
HAL Id: hal-01933828
https://inria.hal.science/hal-01933828

Submitted on 28 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beat-to-beat P-wave morphological variability in
patients with paroxysmal atrial fibrillation: an in silico

study
Simone Pezzuto, Ali Gharaviri, Ulrich Schotten, Mark Potse, Giulio Conte,

Maria Luce Caputo, François Regoli, Rolf Krause, Angelo Auricchio

To cite this version:
Simone Pezzuto, Ali Gharaviri, Ulrich Schotten, Mark Potse, Giulio Conte, et al.. Beat-to-beat
P-wave morphological variability in patients with paroxysmal atrial fibrillation: an in silico study.
EP-Europace, 2018, 20 (suppl 3), pp.iii26-iii35. �10.1093/europace/euy227�. �hal-01933828�

https://inria.hal.science/hal-01933828
https://hal.archives-ouvertes.fr


1 
 

Beat-to-beat P-wave morphological 

variability in patients with paroxysmal AF: an 

in-silico study 

Pezzuto S1,2,*, Gharaviri A1,2, Schotten U3, Potse M5,6,7, Conte G1,7, Caputo ML1,7, Regoli F1,7, Krause R1,2, 

Auricchio A1,7 

1Center for Computational Medicine in Cardiology, 

2Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland, 

3Dept. of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands, 

4CARMEN Research Team, INRIA, Talence, France, 

5IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université Pessac, France, 

6Univ. Bordeaux, IMB, UMR 5251, Talence, France, 

7Fondazione Cardiocentro Ticino, Lugano, Switzerland. 

 

*Corresponding author: Simone Pezzuto 

E-mail: simone.pezzuto@usi.ch 

Phone (office): +41 (0) 58 666 4976 

 

Address of correspondance: 

Institute of Computational Science, 

Università della Svizzera italiana, 

Via Giuseppe Buffi 13, 

CH-6904 Lugano, Switzerland 

  

mailto:simone.pezzuto@usi.ch


2 
 

Abstract and keywords 

Aims. P-wave beat-to-beat morphological variability can identify patients prone to paroxysmal atrial 

fibrillation (AF). To date, no computational study has been carried out to mechanistically explain such finding. 

Aim of this study was to provide a pathophysiological explanation, by using a computer model of the human 

atria, of the correlation between P-wave beat-to-beat variability and the risk of AF. 

Methods. A physiological variability in the earliest activation site (EAS), on a beat-to-beat basis, was 

introduced into a computer model of the human atria by randomizing the EAS location. A methodology for 

generating multi-scale, spatially-correlated regions of heterogeneous conduction was developed. P-wave 

variability in the presence of such regions was compared to a control case. Simulations were performed with 

an eikonal model, for the activation map, and with the lead field approach, for P-wave computation. The 

methodology was eventually compared to a reference monodomain simulation. 

Results. A total of 60 P-waves were simulated for each sinus node exit location (12 in total), and for each of 

the 15 patterns of heterogeneous conduction automatically generated by the model. A P-wave beat-to-beat 

variability was observed in all cases. Variability was significantly increased in presence of heterogeneous slow 

conducting regions, up to 2-fold the variability in the control case. P-wave variability increased non-linearly 

with respect to the EAS variability and total area of slow conduction. Distribution of the heterogeneous 

conduction was more effective in increasing the variability when surrounded the EAS locations and the fast 

conducting bundles. P-waves simulated by the eikonal approach compared excellently to the monodomain-

based ones. 

Conclusions. P-wave variability in patients with paroxysmal AF could be explained by a variability in sinoatrial 

node exit location in combination with slow conducting regions. 

Keywords. P-wave variability; P-wave morphology; Paroxysmal atrial fibrillation; inhomogeneous 

conduction; fibrosis; cosine distance 
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Condensed abstract 

By using a generic computer model of the human atria, the P-wave variability on a beat-to-beat basis was 

explored. The variability increased in the presence of heterogeneous conduction, corroborating clinical 

observations.  
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What’s new 

• Simulation of beat-to-beat P-wave variability with physiological earliest activation site variability in 

the sinoatrial node region. 

• Automatic generation of multi-scale, spatially-correlated heterogeneous conduction regions for 

realistic 3d atrial anatomy. 

• In the presence of heterogeneous conduction in the atria, P-wave variability increases. 

• P-wave and activation map compares excellently between the monodomain solution and the eikonal 

model with lead field approach. 

