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AN OPTIMAL QUASI SOLUTION FOR THE CAUCHY PROBLEM FOR

LAPLACE EQUATION IN THE FRAMEWORK OF INVERSE ECG

Eduardo Hernández-Montero1, Andrés Fraguela-Collar1 and Jacques Henry2

Abstract. The inverse ECG problem is set as a boundary data completion for the Laplace equation:
at each time the potential is measured on the torso and its normal derivative is null. One aims at
reconstructing the potential on the heart. A new regularization scheme is applied to obtain an optimal
regularization strategy for the boundary data completion problem. We consider the Rn+1 domain Ω.
The piecewise regular boundary of Ω is defined as the union ∂Ω = Γ1 ∪ Γ0 ∪ Σ, where Γ1 and Γ0 are
disjoint, regular, and n-dimensional surfaces. Cauchy boundary data is given in Γ0, and null Dirichlet
data in Σ, while no data is given in Γ1. This scheme is based on two concepts: admissible output data
for an ill-posed inverse problem, and the conditionally well-posed approach of an inverse problem. An
admissible data is the Cauchy data in Γ0 corresponding to an harmonic function in C2(Ω) ∩ H1(Ω).
The methodology roughly consists of first characterizing the admissible Cauchy data, then finding
the minimum distance projection in the L2-norm from the measured Cauchy data to the subset of
admissible data characterized by given a priori information, and finally solving the Cauchy problem
with the aforementioned projection instead of the original measurement.

Mathematics Subject Classification. 31B20/31A25/35R30/65J22/65N21.

March 9, 2018.

1. Introduction

For a century, the main tool for cardiologists to assess the electric wave triggering the contraction of a
patient’s heart has been the ECG. It provides the effect of the heart potential on the potential at various points
of the body surface with a good time resolution. Cardiologists are trained to interpret it, but the resulting
information is qualitative. It is thought that building a potential map on the heart from the measurement of
potential on the torso will allow a major improvement for the diagnosis. Such devices already exist but the
stage of solving numerically a Cauchy problem for the Laplace equation remains the key point to improve.

Given a domain Ω and two separate parts Γ0 and Γ1 of its boundary ∂Ω, this problem, understood as the
boundary value completion on Γ1, from given Cauchy data on Γ0, of an harmonic potential defined over Ω, has
been widely studied because of its various medical and engineering applications [2, 6, 8, 13]. Many examples in
the literature show that this Cauchy problem can be approached as a linear inverse problem, severely ill-posed
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in the Hadamard sense [7, 17]. Improving accuracy of the regularized solution still is a relevant issue [10], even
though there are regularization strategies of optimal order and asymptotically optimal for this kind of problem
in the framework of general theory [14, 22, 23, 25]. Throughout these pages, a new methodology (or scheme) is
applied to get an optimal approximation to the solution of the previous boundary data completion problem,
referred to as the Admissible Data Methodology (AD). The Cauchy problem for Laplace equation that will be
considered is as follows:

∆u ≡ 0 in Ω, (1)

u|Σ = 0, (2)

u|Γ0
= φ, (3)

∂u

∂ν

∣∣∣∣
Γ0

= ψ, (4)

where Ω is a bounded domain in Rn (n ≥ 2), ν is the unit outward normal to ∂Ω, ∂u
∂ν

∣∣
Γ0

the normal derivative of

u over Γ0, and ∂Ω is composed of the smooth, and open surfaces Γ1, Γ0 and Σ = ∂Ω\(Γ0∪Γ1) with Γ0∩Γ1 = ∅,
Σ a surface of strictly positive measure in ∂Ω. For us, problem (1)-(4) will be the theoretical model describing
some real phenomenon. The model clearly requires that the pair (φ, ψ) belong to a certain class M of functions
where problem (1)-(4) has a solution, and it makes sense to extend that solution over Γ1 in the same sense in
which boundary conditions over Γ0 are given.

The methodology described in following pages provides a regularization strategy based on a model testing
idea: if for model (1)-(4) a given measured Cauchy data (φ̃, ψ̃) is in a function class containing M , with

noise level δ > 0, it must exist an element of M which is close enough to (φ̃, ψ̃) ( of order δ); otherwise,
there would be evidence pointing that the model does not describe the phenomenon properly. Based on this
thought, a regularization scheme consists in regularizing the ill-posed problem of minimizing the distance from
the measurement to the admissible data set M . For that purpose we find a subclass of M where projection is
conditionally well posed, and we use that projection to solve problem (1)-(4).

In practice, the solution of the boundary data completion problem using the projection as the new Cauchy
data must approximate well enough the solution of the real boundary data completion problem for real phe-
nomenon, whether no evidence to reject the model is observed. This is a theoretical work, and so only the
regularization strategy of the boundary data completion problem concerning the Cauchy problem (1)-(4) is
considered, no statistical approach toward a hypothesis test is considered.

In the sense of this modeling philosophy, an exact data is understood as the best theoretical modeling data;
this way, (φ†, ψ†) will denote the exact Cauchy data, and Φ† the exact solution of the boundary data completion
related to (1)-(4) and (φ†, ψ†). Solution of (1)-(4) will be considered in a weak sense and recovering Dirichlet

boundary data means finding a function Φ in the Sobolev space H
1
2 (Γ1), and a harmonic function u in H1(Ω)

that satisfy (2)-(4) and

u|Γ1
= Φ, (5)

where Dirichlet data φ belongs to H
1
2 (Γ0) and Neumann boundary condition ψ is taken in L2(Γ0) as a priori

information, although it is usually considered in the Sobolev space H− 1
2 (Γ0). Numerical examples are given in

section 4 when Ω is a cylindrical domain.
A common way to set boundary completion problem is via the operational equation

AΦ = ρ, where the right hand side is defined by ρ ≡ φ−Bψ,
A being the Dirichlet to Dirichlet operator from Γ1 to Γ0 defined by auxiliary boundary problem given by (1),
(2), (5) and a null Neumann condition over Γ0, and B is the Neumann to Dirichlet operator on Γ0 defined by
the auxiliary boundary problem given by (1), (2), (4) and a null Dirichlet condition on Γ1.
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When both components of Cauchy data are given with noise of order δ at most, then, the continuous
dependency of ρ allows to set the inverse problem as a first kind ill-posed one:

AΦ† = ρ†, ρ† = φ† −Bψ†
∥∥∥φ† − φ̃∥∥∥ ≤ δ ∥∥∥ψ† − ψ̃∥∥∥ ≤ δ,

Φ† being the exact solution for the unknown exact Cauchy data (φ†, ψ†), and (φ̃, ψ̃) the known perturbation
of (φ†, ψ†). In this approach, all methods use a priori information (some source condition or noise level) to
regularize the Moore-Penrose pseudo-inverse of A i.e. to look for the Φreg in the A domain minimizing the
discrepancy ‖AΦ− ρ̃‖. Hence, regularization strategies such as Tikhonov, Landweber, Truncated Singular
Value Decomposition (TSVD), conjugate gradient or discretization methods are applied. All these strategies
provide order optimal or asymptotically optimal solutions under the a priori information that the exact solution
Φ† is bounded by a given constant in a stronger norm than the one of L2(Γ1); however, they require a high
smoothness condition over the exact solution in order to obtain optimal approximations in the case of severely
ill-posed problems [1].

What we do here is to focus on the admissible data, which will be understood as the Cauchy data such that
the weak solution of problem (1)-(4) exists. Set of admissible data is characterized via the operational equation
defining the inverse problem, and given a priori information is used to continuously project in some sense the
perturbed data over a subset of admissible data and in a such way that the inverse problem is conditionally
well-posed over the aforementioned set. Our regularization scheme consists of two simple steps approximately
described as follows:

(1) Finding (φδ, ψδ), the minimum L2-distance projection from the perturbed Cauchy data (φ̃, ψ̃) over the
subset of admissible data defined by given a priori information such that the worst case error defined
in section 1.3 of [1] is bounded (the conditionally well-posed problem).

