5 20,58 5 14,54 5 0,45 5 0,60 5 6,14 5 1,17
2 2000 1000 3 5 56,48 5 78,63 5 0,45 5 0,61 5 15,29 5 0,81
2 2000 1000 4 5 29,85 5 20,60 5 0,52 5 0,65 5 12,74 5 1,56
2 5000 1250 3 5 204,62 5 508,34 5 1,19 5 1,58 5 48,51 5 1,62
2 5000 1250 4 5 124,68 5 97,10 5 1,49 5 2,36 5 52,24 5 1,70
2 5000 1667 3 5 381,53 5 268,18 5 1,03 5 1,32 5 45,06 5 1,47
2 5000 1667 4 5 135,94 5 198,89 5 2,08 5 1,66 5 37,01 5 1,96
2 5000 2500 3 5 416,01 5 369,43 5 0,80 5 1,12 5 139,15 5 2,34
2 5000 2500 4 5 107,17 5 405,78 5 1,23 5 1,89 5 38,32 5 1,92
2 10000 2500 3 4 708,80 3 955,21 5 1,68 5 2,57 5 137,97 5 3,29
2 10000 2500 4 5 325,03 5 355,51 5 2,44 5 3,75 5 81,66 5 3,72
2 10000 3333 3 5 390,82 5 296,18 5 1,94 5 2,78 5 121,14 5 3,42
2 10000 3333 4 5 329,09 5 439,71 5 3,09 5 3,46 5 159,98 5 3,16
2 10000 5000 3 5 506,03 4 671,22 5 2,16 5 2,09 4 530,49 5 3,38
2 10000 5000 4 5 516,73 5 416,86 5 2,83 5 3,27 5 141,33 5 3,77
3 1000 250 3 5 9,67 5 19,03 5 0,21 5 0,27 5 5,95 5 0,70
3 1000 250 4 5 58,74 5 43,20 5 0,63 5 0,71 5 3,09 5 1,18
3 1000 333 3 5 21,51 5 50,24 5 0,36 5 0,37 5 6,99 5 0,60
3 1000 333 4 5 29,05 5 32,52 5 0,65 5 0,90 5 4,68 5 1,21
3 1000 500 3 5 26,14 5 28,70 5 0,34 5 0,49 5 10,17 5 0,57
3 1000 500 4 5 33,46 5 47,28 5 0,38 5 0,52 5 6,86 5 0,73
3 2000 500 3 5 120,41 5 144,41 5 0,38 5 0,53 5 63,77 5 1,19
3 2000 500 4 5 389,05 5 301,49 5 0,76 5 1,22 5 21,33 5 1,41
3 2000 667 3 5 316,33 5 232,75 5 1,04 5 0,92 5 31,18 5 1,04
3 2000 667 4 5 129,52 5 224,55 5 0,47 5 0,56 5 21,81 5 1,48
3 2000 1000 3 5 113,90 5 261,64 5 0,65 5 0,53 5 81,42 5 1,38
3 2000 1000 4 5 179,31 5 249,42 5 0,62 5 0,71 5 11,05 5 0,88
3 5000 1250 3 4 1014,05 3 1310,24 5 1,95 5 1,85 5 131,33 5 1,94
3 5000 1250 4 3 1352,73 2 1442,08 5 2,43 5 2,24 5 106,38 5 2,12
3 5000 1667 3 4 763,66 4 669,57 5 1,14 5 1,28 5 180,78 5 1,94
3 5000 1667 4 3 1102,02 4 1047,36 5 1,56 5 1,91 5 213,59 5 2,08
3 5000 2500 3 5 636,19 5 689,33 5 0,76 5 1,14 5 391,97 5 2,07
3 5000 2500 4 5 592,53 2 1223,05 5 1,42 5 1,58 5 77,89 5 1,90
3 10000 2500 3 1 1778,05 1 1800,00 5 2,42 5 3,38 5 899,86 5 3,09
3 10000 2500 4 1 1727,79 0 – 5 5,59 5 5,16 5 198,48 5 4,18
3 10000 3333 3 3 1127,45 1 1732,91 5 2,67 5 3,91 5 832,12 5 3,17
3 10000 3333 4 3 1253,69 2 1321,56 5 4,79 5 6,15 4 797,61 5 3,91
3 10000 5000 3 3 1379,12 1 1771,16 5 2,86 5 4,41 4 470,05 5 4,01
3 10000 5000 4 0 – 0 – 5 4,18 5 5,79 5 325,39 5 4,87

Table 1. Numerical results for BLP under the l1 and ell∞ norm.
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INSTANCES BLP-`1-1 BLP-`1-2 Alg-`1 Alg-`1-sep. BLP-`∞-1 Alg-`∞
n |B| |NB| C #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU

10 1000 250 3 5 175,69 5 262,45 5 0,52 5 0,84 5 23,53 5 0,73
10 1000 250 4 5 286,71 5 199,67 5 0,58 5 1,02 5 10,04 5 0,60
10 1000 333 3 5 170,27 5 168,75 5 0,29 5 0,57 5 50,58 5 0,68
10 1000 333 4 5 380,23 5 308,91 5 0,79 5 0,98 5 16,31 5 0,66
10 1000 500 3 5 365,20 5 412,48 5 0,56 5 0,64 5 40,66 5 0,80
10 1000 500 4 4 838,00 5 608,46 5 0,74 5 1,17 5 26,14 5 1,16
10 2000 500 3 3 1538,42 3 1310,11 5 0,81 5 1,90 5 104,57 5 1,31
10 2000 500 4 3 1197,88 4 1020,28 5 1,04 5 1,44 5 64,34 5 1,62
10 2000 667 3 2 1406,81 2 1365,28 5 1,23 5 1,20 5 123,13 5 1,22
10 2000 667 4 3 1092,84 4 928,63 5 1,01 5 1,24 5 58,13 5 1,16
10 2000 1000 3 4 1155,24 4 1125,38 5 0,72 5 0,83 5 183,55 5 1,59
10 2000 1000 4 3 980,54 3 1215,99 5 1,11 5 1,84 5 91,77 5 1,66
10 5000 1250 3 1 1673,56 1 1796,25 5 2,66 5 3,00 3 1265,41 5 4,80
10 5000 1250 4 0 – 0 – 5 9,46 5 14,29 5 421,92 5 5,76
10 5000 1667 3 0 – 0 – 5 5,08 5 10,21 4 840,57 5 3,86
10 5000 1667 4 2 1430,78 2 1690,69 5 2,77 5 3,19 4 627,48 5 5,12
10 5000 2500 3 1 1568,60 0 – 5 3,91 5 5,34 4 754,36 5 5,44
10 5000 2500 4 1 1727,35 1 1649,57 5 6,04 5 8,31 3 1125,20 5 5,97
10 10000 2500 3 0 – 0 – 5 9,37 5 17,15 2 1211,56 5 10,24
10 10000 2500 4 0 – 0 – 5 16,19 5 26,46 4 955,69 5 8,48
10 10000 3333 3 0 – 0 – 5 17,88 5 20,49 1 1649,16 5 13,44
10 10000 3333 4 0 – 0 – 5 19,62 5 18,73 3 1152,58 5 10,75
10 10000 5000 3 1 1800,00 0 – 5 11,24 5 23,00 2 1800,00 5 10,91
10 10000 5000 4 0 – 0 – 5 28,00 5 16,26 2 1314,08 5 14,30
20 1000 250 3 4 797,87 5 477,74 5 0,70 5 1,38 5 41,66 5 1,25
20 1000 250 4 5 852,01 5 548,28 5 0,64 5 1,31 5 20,22 5 0,88
20 1000 333 3 4 608,99 5 296,04 5 0,54 5 1,03 5 29,01 5 0,99
20 1000 333 4 4 1026,53 4 773,41 5 1,01 5 1,93 5 39,01 5 1,55
20 1000 500 3 4 881,29 5 412,55 5 0,51 5 1,13 5 55,68 5 1,42
20 1000 500 4 2 1499,86 3 1478,83 5 0,93 5 1,55 5 36,02 5 1,48
20 2000 500 3 1 1629,43 2 1800,00 5 1,93 5 2,21 5 212,07 5 2,08
20 2000 500 4 1 1623,38 2 1634,03 5 3,91 5 2,82 5 217,86 5 2,42
20 2000 667 3 2 1612,20 3 1801,02 5 1,78 5 2,05 5 223,80 5 2,40
20 2000 667 4 3 1421,62 2 1416,62 5 1,34 5 2,44 5 134,67 5 2,64
20 2000 1000 3 0 – 2 1800,00 5 2,45 5 1,86 5 181,95 5 3,02
20 2000 1000 4 1 1800,00 1 1800,00 5 5,09 5 3,08 5 345,70 5 3,44
20 5000 1250 3 0 – 0 – 5 7,20 5 9,37 3 1188,15 5 8,67
20 5000 1250 4 0 – 0 – 5 14,87 5 17,02 5 868,00 5 9,05
20 5000 1667 3 0 – 0 – 5 7,92 5 30,75 2 1513,57 5 8,88
20 5000 1667 4 0 – 0 – 5 7,28 5 18,85 5 1034,49 5 9,46
20 5000 2500 3 0 – 0 – 5 16,23 5 13,53 2 2447,37 5 15,67
20 5000 2500 4 0 – 0 – 5 20,15 5 10,45 2 1585,53 5 13,13
20 10000 2500 3 0 – 0 – 5 52,42 5 65,91 2 1745,86 5 23,08
20 10000 2500 4 0 – 0 – 5 96,02 5 63,30 1 1800,00 5 27,02
20 10000 3333 3 0 – 0 – 5 28,93 5 25,17 2 1750,37 5 22,32
20 10000 3333 4 0 – 0 – 5 125,00 5 93,66 0 – 5 29,79
20 10000 5000 3 0 – 0 – 5 40,39 5 85,61 2 1800,00 5 38,66
20 10000 5000 4 0 – 0 – 5 88,29 5 167,54 1 1800 5 27,76

Table 2. Numerical results for BLP under the `1 and l∞ norm.
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