• Robust methodology to measure the P-wave morphological variability. 
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Introduction 

Pulmonary vein (PV) isolation is the treatment of choice in patients with paroxysmal and persistent atrial 

fibrillation1. However, recurrence rate is still significant especially at mid- and long-term follow-up2. Apart 

from reconnection of PV(s), alternative mechanism of atrial fibrillation recurrence may include persisting 

presence and extension of heterogeneous conduction areas (the substrate for reentry) and/or non-PV 

dependent triggered activity3. Areas of abnormal, heterogeneously distributed conduction within the atria 

have been well described in pre-clinical4,5 and clinical setting6, and can possibly represent the substrate for 

prolonged atrial conduction time (P-wave duration). Previous studies have indicated that both abnormal P-

wave axis and long P-wave duration are strongly associated with an increased risk of AF7. More recently, 

dynamic morphological alteration of P wave (beat-to-beat P-wave morphology variability) has been reported 

by our group8 and others9,10, and the combination of abnormal P wave duration and beat-to-beat variability 

has been shown to more effectively discriminate patients with history of AF from healthy age-matched 

subjects. This finding however has not been mechanistically well explained. 

P-wave morphological variability, consistent with a beat-to-beat timeframe, could be related to a shift of the 

earliest activation site (EAS) in sinoatrial node (SAN) region11. For instance, a shift in the EAS can be induced 

by exercise or drugs12. SAN remodeling has been reported in patients with congestive heart failure13. 

Therefore, a possible mechanism explaining the difference in P-wave morphological variability between 

healthy subjects and patients with history of AF could be based on the interaction between EAS variability, 

physiologically always present, and the heterogeneity in conduction, generally increased in patient with 

history of AF. 

By using a generic computer model of the human atria and torso, we aimed at reproducing the beat-to-beat 

variation of P-wave and the duration of P wave as clinically observed. We simulated P-waves as recorded on 

the 12-lead ECG, considering variation in the exit zone of the SAN, and modeling distribution and size of area 

of conduction heterogeneities generated by a novel automatic method in which spatial correlation, 

distribution, and size was prescribed. 

Methods 

Reference atrial model 

We considered a reference anatomical model of the human atria previously built using MRI data from a 

normal subject14. The model contained several anatomical features such as the Bachmann’s bundle, the crista 

terminalis, the interatrial bundles, and the pectinate muscles. All were designed by following anatomical 

studies15. Orientation bundles were manually added to define the fiber direction in the atrial tissue. A 

computational 3d structured grid with uniform spacing of 0.2mm was obtained from the anatomical model, 
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with roughly 5 million voxels in total. Each voxel was automatically marked with the corresponding 

anatomical region for the electrophysiological model parametrization (see Figure 1B). 

Model of slow conducting regions 

The slow conducting area in the model was defined by thresholding an automatically generated random field 

with given spatial correlation. More specifically, the random field was the average of two random Gaussian 

fields with different spatial correlation lengths, respectively set to 2cm and 4mm, thus to model organ-level 

and tissue-level inhomogeneity. The organ-level random field was sampled by using the truncated Karhuhen-

Loève expansion for a squared-exponential covariance function, with geodesic distance computed with the 

eikonal model16. The tissue-level random field was sampled by solving the linear fractional stochastic partial 

differential equation (
1

𝜌2 𝐼 − Δ)
𝛼/2

𝑢 = 𝑊 , where 𝑊  was white-noise, 𝛼 = 𝜈 +
3

2
 with 𝜈  related to the 

spatial regularity of the field, and 𝜌 > 0 related to the spatial correlation length. In practice, the partial 

differential equation smoothed the white-noise by introducing some spatial correlation of the order of 𝜌 

scale17,18. The model was iteratively solved for increasing values of 𝜈 =
4𝑘−3

2
, 𝑘 = 1,2, …, and 𝜌 = 𝜃 2√𝜈⁄ . In 

the limit case, for 𝑘 → ∞, the random field has squared-exponential spatial correlation of parameter 𝜃. The 

superposition of the random fields was eventually rescaled from 0 to 1. An illustrative example of such 

random field is provided in Figure 2A. 

The area of slow conduction was finally defined as the region of the domain such that the random field was 

less than a threshold 𝑇. The threshold was selected by a bisection argument to ensure that the total volume 

of the slow conducting region was equal to a given fraction 𝑓 of the total atrial volume (see Figure 2B). 

Bachmann’s bundle, interatrial bundles and a portion of the RA (the intercaval region) were excluded from 

the threshold procedure but included in the random field generation. 