(2) Solving the inverse problem with admissible data (φδ, ψδ) instead of the first given Cauchy data (φ̃, ψ̃).

In this work the presented methodology will be called the admissible data methodology (AD), and its opti-
mality will be proved as well. In section 3 it is proved that the AD solution is a quasi-solution according with
definition in [4], and that it does not require a so strong a priori information to be optimal, as occurs with
Tikhonov regularization strategy, the most popular one, in the framework of the severely ill-posed problems [1].

Through this scheme, considering a stronger a priori information than before, and applying the classic
optimization theory, we show that in such cases there is α ≥ 0, depending on the stronger a priori information,
such that Φα defined by the following optimization problem is an optimal approximation of the exact solution
for the inverse problem,

(Φα, ψα) = arg min
∥∥∥AΦ +Bψ − φ̃

∥∥∥2

+
∥∥∥ψ − ψ̃∥∥∥2

+ α ‖(Φ, ψ)‖20
(Φ,ψ)

where A is the linear compact operator defining the inverse problem, B the Neumann to Dirichlet operator on
Γ0 for the auxiliary boundary data problem defined by (1)-(2) and (4)-(5) with Φ ≡ 0, and ‖(·, ·)‖0 is a stronger

norm than the H
1
2 (Γ1)× L2(Γ0) one.

A similar procedure based on the method of fundamental solutions (MFS) has been presented by T. Wei and
Y.G. Chen in [28]; the main difference is that their approach assumes that the exact solution is close enough to a
finite dimensional subspace of H = {u ∈ Hp(Ω) : ∆u ≡ 0}(p > 3/2), which actually imposes a high smoothness
a priori condition over the exact solution.

The paper is organized as follows. Section 2 is devoted to formulating the inverse problem in the framework
of this methodology. In section 3, the regularization strategy is formally presented, and optimal accuracy is
proven. The link with the factorization method in [16] is shown in section 3 as well, suggesting discretization
methods for the implementation of the AD solution in complex geometries of Ω. Finally, in section 4, the
methodology is applied when Ω is a cylinder, and a numerical example is given, comparing with the Tikhonov
regularization strategy, the most common method employed to solve linear ill-posed problems, which behaves
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well in less ill-posed problems, but requires strong regularity on the solution to be optimal in severely ill-posed
cases.

2. Operational Formulation of boundary data completion, and admissible
data definition

Present section is devoted to formally set the operational equation that defines the inverse problem. Through
this section and the next one, Ω ⊂ Rn+1 (n ≥ 1) will be a domain with a piecewise smooth boundary ∂Ω, Γ0 and
Γ1 will denote two disjoint C∞ surfaces of dimension n in ∂Ω, and Σ = ∂Ω \ (Γ0 ∪ Γ1). It will also be assumed
that the euclidean distance between closures of Γ0 and Γ1 is not null, and that the interior of Σ in the ∂Ω is
regular too. Let us define Dαf as the Sobolev partial derivative of order α = (α1, ..., αn) of f ∈ L1

loc(Ω), Hs(Ω)
the Sobolev space W s,2, and H1

0 (Ω) the closure in the H1-norm of the test function D(Ω) (functions infinitely
differentiable with compact support in Ω). The L2-norm, and the standard operator norm will be denoted by
the symbol ‖·‖. When X is a normed space, the open ball in X centered at x with radius r will be denoted by
BX(x, r) ; notation clX (M) is reserved to the closure of the set M in the topology of X. As particular cases,
notation conventions BX(0, r) = BX(r), and BX(x, r) = clX (BX(x, r)) are established.

Following subspaces of H1(Ω) and H
1
2 (S) are set forth:

E0 =
{
v ∈ H1(Ω) : v|Σ = 0

}
, E00 =

{
v ∈ H1(Ω) : v|Σ∪Γ1

= 0
}
,

and

E
1
2 (Γi) =

{
φ ∈ H

1
2 (Γi) : ∃v ∈ E0 : v|Γi = φ

}
, i = 0 or 1.

Notation E−
1
2 (Γi) will be reserved for the dual of E

1
2 (Γi). By Poincaré inequality [19], spaces E0(Ω), and

E00(Ω) will be provided with the equivalent norm induced by the inner product:

(∇u,∇v)L2 =

∫
Ω

∇u∇vdx =

∫
Ω

n+1∑
k=1

du

dxk

dv

dxk
dx.

Now, consider boundary value problem (6)-(9), and definition 2.1, slightly differing from the usual definition
of weak solution :

∆u ≡ 0 in Ω, (6)

u|Σ = 0, (7)

u|Γ1
= Φ, (8)

∂u

∂ν

∣∣∣∣
Γ0

= ψ. (9)

Definition 2.1. For a given couple of boundary conditions (Φ, ψ) in E
1
2 (Γ1)×L2(Γ0), function u belonging to

E0 is a weak solution of (6)-(9) if equation (10) and boundary condition u|Γ1
= Φ are both fulfilled.∫

Ω

∇u∇vdx =

∫
Γ0

ψvdS, ∀v ∈ E00. (10)

The set of the standard test function D(Ω) is contained in E00, so that the weak solution is also a solution
in the sense of [27]. The existence, uniqueness, and continuous dependence on the boundary data of the weak
solution to problem (6)-(9) are proven in an analogous way as Mijailov did in [27] for elliptic boundary value
problems.
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Definition 2.2 (Admissible Cauchy data). Data (φ, ψ) in H
1
2 (Γ0) × L2(Γ0) will be called an admissible data

for the Cauchy problem (1)-(4), if there exist Φ in E
1
2 (Γ1), and u in H1(Ω) such that: u solves eq.(6)-(9) in the

sense of Definition 2.1 for the pair (Φ, ψ), and the Dirichlet condition u|Γ0
= φ is also fulfilled .

Function Φ will be called a solution of the Dirichlet boundary data completion problem for (1)-(4).

In order to establish the direct problem that defines the admissible Cauchy data class, functions u1 and u2

will denote solutions of problem (6)-(9) for boundary data (Φ, ψ ≡ 0) and (Φ ≡ 0, ψ), respectively. Function u1

depends only on Φ, u2 on ψ, and the solution of the auxiliary boundary problem (6)-(9) is given by u = u1 +u2;
hence, identifying the Dirichlet condition in (1)-(4) can be approached as a first kind linear inverse problem via
the Dirichlet to Dirichlet operator A, from Γ1 to Γ0, and the Neumann to Dirichlet operator B defined in Γ0:

A : E
1
2 (Γ1) −→ L2(Γ0)

Φ 7→ u1|Γ0

,
B : L2(Γ0) −→ L2(Γ0)

ψ 7→ u2|Γ0

.

Each function u1 depending on Φ, and u2 depending on ψ solves a well-posed boundary data problem, and
the trace operator is compact from H1(Ω) into L2(Γ0) [18, 19, 27]; hence the linear operators A and B are

compact. We extend the range of both operators A and B to L2(Γ0) instead of E
1
2 (Γ0) because, taking into

account the noise in the measurements, we consider L2-norms in the regularization stage.
It is a well known fact that Cauchy problems have a unique solution [5, 26]. Therefore, AΦ = 0 implies that

u1 solves the Cauchy problem for a null Cauchy data given on Γ0, and hence A is injective. On the other hand,
let us prove that B is injective, self-adjoint and positive defined: choose v in (10) as the solution of problem
(6)-(9) for a third boundary data (Φ ≡ 0, ψ); B is self-adjoint follows immediately from Definition 2.1; taking
ψ = ψ proves that B is positive defined, and under same equality the assumption Bφ = 0 implies that solution
of (6)-(9) is null for (Φ ≡ 0, ψ), which proves that B is injective.