Eikonal model for atrial activation 

The electric activation of the atria was modeled by using the eikonal model19 with no curvature-correction: 

𝜃

√𝛽
√𝑮m∇𝜏 ⋅ ∇𝜏 = 1, 

where 𝜏 = 𝜏(𝑥) was the activation time at some location 𝑥 of the atria, 𝜃 was the conduction velocity scaling 

factor, 𝛽 was the surface-to-volume ratio and 𝑮m was the monodomain electric conductivity tensor. The 

activation was initiated by setting 𝜏 to zero at a unique EAS. The electric conductivity tensor was transversely 

isotropic with major axis in the local fiber direction. The longitudinal and transverse intra- and extra-cellular 

electric conductivity were modeled with regional heterogeneity. The model contained 4 of such regions: an 

isotropic intercaval area in the right atrium (0.75 mS/cm monodomain conductivity for both longitudinal and 

transversal); the Bachmann’s bundle and atrial connections (4.5 mS/cm and 0.72 mS/cm respectively 

longitudinally and transversely); tissue with oriented bundles (1.5 mS/cm and 0.72 mS/cm); and a slow 
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conducting area (1 mS/cm and 0.28 mS/cm). The surface-to-volume ratio was set to 800 cm-1 everywhere 

except in the slow conducting region, where it was doubled. The conduction velocity scaling factor (units 

cm ⋅ ms−1 ⋅ mS−1/2) and the transmembrane potential template were pre-computed with a single fiber 

monodomain simulation using the Courtemanche ionic model20. A summary of the parameters adopted in 

the simulation is found in Table 1. 

P-wave simulation 

The 12-lead surface ECG was simulated by using the formula 

𝑉(𝑡) = ∫ 𝑮𝒊∇𝑉𝑚 ⋅ ∇𝑍 𝑑𝑥,
Ω

 

where Ω was the atrial tissue, 𝑉𝑚(𝑥, 𝑡) was the transmembrane potential, 𝑮𝑖 was the intracellular electric 

conductivity, and 𝑍(𝑥) was a precomputed lead field. For each lead, the bidomain problem in the full torso 

was solved for the lead field 𝑍 = 𝑍(𝑥) by injecting a unit current at the electrode locations. The torso, 

heterogeneous and anisotropic, included atrial and ventricular tissue, blood cavities, lungs, skeletal muscles. 

The transmembrane potential was set to 𝑉𝑚(𝑥, 𝑡) = 𝑈(𝑡 − 𝜏(𝑥)), with 𝑈 a pre-computed action potential 

template. An efficient implementation of the ECG computation in combination with the eikonal solution, on 

GPGPU architecture, was provided by the software Propeiko21. 

Randomized early activation site location 

The electric activation was triggered at a single EAS location for each beat, located in the sinoatrial node 

(SAN) area, on the right atrium (RA). From an anatomical viewpoint, the SAN is functionally isolated for the 

atrial myocardium, except for several sinoatrial connection pathways (SACP) uniformly distributed around 

the SAN. A total of 12 SAN locations were considered in the atrial model, as depicted in Figure 1A. These 

were manually placed on the RA starting from the superior vena cava (SVC) and moving towards the inferior 

vena cava (IVC). The selected locations were consistent with histological studies22 and previous in-silico 

investigations11. 

To enable a beat-to-beat variability of the activation, the EAS location was modeled as a uniform random 

variable of spherical shape and intersected with the right-atrial tissue. The sphere was centered at a specific 

SAN locations with a predefined radius. The sampling radius was set from 1mm up to 5mm. 

P-wave analysis 

For each sampled EAS location, the corresponding P-wave was computed. The P-wave morphological 

variability was evaluated with two approaches: one based on the spectral radius of the cosine distance 

matrix, and the second based on the standard deviation of the P-waves. Denoting by 𝑉𝑖(𝑡) the 𝑖-th P-wave, 

𝑖 = 1, … , 𝑁, the cosine distance between the 𝑖-th and 𝑗-th P-wave was as follows 
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𝑑cos(𝑉𝑖, 𝑉𝑗) =
1

𝜋
cos−1 (

∫ 𝑉𝑖(𝑡)𝑉𝑗(𝑡) 𝑑𝑡
𝑇

0

(∫ 𝑉𝑖
2(𝑡) 𝑑𝑡

𝑇

0
)

1/2
(∫ 𝑉𝑗

2(𝑡) 𝑑𝑡
𝑇

0
)

1/2
) . 

Then, the variability 𝑣cos was evaluated as the largest absolute value of the eigenvalues of the matrix 𝐷𝑖𝑗 =

𝑑cos(𝑉𝑖, 𝑉𝑗), i.e. its spectral radius: max
𝑖=1,…,𝑁

|𝜆𝑖(𝐷)|, divided by the number of eigenvalues or, equivalently, the 

number of beats. 

With the second methodology, the variability was assessed from the 𝑝-norm (with 𝑝 = 1 or 𝑝 = ∞) of the 

standard deviation of the P-wave sample 

𝑣𝑝 =

‖√ 1
𝑁 − 1

∑ (𝑉𝑖(𝑡) − 𝑉̅(𝑡))
2𝑁

𝑖=1 ‖
𝐿𝑝(𝑂,𝑇)

‖𝑉̅‖𝐿𝑝(𝑂,𝑇)

, 

where 𝑉̅(𝑡) =
1

𝑁
∑ 𝑉𝑖(𝑡)𝑁

𝑖=1  was the average P-wave. Both measures of variability were non-dimensional. 

Monodomain simulations 

An activation map and corresponding surface ECG was computed with the monodomain model and 

compared to the eikonal model. The monodomain solver was Propag23, using the same computational grid 

and the same parameters, when applicable. The comparison was performed in the control case and with 

heterogeneous conduction, pacing from a fixed EAS location (SAN01). In the monodomain model, a current 

of 150A/cm3 was applied for 2ms in a 1mm3 volume centered at the EAS location. In the eikonal model, we 

simply set the activation time to the onset value at the EAS location. The P-wave was computed with the lead 

field approach for the eikonal solution, and with the bidomain model in the torso for the monodomain 

solution. The torso geometry for the bidomain model was as for the lead field computation. Sampling time 

was 0.2ms in both cases (time-step for explicit time integration in the monodomain model was 0.01ms). 

Results 

Comparison between the eikonal and the monodomain model 

An activation map and the corresponding P-wave was computed by using either the eikonal or the 

monodomain model, both in control case and with slow conducting areas (30% area, pattern 3). In the eikonal 

model, the parameter 𝜃 was globally adjusted to reflect the average conduction velocity observed in the 

monodomain case (𝜃 = 1.519 in control case and 𝜃 = 1.4273 for heterogeneous conduction). A fixed delay 

in activation of 2ms was introduced in the eikonal model to accommodate the delay in activation in the 

monodomain case, due to the current injection. Results are presented in Figure 3. 

In control case, the correlation of between the activation maps of the two models was 0.999, the RMSE was 

1.2ms and the 99th percentile of the absolute error was 2.9ms. In patchy conduction case, the correlation, 
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the RMSE and the 99th percentile of the error were respectively 0.998, 2.3ms and 6.4ms. By using the 

reference parameter 𝜃 = 1.6176, obtained with a high resolution 1d monodomain simulation, the root-

mean-square error (RMSE) in control case was increased to 5.1ms. In all cases, the monodomain activation 

resulted slightly longer than the eikonal one. 

The cosine distance between the P-waves in control case was between 0.02 (lead V6) and 0.08 (lead V3). In 

lead II (maximum amplitude lead), the cosine distance was 0.02. For the heterogeneous conduction case, the 

cosine distance was 0.016 in lead II, and ranged from 0.015 (aVL) to 0.093 (V3). In terms of amplitude and 

duration, P-waves were indistinguishable. The RMSE was 5.4 ⋅ 10−3 mV  on average in both cases. The 

monodomain solution took 100s on CSCS Piz Daint cluster using 4 nodes. The eikonal solution took 20sec in 

total on a single GPGPU (Nvidia GTX1080). 

P-waves simulation 

A total of 60 beats for each of the 12 SAN exit locations were simulated for the control case (no slow 

conduction region) and for 15 different heterogeneous conduction patterns. For each random pattern case 

(see Figure 2C-E, on the right), the fraction of slow conducting tissue was set from 20% up to 60%, with 

increments of 10% (Figure 2B). In total, 16 configurations were simulated (including the control case) for a 

total of 11’520 P-waves. The EAS locations, sampled around each SAN, were different from case to case. 

Simulations were performed with the same setup as above (20sec each on a local workstation). 

Variability in control and with heterogeneous conduction  

In control case, the average P-wave amplitude and duration in lead II were 0.210.07 mV and 140.25.2 ms, 

respectively. The P-wave variability using the cosine distance was 0.0750.043. Variability was comparable 

among SAN exit locations, except for EASs around SAN11 and SAN12, for which the variability was 2-fold 

larger. On average, lead V3 reported the largest variability (0.1240.036), while V6 the smallest one 

(0.0390.013). The 𝑣1and the 𝑣∞ distance were respectively 0.200.137 and 0.250.138. A similar trend to 

cosine distance was observed. 