Now, by definition of A and B, the set M of all admissible data for the Cauchy problem can be defined
equivalently as the linear space:

M =
{

(AΦ +Bψ,ψ) : Φ ∈ E 1
2 (Γ1), ψ ∈ L2(Γ0)

}
. (11)

The forward problem from which boundary data completion is established is to determine the trace over Γ0

of the solution of boundary problem (6)-(9) from given mixed boundary data (Φ, ψ), which in the form of an
abstract equation means to evaluate AΦ +Bψ. Then we set the inverse problem of interest as follows:

AΦ = ρ, ρ = φ−Bψ. (12)

Characterizing E
1
2 (Γ1) represents an essential step toward an admissible data characterization. The norm in

E
1
2 (Γ1) is defined by ‖Φ‖

E
1
2

= ‖∇u1‖. If P is the Dirichlet to Neumann operator in Γ1 for the boundary data

problem (6)-(9) with ψ ≡ 0: P : Φ 7→ ∂u1

∂ν

∣∣
Γ1

, then, in virtue of Green’s formula:

‖Φ‖2
E

1
2

= 〈Φ, PΦ〉
E

1
2 (Γ1)×E−

1
2 (Γ1)

.

All the properties of P are studied in detail in [16].

3. Regularization Strategy

In later sections it is shown that the Dirichlet to Dirichlet mapping A can be extended in the L2 sense for
cylindrical domains and be considered as a bounded mapping from L2(Γ1) to L2(Γ0). However, it could happen
that A coud not be extended in the general case. The possibility to extend A is helpful for the regularization
stage, so that, it will be considered as an additional a priori information when possible. Using a shorter
notation, D (A) will denote the domain of A, where D (A) will be understood as L2(Γ1) or E

1
2 (Γ1), depending

on whether A can be extended or not: A : D (A) → L2(Γ0), meaning that the symbol A will be employed to
denote the original operator defined in previous section, or its extension to L2(Γ0) as appropriate.



6 TITLE WILL BE SET BY THE PUBLISHER

Now, let u1, and u2 be as before. By replacing u by u1, and v by u2 in (10) it immediately follows that∫
Ω
∇u1∇u2dx = 0, and replacing both u and v by u2 gives that ‖∇u2‖2 =

∫
Γ0
ψBψdS. Hence, analogously to

how norm ‖·‖
E

1
2 (Γ1)

was defined, the natural norm over the admissible data set M in eq (11) is given by the

H1-norm of the corresponding weak solution of the BVP (1)-(4): ‖∇(u1 + u2)‖2 = ‖Φ‖2
E

1
2

+
∫

Γ0
ψBψdS, with

Φ = A−1(φ−Bψ). However, B is bounded; then, the really natural norm over the admissible data class in this
case is a stronger one defined by:

‖(φ, ψ)‖ad =

√
‖Φ‖2

E
1
2 (Γ1)

+ ‖ψ‖2, Φ = A−1(φ−Bψ).

For the inverse problem (12), a measured (or perturbed in synthetic examples) Cauchy data (φ̃, ψ̃) will be
known instead of the exact one (φ†, ψ†), with a L2-noise level of order δ > 0, meaning that the inverse problem
to regularize is

AΦ† = φ† −Bψ†;
∥∥(φ†, ψ†)

∥∥
ad
<∞,

∥∥∥φ† − φ̃∥∥∥ ≤ δ, ∥∥∥ψ† − ψ̃∥∥∥ ≤ δ. (13)

Then, defining Mδ = {(φ, ψ) ∈M :
∥∥∥(φ− φ̃, ψ − ψ̃)

∥∥∥ ≤ √2δ}, we have that (13) implies

(φ†, ψ†) ∈Mδ ∩ Bad(K) for a given K > 0. (14)

Due to the compact injection of E
1
2 (Γ1) in L2(Γ1), a quasi solution regularization scheme is immediately

suggested from (14) to the inverse problem (12) when D (A) = L2(Γ1). As it will be shown shortly, the
admissible data solution (AD solution) is indeed a quasi solution scheme with a slightly more regular definition
of (14) as cornerstone. For a given K as a priori information, a natural candidate to be a regularization of Φ†,
whether the distance from measurement to cl

ad
(B(K)) can be reached at some element (φδ, ψδ), is of course

Φδ = A−1(φδ − Bψδ). What AD methodology is looking for in our case, are sufficient conditions to guarantee
the existence of (φδ, ψδ), and simultaneously that Φδ tends to Φ† when δ tends to 0.

The AD solution of problem (12) requires the L2 minimum distance projection from perturbed Cauchy data
over the admissible data set, because of the noise level in (13) is given in the L2-norm as well. Unfortunately,
the problem to find the aforementioned projection is ill-posed, because generally the admissible data set is not a
closed space in L2(Γ0)×L2(Γ0). To get a good enough behaviour of the projection some a priori information is
required. In our case, convexity of the compact subset to which the solution belongs is that required information.

3.1. Setting the strategy

As a priori information it will be required that the exact couple (φ†, ψ†) belongs to a convex subset M of
admissible data of the form

M = {(AΦ +Bψ,ψ) ∈M : Φ ∈ Z1, ψ ∈ Z0} ; (15)

where Z0 is a convex subset of L2(Γ0), and Z1 is compact and convex in D (A) (L2(Γ1) or E
1
2 (Γ1)), the required

a priori for the construction of a quasi solution of the inverse problem AΦ = ρ.
The minimum L2-distance projection from (φ̃, ψ̃) to cl

(L2(Γ0))2 (M) exists, and is unique since cl
(L2(Γ0))2 (M)

is closed and convex [20, sec. 3.12]. Let (φδ, ψδ) be the aforementioned projection, also defined by

(φδ, ψδ) = arg min

(∥∥∥φ− φ̃∥∥∥2

+
∥∥∥ψ − ψ̃∥∥∥2

)
.

(φ, ψ) ∈ cl
(L2(Γ0))2 (M)

(16)

We shall see that (φδ, ψδ) is in fact an admissible data, and that the corresponding Dirichlet data Φδ =
A−1(φδ −Bψδ) converges to the exact solution Φ† when δ tends to 0.
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Lemma 3.1. The projection (φδ, ψδ) verifies
∥∥(φ† − φδ, ψ† − ψδ)

∥∥ ≤ δ1, where

0 ≤ δ1 =

√
2δ2 −

∥∥∥φδ − φ̃∥∥∥2

−
∥∥∥ψδ − ψ̃∥∥∥2

≤
√

2δ.

Proof. First,

∥∥φ† − φδ
∥∥2

+
∥∥ψ† − ψδ

∥∥2
=
∥∥∥φ† − φ̃

∥∥∥2
+
∥∥∥ψ† − ψ̃

∥∥∥2
−
∥∥∥φδ − φ̃

∥∥∥2
−
∥∥∥ψδ − ψ̃

∥∥∥2

+2
(〈
φ† − φδ, φ̃− φδ

〉
+
〈
ψ† − ψδ, ψ̃ − ψδ

〉)
,

(17)

but, cl
(L2(Γ0))2 (M) is convex and (φδ, ψδ) must ensure (see [20, sec. 3.12])〈

φ− φδ, φ̃− φδ
〉

+
〈
ψ − ψδ, ψ̃ − ψδ

〉
≤ 0, ∀ (φ, ψ) ∈ cl

(L2(Γ0))2 (M) . (18)

The result follows from (17), (18), and because (φ†, ψ†) ∈ cl
(L2(Γ0))2 (M). �

In other words, projection (φδ, ψδ) can be thought as a perturbation of (φ†, ψ†) with smaller or equal noise

error than (φ̃, ψ̃). The immediate step is to solve (19) instead of (13), with δ1 as in Lemma 3.1:

AΦ† = φ† −Bψ†;
∥∥(φ† − φδ, ψ† − ψδ)

∥∥ ≤ δ1. (19)

Lemma 3.2. The projection (φδ, ψδ) in Lemma 3.1 is an admissible data, and Φδ = A−1(φδ −Bψδ) converges
to Φ† when δ tends to 0.

Proof. Let {(φn, ψn)}n∈N be a sequence in M that converges to (φδ, ψδ). Denoting ρn = φn − Bψn (ρδ =
φδ − Bψδ), and Φn = A−1ρn ∈ Z1, it immediately follows that we can choose Φδ = A−1ρδ in Z1 as any
accumulation point of {Φn}n∈N, which exists since Z1 is compact in D (A). By continuity of A and B we have
AΦδ +Bψδ = φδ. So (φδ, ψδ) is admissible and uniqueness of Φδ holds true in virtue of the injectivity of A.