In Figure 4 we report a comparison between the control and case 3 with 40% area of heterogeneous 

conduction. A similar analysis was performed for all the other cases. Overall, the variability was larger in the 

presence of slow conducting regions, of a factor of 2 on average. In Figure 4A, we report the distribution of 

the entries of the cosine distance matrix, that is the cosine distance between all possible pairs of simulated 

P-waves. The histogram showed a significantly increased spread of cosine distance in the heterogeneous 

case, in all the leads. The distribution of distances was bell-shaped (as in control) but shifted to the right and 

with significantly fatter tails. The increase in variability was also confirmed by the box-plot analysis (Figure 

4B). 
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In Figure 4C and D we superimpose the P-waves to highlight the variability. The average P-wave in the control 

case was very close (in amplitude and morphology) to the P-wave produced by pacing exactly at the SAN exit 

location. In the presence of slow conducting regions, the average P-wave was smoother and with lower 

amplitude than the P-wave obtained as above. 

Finally, in Figure 5A, we report the cosine distance between all P-wave pairs, as a function of the (Euclidean) 

distance between the corresponding EASs. In the heterogeneous case, the variability versusEAS distance 

relationship was steeper and less sharp than the control case. 

Effect of distribution and area of inhomogeneous conduction 

The effect of slow conduction distribution on the P-wave variability was explored by increasing the fraction 

of slow conducting region for 3 different patterns. Results are reported in Figure 5B and Figure 6. In general, 

an increasing area of slow conduction led to an increase of variability. For some pattern (e.g. pattern 1 and 

pacing around SAN02, or pattern 2 with pacing around SAN03), the variability 𝑣cos  was maximum for a 

fraction of 20% and reducing for larger values. The cosine variability was also significantly affected by the 

distribution of the slow conducting region: pacing around SAN03, variability in lead II was 2-fold the control 

case in case 3 with 40% area, while it was 1.5-fold in case 2 and comparable to control in case 1. Only very 

few cases reported a reduced variability with respect to control case. This occurred when activation around 

SAN12, especially for case 3. 

Effect of filtering on variability 

The analysis was repeated with filtering applied to all the P-wave samples prior the evaluation of the 

variability. The filter was a 5th order Butterworth filter with cut-off frequency of 40Hz. With filtering, the 

cosine variability was 33% lower in control case, and from 16% to 46% lower in the inhomogeneous cases. In 

general, the cosine variability with filter applied was still larger than the control case, corroborating the above 

analysis. More specifically, the ratio in variability (heterogeneous over control) was higher with filter applied 

(from 1.3x to 2.8x versus 1.1x to 2.6x in absence of filtering). 

Discussion 

This manuscript presents several novelties. First, we developed a novel approach to generate areas of 

conduction heterogeneities in the atria with a given spatial correlation, distribution, and size. Secondly, we 

could simulate a beat-to-beat P-wave variability as reported by clinical observation in healthy subjects and 

in patients with paroxysmal AF8, by adopting a physiologically-motivated variation of SAN exit location which 

has not been previously accounted for in the literature, to the best of our knowledge. Finally, we compared 

the eikonal model with the lead field approach for P-wave computation against the monodomain model. 
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Our model suggested that the beat-to-beat variability is related to presence and quantity of heterogeneous 

conduction, in combination with the intrinsic variability in the EAS location in the SAN region24. The numerical 

investigation showed, as expected, that the variability increases with respect to the EAS variability, in both 

control case and with heterogeneous conduction. In the latter case, however, the variability grows more 

rapidly than the former, as certified by the results in Figure 5. We also observed that for the sampling radius 

of the EASs had a modest effect on variability for values larger than 4 mm. 

The EAS physiological variability alone can only partially account for the difference in P-wave morphological 

variability between healthy subjects and patients with history of AF. We found that the P-wave variability is 

also a complex function of distribution and area of slow conducting region. Moreover, its magnitude also 

depends from which lead is measured, and whether a filtering procedure was performed prior the analysis. 