To finish the proof, for δ > 0 let Nδ be the smallest natural such that

∀n ≥ Nδ :
∥∥ΦNδ − Φδ

∥∥
D(A)

≤ δ, and
∥∥∥φNδ − φ̃∥∥∥ +

∥∥∥ψNδ − ψ̃∥∥∥ ≤ δ

1 + ‖B‖
,

then, by triangular inequality ∥∥Φδ − Φ†
∥∥

D(A)
≤ δ +

∥∥ΦNδ − Φ†
∥∥

D(A)
.

But, ΦNδ belongs to the intersection of Z1, and the following set

Zδ
(φ̃,ψ̃)

= {Φ ∈ D (A) : ‖AΦ− ρ̃‖ ≤ δ} , ρ̃ = φ̃−Bψ̃.

Hence, ΦNδ converges to Φ† in virtue of Theorem 1 in [4, ch.6, sec 1]. �

Lemmas 3.1-3.2 actually show the heart of the methodology. We are taking full advantage of the available
a priori information to regularize the minimum distance projection from measured data to the admissible data
with a quasi solution regularization scheme.

There is more than one way to select Z1. Mainly, we are going to work with the one which is related to the
worst case error definition in [1, sec1.3]. Let X and Y denote Banach spaces, X1 a dense subspace of X endowed
with the norm ‖·‖1, stronger than the norm in X, T : X → Y a bounded linear operator and ωT (δ,K, ‖·‖1)

the worst case error for T corresponding to the noise level δ > 0 and a priori information
∥∥x†∥∥

1
≤ K in the

framework of the inverse problem Tx† = y†:

ωT (δ,K, ‖·‖1) = sup {‖x‖X : x ∈ X1, ‖Tx‖Y ≤ δ, ‖x‖1 ≤ K} .



8 TITLE WILL BE SET BY THE PUBLISHER

In our case, D (A) will play the role of X in the previous definition of the worst case error, Y = L2(Γ0), and
X1 will be replaced by F , a subspace with compact injection over D (A); for congruence in the notation ‖·‖F
replaces ‖·‖1. When A can be extended and D (A) = L2(Γ1) the immediate choice of F is E

1
2 (Γ1). Otherwise,

whether D (A) = E
1
2 (Γ1), we can choose F by considering extra a priori information as in section 3.2, or, for

example when is also assumed that the exact solution Φ† belongs to a well known finite dimensional subspace
of E

1
2 (Γ1).

In the same way as norm ‖(·, ·)‖ad, we define over the subspace of admissible data

MF =
{

(AΦ +Bψ,ψ) : Φ ∈ F,ψ ∈ L2(Γ0)
}

its own norm, stronger than ‖(·, ·)‖ad:

‖(φ, ψ)‖0 =

√
‖Φ‖2F + ‖ψ‖2; Φ = A−1(φ−Bψ).

In previous framework, Z1 = BF (K), and Z0 such that M = Bad(K) i.e

First assumption of a priori information (1st assumption):
An upper bound K of

∥∥(φ†, ψ†)
∥∥

0
will be given as a priori information.

Now, by how it has been built, the AD regularized solution Φδ must be optimal in the sense of Definition
1.18 in [1] for the just above assumed a priori information over the exact Cauchy data.

Theorem 3.3. Under the 1st assumption and if (φ̃, ψ̃) does not belong to cl(L2(Γ0))2 (M) then, function Φδ

defined in Lemma 3.2 is an optimal regularized solution of the linear inverse problem of the first kind (19)

in the sense of Definition 1.18 in [1], for the error
√

2δmax{1, ‖B‖} in the data, and a priori information∥∥Φ†
∥∥
F
≤ 2K.

Proof. By Lemmas 3.1 and 3.2 it happens that, for any n ≥ Nδ1 , Φ† − Φn ∈ BF (K), and

∥∥A(Φ† − Φn)
∥∥ ≤ δ1 max{1, ‖B‖}

(
1 +

∥∥φδ − φn∥∥ +
∥∥ψδ − ψn∥∥) ; (20)

then, defining ε1,n =
∥∥φδ − φn∥∥ +

∥∥ψδ − ψn∥∥ → 0, and ε2,n =
∥∥Φn − Φδ

∥∥
D(A)

→ 0:∥∥Φ† − Φδ
∥∥

D(A)
≤
∥∥Φ† − Φn

∥∥
D(A)

+ ε2,n ≤ ωA((1 + ε1,n)δ1 max{1, ‖B‖},K, ‖·‖F ) + ε2,n. (21)

However, (1 + ε1,n)δ1 <
√

2δ for any large enough n since (φ̃, ψ̃) 6∈ cl(L2(Γ0))2 (M). �

Remark 3.4. Best case for the 1st assumption is K =
∥∥(φ†, ψ†)

∥∥
0
.

Even if Theorem 3.3 in the present form is not helpful in numerical calculations, it shows that the regu-
larization error under this regularization methodology is optimal under the 1st assumption. It is well known
that inverse problem (19) is exponentially ill-posed, and as it shall be seen in section 4, last definition of Z1 is
equivalent to say that Φ† satisfies a logarithmic source condition (Φ† = − ln−p(A?A)ζ, ‖ζ‖ ≤ K1, p > 0, where

A? denotes the A adjoint). The result that ωA(δ,K, F ) must be of order O(− ln−p(δ)) is also shown in [24,25],
and other recent studies on convergence rate estimates can be found in [3, 21].

3.2. Additional a priori information, and link with the Tikhonov regularization

First practical issue of the AD solution is that there is not an equivalent Lagrangian formulation of the
problem, because M is not closed in the L2-norm. In fact, the imposed constraint by the 1st assumption may
be not defined in (φδ, ψδ) i.e the projection (φδ, ψδ) could be a non-regular point for the constraint defining M
in the sense of [20]. The present section is devoted to provide conditions for which the equivalent Lagrangian
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formulation of the main optimization problem exists under the 1st assumption. The main motivation to do
this is to get an approach that allows to turn the value of K from a priori information into a regularization
parameter when K is unknown, preserving the optimality of the solution for some regularization parameter, as
is discussed in [11,21].

Stronger a priori information over solution Φ† will be required through this section in order to get an
equivalent optimization problem to (16), where the projection (φδ, ψδ) is a regular point for the corresponding
constraint.

Consider the Neumann to Dirichlet operator defined in Γ1 by Q : Ψ ∈ L2(Γ1) 7→ u3|Γ1
, where u3 is the

solution of problem (22)-(25) in an analogous sense to Definition 2.1:

∆u3 ≡ 0 in Ω, (22)

u3|Σ = 0, (23)

∂u3

∂ν

∣∣∣∣
Γ1

= Ψ, (24)

∂u3

∂ν

∣∣∣∣
Γ0

= 0. (25)

Just like in the case of operator B, Q is a compact mapping from L2(Γ1) to itself, and bounded from L2(Γ1)

to E
1
2 (Γ1). As an operator in L2(Γ1) to itself it is also self adjoint and positive defined. Moreover, it is clear

that P is the left inverse of Q (I = PQ), and QPΦ = Φ if PΦ is a regular distribution (PΦ ∈ L2(Γ1)).

Remark 3.5. Uniqueness of solution u3 is true in this case by the boundary condition (23), without which the
solution is unique up to an additive constant. This fact makes necessary to be careful if the methodology needs
to be extended to cases where ∂Ω is composed only by the two regular and smooth surfaces Γ0, and Γ1. The
ECG inverse problem, for instance, is so.

Define E
1
2
s (Γ1) = E

1
2 (Γ1) ∩Qs(L2(Γ1)) (s > 0) as follows

E
1
2
s (Γ1) =

{
Φ ∈ E 1

2 (Γ1) : Φ = Qsζ, ζ ∈ L2(Γ1)
}
, s > 0; ‖Φ‖

E
1
2
s (Γ1)

= ‖ζ‖ . (26)

Injection E
1
2
s2(Γ1)→ E

1
2
s1(Γ1) is compact as soon as s2 > s1 >

1
2 .

After the definition of E
1
2
s (Γ1) (s > 0) we are ready to work with a stronger condition than the 1st assumption.

Now we will consider the following definition of the space F :

F = E
1
2
s (Γ1) where s ≥ 1

2
if D (A) = L2(Γ1), and s >

1

2
if D (A) = E

1
2 (Γ1).

The 1st assumption is rewritten as

Second assumption of a priori information (2nd assumption)
There exists ζ† ∈ L2(Γ1) such that Φ† = Qsζ† (s depending on D (A)), and an a priori given

K > 0 such that

‖(φ, ψ)‖0 =

√
‖ζ†‖2 + ‖ψ†‖2 ≤ K.

Through the 2nd assumption we have that solving problem replace (16) is equivalent to solve
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(ζδ, ψδ) = arg min
∥∥∥AQsζ +Bψ − φ̃

∥∥∥2

+
∥∥∥ψ − ψ̃∥∥∥2

ζ∈L2(Γ1), ψ∈L2(Γ0)

such that ‖ζ‖2 + ‖ψ‖2 −K2 ≤ 0

(27)

and define the AD solution by

Φδ = Qsζδ.

Now, solution of (27) is a regular point for its constraint because (ζδ, ψδ) satisfies this constraint. The
objective functional and the constraint are both convex and have Gateaux derivatives linear in their increments;
then, by the generalized Kuhn-Tucker theorem in the classic optimization theory [20], there exists αK ≥ 0 (a
Lagrange multiplier) such that solving problem (27) is equivalent to solving its Lagrangian formulation for
α = αk:

(ζδ,α, ψδ,α) = arg min Jα(ζ, ψ)
(ζ,ψ)∈L2(Γ1)×L2(Γ0) (28)

where Jα(ζ, ψ) =
∥∥∥AQsζ +Bψ − φ̃

∥∥∥2

+
∥∥∥ψ − ψ̃∥∥∥2

+ α
(
‖ζ‖2 + ‖ψ‖2

)
.

Define the operator W by W : ψ 7→ − ∂u2

∂ν

∣∣
Γ1

(u2, and u1 the same solutions of (6)-(9) that define B, and A

respectively). Solution u2 continuously depends on ψ in L2(Γ0), and the outward normal derivative operator over

the boundary of Γ is continuous from H1(Ω) to E−
1
2 (Γ1), meaning that W is bounded from L2(Γ0) to E−

1
2 (Γ1).

Moreover, with almost no change on the existence, uniqueness, and continuity demonstrations, solution u3

defining Q can be extended to Ψ in E−
1
2 (Γ1). This means that operator Q can be extended to the compact

operator Q̄ : E−
1
2 (Γ1) → L2(Γ1); then, operator Q̄sW (s > 0) is compact from L2(Γ0) to L2(Γ1). Now, when

Φ = Qsζ with ζ in L2(Γ1), again by Green’s formula and because u1 is orthogonal to u2 with the inner product
(∇·,∇·)L2 , it happens that:

∫
Γ0

(AQsζ)ψdS = 〈Qsζ,Wψ〉
E

1
2 (Γ1)×E−

1
2 (Γ1)

=
〈
ζ, Q̄sWψ

〉
E

1
2 (Γ1)×E−

1
2 (Γ1)

=

∫
Γ1

ζQ̄sWψdS, ∀ψ ∈ L2(Γ0);

(29)
So clearly, Q̄sW is the L2 adjoint of As = AQs (A?s = Q̄sW ). This way, the Jα Gateaux derivative in (ζ, ψ),
and applied to x = (x1,x2) is given by

DJα(ζ, ψ)(x) =
∫

Γ0

[
A?s

(
Asζ +Bψ − φ̃

)
+ αζ

]
x1dS

+
∫

Γ0

[
B
(
Asζ +Bψ − φ̃

)
+ (1 + α)ψ − ψ̃

]
x2dS,

where I is the identity in L2(Γ0). Hence, (ζδ,α, ψδ,α) solves:

(A?sAs + αI) ζ +A?sBψ = A?sφ̃, (30)

BAsζ +
(
B2 + (1 + α)I

)
ψ = Bφ̃+ ψ̃. (31)

Parameter α is a Lagrange multiplier, meaning that the α value making equivalent the optimization problems
is null (αK = 0) if there is (ζ̃, ψ̃) in BL2(Γ1)×L2(Γ0)(K) such that φ̃ = Asζ̃ +Bψ̃. Otherwise αK must fulfill∥∥ζδ,αK∥∥2

+
∥∥ψδ,αK∥∥2

= K2,
∥∥Φδ,αK

∥∥
E

1
2
s (Γ1)

=
∥∥ζδ,αK∥∥ , Φδ = Φδ,αK . (32)

Normal equations (30)-(31) provide the first corollary to Theorem 3.3.
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Corollary 3.6. If the 2nd assumption is fulfilled, then, for any α > 0 the pair (Φδ,α, ψδ,α) is defined by (33)-(34)

ψδ,α =
{
B
[
I −AsL−1

s,αA
?
s

]
B + (1 + α)I

}−1
{
B
[
I −AsL−1

s,αA
?
s

]
φ̃+ ψ̃

}
, (33)

Φδ,α = QsL−1
s,αA

?
s

(
φ̃−Bψδ,α

)
(34)

where Ls,α = A?sAs + αI. Moreover, under the 2nd assumption and if (φ̃, ψ̃) does not belong to cl(L2(Γ0))2 (M),
there exists α

K
> 0 such that∥∥Φ† − Φδ,αK

∥∥ ≤ ωA (√2δmax{1, ‖B‖}, 2K,E
1
2
s (Γ1)

)
.

Proof. To get (33)-(34) it is only needed to algebraically solve system (30)-(31). A well known fact is that Ls,α
is invertible. By a singular value decomposition it is also easy to see that I − AsL−1

s,αA
?
s is positive defined,

implying that any positive real belongs to the resolvent of B
(
I −AsL−1

s,αA
?
s

)
B, which finally proves that Φδ,α

and ψδ,α are well defined by (33)-(34). �

As usual in Lagrangian formulations for inverse problems, eq (32) says that K =
∥∥(Φ†, ψ†)

∥∥
0

is what really
matters to know a priori in this kind of approach. One has to look for the smallest value of K that makes sense,

and minimize the worst case error ωA

(√
2δmax{1, ‖B‖}, 2K,E 1

2

)
for a given δ > 0. The dependency of α on

K actually makes that parameter α can be considered as a priori information when K is known; however, via
the Lagrangian formulation, when K is unknown and

∥∥(Φ†, ψ†)
∥∥

0
<∞ is the only known fact, then α becomes

a regularization parameter. In the last mentioned scheme, previous discussion tells that there is a regularization
parameter α

AD
for which the AD solution in its Lagrangian formulation is optimal, where the question of how

to choose the parameter α is introduced as a new issue. In fact, system (30)-(31) can be rewritten as

(T ?s Ts + αI)(ζ, ψ) = T ?s (φ̃, ψ̃), Ts(ζ, ψ) =

(
As B
0 I

)(
ζ
ψ

)
.

In other words, under the 2nd assumption, the AD solution is the evaluation by Qs of the first coordinate of
the Tikhonov solution with parameter α = αK for the inverse problem Tsx = y. When the a priori information
αK becomes a regularization parameter α, it is important to recall that Ts is not a compact operator, so that
one has to be carefully selecting the strategy to choose it. In some cases the strategy to choose the regularization
parameter for Tikhonov solution, or the properties of its convergence rate to the exact solution depends on the
property of compactness of the operator defining the inverse problem.

Remark 3.7. It is clear that ψδ converges to ψ† when δ tends to 0, and because of that the pair (Φδ, ψδ) is a
quasi solution of the inverse problem T0x = y; however, the ill-posedness of the Cauchy problem is dominated
by operator A, and this is why the approach AΦ = ρ has been chosen.