In addition, there is no clear definition of variability, mathematically speaking. Despite these difficulties, we 

have found a consistent increase of variability in the presence of slow conducting regions, compared to the 

control case, except in a very few cases. For instance, the variability in the presence of slow conducting 

regions was comparable or slightly lower than the control case when activation occurred around SAN11 and 

SAN12, which are close to IVC. Interestingly, the variability in control was already very large, probably 

because these locations are close to the interatrial bundles (IAB). Moreover, none of the analyzed patterns 

had an extensive slow conducting area in the region of these SAN exit locations. 

The presence of slow conducting region around the SAN exit location only partially explains the increase in 

P-wave variability. In the experiments, another important factor was the presence of such region close to the 

IABs and the Bachmann’s bundle (BB), and its distribution on the left atrium. In such cases, the P-wave 

variability could be explained by a shift of some portions of the P-wave, and an increased fragmentation. In 

fact, the slow conducting region was present in all the patterns around SAN01 to SAN03 and the BB. 

Another interesting observation is that the P-wave variability increased with the fraction of slow conducting 

region but, in some cases, for very large values of fraction the variability declined (see Figure 5B, case 2). It is 

reasonable to argue that under such circumstances the variability is comparable to the control case, because 

heterogeneity at organ-scale is reduced, albeit heterogeneity at tissue-scale may still be large. This may also 

indicate that intermediate fractions of slow conducting region (or severe heterogeneity at organ-scale) might 

characterize the electric substrate of patients with paroxysmal AF. In this respect, the P-wave morphological 

variability in sinus rhythm may provide additional insight on the stage of AF, from paroxysmal to persistent25.  

Importance of heterogenous conduction 

Heterogeneous conduction in the atria has been already reported and explored by other authors in the 

literature, especially as a possible mechanism to sustain and enhance AF3. These regions have been identified 

as fibrotic, and they are generally obtained from imaging techniques5, in patient-specific context. Our novel 
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methodology significantly expands the previous knowledge as we proposed a general methodology to 

automatically generate such fibrotic regions, by requiring a specific spatial correlation and total fibrotic area. 

The generated patterns closely resemble those available in the literature5,6. The key aspect of our approach 

was the enforcement of a spatial correlation at multiple scales. It is reasonable to argue that the formation 

of fibrosis is spatially-correlated at the tissue-level, due to cellular coupling. An organ-scale spatial correlation 

may instead be favored by mechanical coupling, for instance. Unfortunately, to the best of our knowledge, 

spatial correlation of such fibrotic regions has never been quantitatively investigated in the literature. 

Variability measure 

Conte et al.8 suggested the use of the Euclidean distance between one beat and the successive one, 

normalized with respect to the current beat. An overall assessment of the variability was eventually based 

on statistics of the Euclidean distance time series. While such measure may be practical in a clinical context, 

it comes with some limitations: it is not a distance in strictly mathematical terms (it misses symmetry), and 

it is not independent on the order of the beats. In this work, we proposed two different methods to compute 

the P-wave variability which they both overcame the mentioned limitations. Interestingly, we found that the 

𝑣cos variability measure is often very close (relative difference less than 5%) to the mean value of the entries 

of the distance matrix, which is straightforward to compute. This is a consequence of the positivity of the 

matrix (all entries are non-negative), and the Frobenius-Perron Theorem: the dominant eigenvalue, which is 

non-negative and corresponds to the spectral radius, is bounded by the minimum (from below) and the 

maximum (from above) of the sum by row of the matrix entries; dividing by the sample size, we bound 𝑣cos 

with minimum and maximum average (by row). 

We observed minor differences in the choice of the distance, albeit they have different properties. The cosine 

distance is suitable to measure morphological (or shape) differences between two P-waves; it is invariant 

under scaling, i.e. 𝑑cos(𝑎𝑉𝑖, 𝑏𝑉𝑗) = 𝑑cos(𝑉𝑖, 𝑉𝑗) for any 𝑎, 𝑏. However, the cosine distance is not invariant 

under shift in amplitude and time. This may represent an issue in clinical setting. 

The 𝑣𝑝-variability measure may highlight localized differences in P-wave morphology. An example is provided 

by Figure 4. The shaded area is region spanned by ±2 standard deviations around the average P-wave. An 

interesting interpretation of the 𝑣𝑝-variability measure is the following: for 𝑝 = 1, the variability is half of the 

shaded area; for 𝑝 = ∞, the variability is the maximum deviation in absolute value from the average P-wave. 

Clearly, the 𝑣𝑝-variability is unaffected by a constant change of the baseline, but it still may be affected by 

shifts in the time domain. 