4. Dirichlet boundary data completion problem in cylindrical domains

Let Γ be a bounded domain in Rn (n ≥ 1), Ω = (0, a) × Γ, ∂Γ the boundary of Γ, Σ = [0, a] × ∂Γ, and
Γz = {z} × Γ, where z lies in [0, a], Γa will take the place of Γ1 in previous sections. The space L2(Γz) is
isometric to L2(Γ) for all non negative real z, so we will consider all these spaces to be identical.

In this case, by the separation of variables method, solution of the problem (6)-(9) in Ω is given by

u(x; z) =

∞∑
k=1

wk(z)vk(x), wk(z) =
Φk cosh(zλk) + ψk

λk
sinh((a− z)λk)

cosh(aλk)
, (35)

where {vk}k∈N is an orthonormal and complete system of L2(Γ) composed by eigenfunctions of minus Laplace

operator defined on H2(Γ) ∩H1
0 (Γ), {λk}k∈N is the set of corresponding eigenvalues. Eigenvalues are repeated
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according with their multiplicity, and their eigenspaces are finite dimensional. Let Φk and ψk be the k-th Fourier
coefficient of Φ and ψ in L2(Γ) with respect to the system {vk}. The analytic form of A, B, P and Q (as the
inverse of P ) are obtained from (35)

AΦ =

∞∑
k=1

Φk
cosh(aλk)

vk (A = W ), Bψ =

∞∑
k=1

ψk sinh(aλk)

λk cosh(aλk)
vk, PΦ =

∞∑
k=1

λk
Φk sinh(aλk)

cosh(aλk)
vk, QΨ =

∞∑
k=1

Ψk cosh(aλk)

λk sinh(aλk)
vk.

(36)

The characterization of the admissible data set immediately follows from (12) and the analytic form of
mappings A and B.

Theorem 4.1. The pair (φ, ψ) ∈ L2(Γ)× L2(Γ) is an admissible data if and only if

∞∑
k=1

λk(φk −
ψk
λk

)2e2aλk <∞; (37)

In that case, the function Φ on the left side of (12) is defined by:

Φ =

∞∑
k=1

[
φk cosh(aλk)− ψk

λk
sinh(aλk)

]
vk. (38)

It is clear that recovering Φ from admissible data (φ, ψ) is severely ill-posed because singular values of A tend
to zero exponentially. It is important to recall that λ1, λ2, ... is a non decreasing sequence that goes to infinity.
Notice that

− ln−p(WA)ζ =

∞∑
k=1

−
(
−2aλk − ln

(
4(1 + e−2aλk)−2

))−p
ζk, (39)

then, for p = 1
2 , and for Ka depending on K and a, (φ†, ψ†) ∈M implies the logarithmic source condition:

Φ† ∈Mp,Ka =
{

Φ : Φ = − ln−p(WA)ζ, ‖ζ‖ ≤ Ka

}
. (40)

The worst case error wA(δ,K, ‖·‖1) can be bounded by estimates in [24,25].
On the other hand, the solution u must be in H1(Ω), and {vk} is also an orthogonal set in H1

0 (Γ) with inner
product (∇·,∇·)L2 satisfying ‖∇vk‖ = λ2

k. Hence, by a simple calculation from (35)

〈Φ, PΦ〉E1/2×E−1/2 =

∞∑
k=1

λkΦ2
k

sinh(aλk)

cosh(aλk)
vk, (41)

In the above equation, it is clear that ‖∇u‖ is upper and lower bounded by a scalar multiple of
∥∥(−∆)1/4Φ

∥∥.

In other words, a solution of the boundary data problem (1)-(4) exists if and only if E1/2(Γ) is the Hilbert space

H
1/2
00 defined in [18] with inner product as in [2], all details can be reviewed at [16, chap 2]:

〈f, g〉
H

1/2
00
dS =

∫
Γ

(−∆)1/4f(−∆)1/4gdS (42)

Then, H
1/2
00 (Γ) is also defined as the range of the compact operator (−∆)−

1
4 , it follows that for every Φ in

H
1/2
00 (Γ), there exists τ in L2(Γ) such that (−∆)−

1
4 τ = Φ i.e. operator Q in second assumption of a priori

information in section 3.2 can be replaced by (−∆)−
1
2 .

Remark 4.2. The sequence
{

λk
cosh(aλ)k

}
is bounded (let us say by a constant C); then,

‖AΦ‖
E

1
2

(Γ) = 〈AΦ, PAΦ〉E1/2(Γ)×E−1/2(Γ) =

∞∑
k=1

λkΦ2
k sinh(aλk)

cosh(aλk)3
vk ≤ C ‖Φ‖2 , (43)
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which means that A is continuous from L2(Γ) to E1/2(Γ) (compact from L2(Γ) to itself) i.e. we are in the case

where A can be continuously extended: D(A) = L2(Γ). Hence, both choices for 2nd assumption, ( (−∆)−
1
4 or

Q
1
2 , are equivalents to the 1st assumption, and produce an optimal regularized solution in this case, because

the worst case error is considered in L2(Γ1). In further sections we will choose (−∆)−
1
4 instead of Q

1
2 for

the regularization framework because the numerical example is set in a cylinder where (−∆)−1/4 is easier to
compute.

4.1. Regularized solution in a semi-discretized scheme

Let V (m) be the finite dimensional L2 subspace generated by {v1, v2, . . . , vm}, V (m)⊥ the orthogonal comple-

ment of V (m), Pr the minimum distance projection over V (m), and Pr⊥ the corresponding minimum distance
projection over V (m)⊥. Since {v1, v2, . . .} is a complete system of L2(Γ), and still in the framework of the

2nd assumption with (−∆)−
1
4 instead of Qs with s = 1

2 as mentioned at the end of the previous section:

Φ† = (−∆)−
1
4 τ † with τ † in L2(Γ), it holds true that

∥∥∥Pr⊥ Φ†
∥∥∥ =

√∑∞
k=m+1

τ2
k

λk
≤ δ whether m = mδ,K is such

that

max

{
K

λ
1/2
mδ,K

,
∥∥∥Pr⊥φ̃

∥∥∥ ,∥∥∥Pr⊥ψ̃
∥∥∥} ≤ δ. (44)

System {v1, v2, ...} is complete and orthonormal in L2(Γ), the analityc form of A and B in (4) shows that
every vk is an eigen function of both operators, as well. Hence, Pr commutes with A and B, implying that

it also holds true that APr Φ† = Prφ† − B Prψ†,
∥∥∥Prφ† − Pr φ̃

∥∥∥ ≤ δ, and
∥∥∥Prψ† − Pr ψ̃

∥∥∥ ≤ δ. This way,

considering (Pr φ̃,Pr ψ̃) as the measured Cauchy data instead of (φ̃, ψ̃), and denoting the corresponding AD
solution by Φδ,mδ,K a new corollary of Theorem 3.3 is achieved.

Corollary 4.3. The function Φδ,mδ,K is an asymptotically optimal regularized solution to the inverse problem
(13) whether (Pr φ̃,Pr ψ̃) does not belong to cl(L2(Γ0))2 (M).

Proof. Result follows immediately from previous discussion, and from Theorem 3.3:∥∥Φ† − Φδ,mδ,K
∥∥ =

∥∥Pr Φ† − Φδ,mδ,K
∥∥ +

∥∥∥Pr⊥ Φ†
∥∥∥

≤ wA ((1 + ‖B‖)δ1, 2K) + δ.
(45)

�

The regularized solution (Φδ,mδ,K , ψδ,mδ,K ) = (Φm,δ,α, ψm,δ,α) is given by solving the normal equations (46)-
(47):

[
A2 + α(−∆)1/4

]
Φ +ABψ = APr φ̃, (46)

BAΦ +
[
B2 + (1 + α)I

]
ψ = B Pr φ̃+ Pr ψ̃, (47)

for α = αk such that
∥∥(Φm,δ,α, ψm,δ,α)∥∥

0
= K.

4.1.1. Numerical example

The scheme in subsection 4.1 is applied for m = 550 in the cylinder of revolution Ω = (0, a) × Γ, with
Γ = {(x, y)|x2 +y2 = 1}. As (38) shows, the regularization error exponentially depends on how high the cylinder
is (value of a) i.e the ill-posedness order of the inverse problem grows exponentially in function of cylinder height,
making the problem virtually unavailable for larger values of a, so that, the example is developed for a = 1.
In the present section the AD solution is compared with the Tikhonov regularization strategy, because the last
one is still the most common method. The comparison is made in different regularity cases for exact data Φ†:
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• Φ† ∈ R((−∆)−
1
4 ), where R means range. This is the poorest a priori information that can be provided

to the operational formulation of the problem. This is a case of low regularity, where optimality for
Tikhonov solution is not guaranteed (Φ† ∈ R((WA)p(−∆)

1
4 ), p < 1 with A as a L2 continuous operator

defined in R((−∆)−
1
4 )). Optimality for Tikhonov solution is considered with X1 = R((WA)p), and

‖x‖X1
= ‖(WA)−px‖in the worst case error definition in section 3; for a given p ≥ 0. In this first case

of low regularity: p = 0.
• Φ† ∈ R((WA)p(−∆)−

1
4 ), 1 ≤ p ≤ 2. High regularity such that Tikhonov solution is optimal in the

same sense as before. ( see Theorem 2.12 [1, p. 38]).

• Φ† ∈ R((WA)p(−∆)−
1
4 ), p > 2. High regularity where no regularization parameter exists making

optimal the Tikhonov solution (Φ† ∈ R((WA)p), p > 2. In our particular case, ‖WA‖ < 1, by

analogous proof of Theorem 1.21 in [1] one has that ωA(δ,K, ‖·‖1) < O(δ
2
3 ), and Theorem 2.13, also

in [1], tells us that Tikhonov solution cannot be optimal for p > 2.

For a given noise level δ > 0, and regularization parameter α, the AD and Tikhonov solutions will be

respectively denoted by Φm,δ,α
AD

, and Φm,δ,αT . The best possible regularized solutions in a synthetic example are
defined by the smallest regularization parameters solving

α
AD

= argminα>0

∥∥Φ† − Φm,δ,α
AD

∥∥ , α
T

= argminα>0

∥∥∥Φ† − Φm,δ,αT

∥∥∥ .
The relative error of a regularized solution Φ̃ is defined by RE(Φ̃) =

‖Φ†−Φ̃‖
‖Φ†‖ , as usual. Corresponding

histograms are shown in Figure 1. Mean values and standard deviations (std) of a comparative numerical test
between the best possible solutions for AD and Tikhonov solutions are presented in Table 1; the comparative is
made for any p ∈ {0, 1, 3} determining regularity of the exact solution (Φ† ∈ R

(
(WA)

p
(−∆)−1/4

)
), and noise

level δ ∈ {1e− 3, 1e− 6, 1e− 9}. In all cases a 300 size sample of synthetic data (Φ†, ψ†, φ, ψ) were built via the
analytic form (35):

• ζ†, ψ†, ~δ(1), ~δ(2) ∈ V (550) such that any one of their Fourier coefficients in the {v1, v2...} system is a
pseudo random number with a normal standard distribution. Besides the error, we build a large sample
of pseudo-random exact pairs (ζ†, ψ†) in L2(Γ) × L2(Γ) to control the regularity on Φ† through its
Fourier series.

• Φ† = (WA)p(−∆)−
1
4 ζ†, according with the cases described above.

• φ̃ = AΦ† +Bψ† + δ
~δ(1)

‖~δ(1)‖ , and ψ̃ = ψ† + δ
~δ(2)

‖~δ(2)‖ .

RE(Φn,δ,αADAD ) RE(Φn,δ,αTT )
Φ† ∈ δ mean value std mean value std

1E-3 0.947458241 0.019608435 0.947495676 0.019603288
R((WA)0(−∆)−1/4) 1E-6 0.892655869 0.019817953 0.892685598 0.019811939

1E-9 0.835546278 0.020035893 0.835555588 0.02003477
1E-3 0.004486134 0.000219996 0.005334435 0.0013084

R((WA)(−∆)−1/4) 1E-6 5.70165E-05 1.76458E-5 6.89085E-5 1.86605E-5
1E-9 6.43584E-7 1.70329E-7 7.71689E-7 1.83486E-7
1E-3 0.003488645 0.000192304 0.004563972 0.000762609

R((WA)3(−∆)−1/4) 1E-6 3.41411E-5 5.07517E-6 4.95877E-5 6.81315E-6
1E-9 3.59424E-7 5.00185E-08 5.49233E-7 6.91165E-8

Table 1. Mean values and standard deviations for the best possible solutions for AD and
Tikhonov solutions. Samples size:300. Height of the cylinder: a = 1. For p = 0 the identity
I = (WA)0 is considered in L2(Γa).
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(a) READ(Φ)

(b) RET (Φ)

Figure 1. Histograms of RE
AD−T (φ̃, ψ̃), in 300 size samples, with noise level error δ, and

regularity of the exact data determined by p (Φ† ∈ R((WA)p(−∆)−1/4)). Height of the cylinder:
a = 1. For p = 0 the identity I = (WA)0 is considered in L2(Γa).
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Figure 2 shows that low regularity on the exact solution implies a higher order on the worst case error. Two
cases are seen, in the first one the exact solution is not regular enough to belong to a class of functions for which
Tikhonov strategy behaves well, while the second example was made applying WA to the exact data in the first
example, in order to include an example where best possible Tikhonov solution must be optimal. In both cases
the shared Neumann component is the following non differentiable function given in polar coordinates:

ψ†(r, θ) =
√
|r − θ|(r sin(3r) cos(θ))3,

as long as Dirichlet boundary conditions are

Φ†(r, θ) =
(1− r) cos(θ)3

r
, and Φ†(r, θ) = WA

(1− r) cos(θ)3

r
; φ† = AΦ† +Bψ†.

Cauchy data (φ†, ψ†) were perturbed in the same pseudo-random way than before with a noise level δ = 10−4

to obtain (φ̃, ψ̃).

Remark 4.4. In this case, an eigenfunction of −∆ has the form

v(r, θ) = Ji(λr) cos(jθ), v(r, θ) = Ji(λr) sin(jθ), (48)

where Ji is the special Bessel function of first kind and order i, and λ are such that Ji(λ) = 0.

4.2. Link with the invariant embedding

The boundary data completion problem in Γa has been approached as the first kind linear inverse problem in
eq. (12). That can also be done in the framework of the invariant embedding in [2], with the slightly difference
that the embedding is taken from a to 0 instead of from 0 to a, and state u defined by (6)-(9) is the only one
used. The boundary data problem (6)-(9) is embedded in a family of boundary data problem defined in the
sub-domains Ωs = (s, a)× Γ. Consider the following families of BVP:

∆u
(s)
1 = 0 in Ωs,

u
(s)
1

∣∣∣
Σ

= 0,

u
(s)
1

∣∣∣
Γa

= Φ,

∂u
(s)
1

∂ν

∣∣∣∣∣
Γs

= 0,

∆u
(s)
2 = 0 in Ωs,

u
(s)
2

∣∣∣
Σ

= 0,

u
(s)
2

∣∣∣
Γa

= 0,

∂u
(s)
2

∂ν

∣∣∣∣∣
Γs

= ζ.