Suitability of the eikonal model 

We assessed the P-wave variability analysis by using the eikonal model for the activation map and the lead 

field approach for the P-wave simulation. The main advantage of the eikonal approach is its computational 
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efficiency: for the atrial model adopted in this work, a full P-wave simulation took less than half a minute on 

a single GPGPU. Incidentally, the total cost could have been reduced to 5sec by using a coarser computational 

grid, but in this case the comparison to the reference monodomain solution would have been less favorable 

(not shown). In a previous study from our group we compared the eikonal-based method against the full 

monodomain model, in terms of activation map and ECG, for the ventricular activation, obtaining very good 

agreement21. In this work we extended the analysis to the atrial activation and the P-wave in sinus rhythm 

(SR), confirming the appropriateness of the methodology for both the control case and with patchy slow 

conduction. The suitability of the eikonal model was also explored previously by other group with convincing 

results26,27, albeit they focused only on the activation map. 

The parameter 𝜃  in the eikonal simulations required an adjustment for matching the corresponding 

monodomain simulation. The reason is the relatively large numerical error in the monodomain case. Using a 

standard finite difference discretization at 0.2mm voxel size, the conduction velocity is generally 10% to 20% 

slower (depending on the wave-front thickness) than the converged value28. This is consistent with 𝜃 values 

we found. In this respect, we believe that the eikonal model was more accurate (in terms of conduction 

velocity) than the monodomain model for the presented simulations. However, if the slow conduction region 

were modeled by removing computational cells from the active tissue, or by substituting a fraction of cells 

with fibroblasts29, the classic eikonal approach would have not been suitable. 

The rapidity of eikonal model for atrial simulations potentially enables multi-fidelity parameter identification 

and uncertainty quantification in SR16,30. The personalization process of the atrial model is of paramount 

importance for clinical application, and this can be performed in SR. 

Nonetheless, the eikonal model comes with significant approximations with respect to the monodomain or 

bidomain model. In its original form, it is not suitable for atrial fibrillation (AF) simulations, lacking re-

excitability of the tissue, thus limiting its clinical applicability. However, modifications of the original model 

have been proposed to include action potential refractoriness26 and, more recently, conduction velocity 

dependency on the cycle length31. Finally, the lead field approach is fully equivalent to simulating the P-wave 

using the bidomain model in the torso with a precomputed transmembrane potential. It includes both 

heterogeneity and anisotropy of the torso and heart, and it is a computationally efficient method when the 

extracellular potential is required only at a few given locations, such as the standard 12-lead ECG. 

Limitations 

This study certainly comes with some limitations. The effect of the distribution of heterogenous conduction 

was analyzed for only 3 patterns. No distinction was made between LA and RA in the generation of the 

random field, although a difference in area and distribution between the two chambers might be present. In 

the model, we assumed a sharp reduction in the intracellular conductivity within the slow conducting regions, 
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thus to produce a reduced conduction velocity. The assumption was loosely based on experimental data. 

Some groups3 have proposed a similar approach to model fibrotic regions, but there is no consensus on how 

to select the parameters. 

Conclusions 

In this work, we showed that the morphological P-wave variability could be explained by an intrinsic 

variability in the SAN exit points in combination with a diffuse and heterogenous conduction in the atrial 

tissue. The larger the slow conducting area is, the larger the variability. The heterogenous conduction may 

be associated to fibrotic regions. 

By using the same anatomy and slow conduction area in the monodomain AF simulations, we observed an 

increase in the variability of AF conduction pattern. An increase in the slow conducting area led to an increase 

in AF conduction pattern complexity. Hence, this might be an important step forward to help the outcome 

of AF computer models become closer to clinical and experimental recordings. 

Paroxysmal AF has been traditionally assumed to originate from a combination of triggered activity and 

reentry circuits mediated by the atrial refractory period and the conduction velocity. Computer modeling is 

a recognized tool of utmost importance to provide new mechanistic insights of arrhythmias behavior and to 

identify the coexistence of different mechanisms responsible for the arrhythmia development. Indeed, for 

paroxysmal AF, the combination of fibrosis and variability in the SAN exit points might provide information 

on the arrhythmia stage, which is important while assessing pulmonary vein isolation outcomes. Moreover, 

P-wave beat-to-beat variability can be used to identify patients with asymptomatic episodes of paroxysmal 

AF and can drive the subsequent diagnostic and therapeutic management. 