Let A(s) : H
1/2
00 (Γa) → H

1/2
00 (Γs) be the Dirichlet to Dirichlet operator defined by: A(s)Φ = u

(s)
1

∣∣∣
Γs

, and

B(s) : (H
1/2
00 (Γs))

′ → H
1/2
00 (Γs) the Neumann to Dirichlet operator defined by B(s)ζ = u

(s)
2

∣∣∣
Γs

. This way,

equation (49) holds, and (12) is obtained from it, at s = 0:

u(s; ·) = B(s)
∂u2

∂ν

∣∣∣∣
Γz

+Aa(s)Φ. (49)

Through the same formal derivation scheme as in [2, 9, 16], with h = a − z, all the following equations are
fulfilled for h ∈ (0, a)

d
dhA(h) +B(h)∆ΓA(h) = 0, A(0) = I,

d
dhB(h) +B(h)∆ΓB(h) = I, B(0) = 0.
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Figure 2. Comparison of AD and Tikhonov solutions. First line: Φexact = Φ† is given by ((1−
r) cos(θ)3)/r. Projection of Φexact over V (550), PrΦexact (left), best possible AD solution (cen-
ter), best possible Tikhonov solution (right). Second line: Φexact = WA

(
((1− r) cos(θ)3)/r

)
.

Projection of Φexact over V (550), PrΦexact (left), best possible AD solution (center), best possi-
ble Tikhonov solution (right). Semi-discretization scheme in section 4.1. Height of the cylinder:
a = 1.
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Now, operators P (s) : H
1/2
00 (Γa) → (H

1/2
00 (Γa))′ and W (s)(: H

1/2
00 (Γs))

′ → (H
1/2
00 (Γa))′ will be as in [16]:

Ωs = (0, s)× Γ, P (s)Φ =
∂U

(s)
1

∂ν

∣∣∣∣
Γa

, and W (s)ψ = − ∂U
(s)
2

∂ν

∣∣∣∣
Γa

, where:

∆U
(s)
1 = 0 in Ωs,

U
(s)
1

∣∣∣
Σ

= 0,

U
(s)
1

∣∣∣
Γs

= τ,

∂U
(s)
1

∂ν

∣∣∣∣∣
Γ0

= 0,

∆U
(s)
2 = 0 in Ωs,

U
(s)
2

∣∣∣
Σ

= 0,

U
(s)
2

∣∣∣
Γs

= 0,

∂U
(s)
2

∂ν

∣∣∣∣∣
Γ0

= ψ.

According with [2, 9, 16]:

d
dsP + P 2 = −∆Γ, P (0) = 0,

d
dsW + PW = 0, W (0) = I.

Hence, the invariant embedding in [16] allows to set the normal equations of the AD solution depending
on operators satisfying the above formal differential equations, also suggesting that it can be implemented in
the same discretized and semi-discretized schemes than the factorization method in more complex geometries
of Ω, or when the goal is to solve as fast as possible the same inverse problem for a set of measured Cauchy
data recorded in a period of time, computing once for all the involved operator and avoiding time consuming
numerical methods. The key of those statements is that the same regularization approach developed in sections
2 to 3.1 apply for the following cases:

• Ω a cylinder as before, where null Dirichlet boundary condition (7) is replaced by the Neumann one
∂u
∂ν

∣∣
Σ

= 0, and the spaces E0 and E00 are defined as follows

E0 =

{
v ∈ H1(Ω) :

∂u

∂ν

∣∣∣∣
Σ

= 0

}
, E00 =

{
v ∈ E0 : v|Γ1

= 0
}
,

• Ω = Ω0 \ clRn (Ω1), where Ω0 and Ω1 are bounded domains in Rn with regular boundaries, and such
that clRn (Ω1) ⊂ Ω0. In this case Γ0 = ∂Ω0, Γ1 = ∂Ω1, boundary condition (7) is omitted, and

E0 = E00 =
{
v ∈ H1(Ω) : v|Γ1

= 0
}
.

In both of previous modifications of the inverse problem, L2(Γ1)⊥ =
{

Φ ∈ L2(Γ1) :
∫

Γ1
ΦdS = 0

}
must be

the domain of Q. Both examples are developed in [16] in the framework o the factorization method when there
exists a C1 diffeomorphism between Γ0 and Γ1.

5. Discussion

The proposed solution was built following a new regularization scheme, which do not provide a general strat-
egy in the regularization theory; however, it allows to take full advantage on all available a priori information
about the solution for a given problem, following an intuitive way to build optimal approximations to the so-
lution. When the measured Cauchy data is projected over the set of admissible data, we are looking for the
nearest Cauchy data in a subclass of functions defined by strong enough a priori information. This subclass is
such that the weak solution of the Cauchy problem is well defined on it, in other words, the approximation is
optimal because we forced it.
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The AD solution in this case leads to a constrained optimization problem, were constraints are defined by the
available a priori information. If this information guarantees that the solution is a regular point for the given
constraints, they can become regularization parameters via the equivalent Lagrangian multipliers. In that case
and by the following modification Ts(Φ, ψ) = (AsΦ + Bψ,ψ) described in section 3, the AD solution can be
thought as the image of a compact operator applied over the first component of the Tikhonov solution for the
linear and non compact operator. Another way of looking at it is through eq. (34), where one can easily see that

(A∗sAS +αI)A∗s(φ̃−Bψδ,α) is the Tikhonov solution for the original inverse problem Aφ = ρ were the perturbed
output data have been continuously modified by eq. (33). Anyhow, it seems that careful modifications of well
known strategies can be applied under the 2nd assumption of a priori information, strategies like discrepancy
principle, L−curve [15], U -curve, balancing principle [23], or ADP technique [12].

For more complex geometries of Ω, when the goal is to solve as fast as possible the same inverse problem for
different output data recorded in a period of time, section 4.2 and [10,16] suggest that the invariant embedding
can be an option for numerical implementations of the admissible data methodology.

The last remarkable aspect is that, applying this procedure, a kind of deterministic hypothesis test is given

when δ and
∥∥(Φ†, ψ†)

∥∥
0

are known. In practice, if the projection (φδ, ψδ) satisfies the inequality
∥∥∥(φδ, ψδ)− (φ̃, ψ̃)

∥∥∥ ≥
√

2δ, then it is possible to say that there is something wrong with the device which recorded the Cauchy data,
or, in the worst of the cases, that the model of the phenomena is not good enough for the desired purposes.

Finally, the obtained regularized solution was compared with Tikhonov regularization strategy, since it is
still the most common applied regularization strategy, even though it is well known that it cannot be optimal
for high enough smoothness of the input data in linear inverse problems [1, Theorem 2.13 p.39].

6. Conclusion

In cylindrical domains is enough to known the value of the natural norm of the exact Cauchy data (φ†, ψ†)
in the class of admissible data; in the general assuming slightly stronger a priori information is enough. With
the employed methodology, an optimal regularized approximation to the boundary data completion problem is
attained. However, in the Lagrangian formulation, the regularized solution depends on the a priori information
K =

∥∥(Φ†, ψ†)
∥∥

0
, which is rarely available in practice. The remaining research issue is to obtain a method to

choose the parameter α in (28) that only depends on the measurement.
Numerical examples show that the best possible AD solution behaves well in a semi-discretized scheme;

however, it is important to explore other discretization schemes for different, and more complex geometries of
Ω, where computation of eigenfunctions vk, and eigenvalues λk is a problem itself.

References

[1] Kirsch A. An introduction to the Mathematical Theory of Inverse Problems, volume 120 of Applied Mathematical Sciences.

New York, 1996.
[2] A. B. Abda, J. Henry, and F. Jday. Boundary data completion: The method of boundary value problem factorization. Inverse

Problems, 27(5), 2011.

[3] V. Albani, P. Elbau, M. V. de Hoop, and O. Scherzer. Optimal convergence rates results for linear inverse problems in hilbert
spaces. Numerical Functional Analysis and Optimization, 37(5):521–540, 2016.

[4] Denisov A.M. Elements of the Theory of Inverse Problems. Berlin, Boston, 2014.
[5] N. Aronszajn. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second

order. J. Math. Pures Appl, 1957.

[6] Mejdi Azaez, Faker Ben Belgacem, and Henda El Fekih. On cauchy’s problem: Ii. completion, regularization and approximation.
Inverse Problems, 22(4):1307, 2006.

[7] Faker Ben Belgacem. Why is the cauchy problem severely ill-posed? Inverse Problems, 23(2):823, 2007.

[8] Faker Ben Belgacem and Henda El Fekih. On cauchy’s problem: I. a variational steklov−poincaré theory. Inverse Problems,
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