Further computational studies and patient-specific approaches are needed to address prediction of optimal 

pharmacological drug agents and ablation sites able to decrease P-wave beat-to-beat morphological 

variability and avoid episodes of paroxysmal AF. 
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Figures 

 

Figure 1 (A) Location of the SAN exit location on the left atrium. (B) Anatomical model of the atria in use for the simulations, with 
oriented bundles (in yellow), Bachmann’s bundle and interatrial bundles (in orange), and an example of EASs locations around SAN01 
and SAN03 (60 samples each in total). (C) Lead field for lead II, with torso anatomy. 
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Figure 2 Generation of slow conduction regions (SCRs) for various patterns and densities.. On the top left, the background random 
field for pattern 1 is represented, with low values towards blue and high values towards the red. On bottom left, the result of the 
thresholding procedure to extract the SCR at different level of total area (20%, 40% and 60%).. On the right, all the patterns considered 
in this study, represented only for 30% of SCR. . SCR is in bright green in all figures. 
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Figure 3 Comparison of the eikonal and the monodomain model, in terms of activation map (scale from 0 to 200ms) and P-wave (in 
mV). Activation map in control case (A) and in presence of slow conducting regions (B). P-wave in the standard 12-lead ECG in control 
case (C) and with slow conducting regions (D). 
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Figure 4 Comparison between P-wave beat-to-beat variability in the control case (no slow conduction regions) and in the presence of 
regions of heterogeneous conduction(pattern 3, 40% of slow conduction area). (A) Histogram of the entries of the cosine distance 
matrix in control (blue) and heterogeneous case (orange), for each ECG lead. (B) Box-plot of the cosine distance in control and 

heterogeneous case, for each ECG lead. (C) Lead II average P-wave with shaded  2 standard deviation and (D) superimposed P-waves, 
with EAS around SAN01 an variability of 4 mm. 

  



21 
 

 

Figure 5 P-wave in lead II variability as a function of the EAS radius sampling. (A) Scatter plot between the EAS pairwise Euclidean 
distance, and the P-wave cosine distance, for both control and heterogeneous case. (B) P-wave variability as a function of the fraction 
of the slow conduction region, for 3 different patterns. 
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Figure 6 P-wave difference in variability between control and with heterogeneous conduction, for each lead of the 12-lead ECG and 
the SAN exit location. Each 12x12 grid refers to a choice of distribution (vertical) and fraction (horizontal) of the heterogeneous region. 
A green color box indicates that the variability in control is smaller. A red color box indicates that the variability in control is larger. 
The darker the color, the stronger the variability. 
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Table 1 Summary of the parameters for the simulations. 

Parameter Value 

Surface-to-volume ratio [1/cm] 800 (1600 in slow conduction regions) 

Conduction velocity scaling factor [cm/(ms mS1/2)] 1.614 (reference) 

Intercaval RA conductivity [mS/cm] 𝜎𝑖𝑙 = 𝜎𝑒𝑙 =  𝜎𝑖𝑡 = 𝜎𝑒𝑡 = 1.5 

Bachmann’s bundle conductivity [mS/cm] 𝜎𝑖𝑙 = 9.0, 𝜎𝑒𝑙 = 9.0, 𝜎𝑖𝑡 = 0.9, 𝜎𝑒𝑙 = 3.6 

Slow conduction region conductivity [mS/cm] 𝜎𝑖𝑙 = 1.5, 𝜎𝑒𝑙 = 3.0, 𝜎𝑖𝑡 = 0.3, 𝜎𝑒𝑙 = 3.6 

RA and LA conductivity [mS/cm] 𝜎𝑖𝑙 = 3.0, 𝜎𝑒𝑙 = 3.0, 𝜎𝑖𝑡 = 0.9, 𝜎𝑒𝑙 = 3.6 

Ventricles conductivity [mS/cm] 𝜎𝑖𝑙 = 3.0, 𝜎𝑒𝑙 = 3.0, 𝜎𝑖𝑡 = 0.3, 𝜎𝑒𝑙 = 1.2 

Interstitial conductivity [mS/cm] 𝜎𝑒𝑙 = 2.0, 𝜎𝑒𝑙 = 2.0 

Lungs conductivity [mS/cm] 𝜎𝑒𝑙 = 0.5, 𝜎𝑒𝑙 = 0.5 

Blood conductivity [mS/cm] 𝜎𝑒𝑙 = 6.0, 𝜎𝑒𝑙 = 6.0 

Skeletal muscle conductivity [mS/cm] 𝜎𝑒𝑙 = 3.55, 𝜎𝑒𝑙 = 3.55, 𝜎𝑒𝑐 = 0.44 

Atrial grid size [cm] 0.02 

Torso grid size [cm] 0.1 

 


