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Abstract—In this paper we demonstrate the feasibility of an
extended and flexible SDN control plane that allows to overcome
the limitations of the Openflow protocol by achieving distributed
and intelligent network services in SDN networks. This extended
control plane is designed according to the following reference
guidelines;
1) the concept of generic and programmable network nodes
usually known as “white boxes”. They integrate a generic engine
to execute the service and a library of elementary components
as basic building blocks of any services;
2) a fine grained decomposition logic of network services into
elementary components, which allows the services to be designed
and customized on the fly using these building blocks available
on each network node in libraries;
3) a mechanism for re-configuring or redefinition on the fly of the
network services on generic nodes without service interruption;
4) some smart elementary agents called SDN controllers elements
to provide and distribute the intelligence necessary to interact
with the data plane at different levels of locality.

This SDN control plane is illustrated in a proof of concept with
the implementation of a distributed monitoring service use case.
The monitoring service can act and evolve in a differentiated
manner in the network depending on traffic requirements and
monitoring usage.

Index Terms—Programmable, Data plane, Controller, SDN

I. INTRODUCTION

During the last decades, several network architectures, such

as the IETF Policy Based Networking and ForCes, have

emerged to make the network more flexible. The most em-

blematic evolution is certainly that which consists in separating

the control plane from the data plane, which is proposed in

Software-Defined Networking (SDN).

By centralizing the control function, SDN makes it easier

to instantiate new services and applications. In fact, SDN

eliminates the need for distributed protocols, replacing them

with a simpler protocol, like OpenFlow [1], for communi-

cation between controllers and switching equipments. The

effectiveness of the Openflow protocol, which does not require

equipments’ renewal, is certainly at the origin of its wide

deployment by infrastructure operators, making it the de

facto SDN protocol. However, OpenFlow based SDN archi-

tectures are strongly limited in their functionalities according

to different dimensions. In its essence, the SDN approach is

centralized with one controller controlling a large cluster of

very simple switches in the network. It is therefore difficult

to implement efficiently in a distributed way some usual and

classical functions currently used in networks. This is the case

for instance with the functions which manage large amounts

of traffic for firewalling, security or packet inspection, or the

functions which need some locality like fast rerouting to react

on time, or finally those that require intelligent analysis on

network nodes like monitoring.

We propose in this paper an extended, flexible SDN control

plane which is able to overcome these limitations. It allows to

manage dynamically, on the fly, and in a differentiated way,

networks functions which are distributed in network nodes.

We illustrate this concept through a monitoring use case and

we demonstrate that we are thus able to introduce flexibility,

dynamicity and adaptability in such functions to implement

various scenarios of service deployment.

The remainder of this paper is organized as follows. Section

II details the related works. Section III introduces the consid-

ered design guidelines. Section IV describes the monitoring

use case. Section V gives more details about the proof of con-

cept implementation details. Section VI discusses the obtained

results. Finally, the paper concludes in Section VII.

II. RELATED WORKS

As we mentioned, the Openflow protocol has inherent

limitations. There are some drawbacks to shifting all logic to

the controller level. Indeed, taking all decisions on a remote

point can present problems of latency and scalability [2].

Different solutions were proposed to tackle the issues intro-

duced beforehand. The distribution of controllers was one of

the first approaches considered to solve these problems while

increasing the reliability of these networks. In [3], the authors

proposed a new framework, named Elasticon, for the dynamic

placement of controllers. Other approaches, quite similar, have

been proposed in the literature, some of which have been very

successful with network operators such as ONOS [4].

To optimize operation, some approaches present a hier-

archical architecture, in which one or more high-level con-

trollers handle events requiring a global vision and lower-

level controllers handle events requiring a local vision [2]. In

[5], H. Yeganeh et al. proposed Kandoo, a hierarchical set of

controllers compatible with OpenFlow. They define a notion

of local controllers directly managing a set of switches and a

root controller that benefit from a global view of the network.

Although the paper shows impressive results, it is to notice

that the application scope of this solution is restricted to envi-

ronments where local decisions are predominant such as Data

Centers’ environments. A similar approach, named Orion,

was presented, in [6]. One main difference with Kandoo’s

architecture lies in the role of each control plane. In Orion,

the local controllers are managing an entire area and propose

an abstract view of their areas to a global area manager.

Another difference with Kandoo is the intrinsic distribution



of the Domain Controllers. Whereas Kandoo pleads for a

“logically” centralized global controller, Orion designed its

domain controller layer with several global controllers interact-

ing on the inter-sub-domain management through a distributed

protocol. While efficient and powerful, these solution inherit

the shortcomings of Openflow. This means that the provision

of on-demand functions remains difficult to implement and

localized new decision-making is still very limited.

Enriching switches, traditionally lacking intelligence in

Openflow, with a stateful per flow processing, as proposed in

[7], allows for much more elaborated functionality. However,

even if the concept generalizes the Openflow match/action

rules and offloads the central controller, the type of supported

functions remains restricted to rather simple functions.

To go further in the complexity of the supported functions,

some recent contributions suggest data plane programming.

Based on the open source Cisco’s Vector Packet Processing

(VPP) [8], the authors proposed in [9] an extension using P4

language [10] to create plug-ins, which can be dynamically

swapped. Similarly, the authors of [11] proposed the BPFabric

platform to centrally program and monitor the data plane

using extended Berkeley Packet Filter (eBPF). In order to

ease interaction with such low level framework, the authors

proposed the use of a high level language, like P4, and to

compile it to eBPF1.

These two contributions are in line with what we proposed

earlier [12]. Indeed, we proposed to model services using a

high level language based on Petri networks, which allows

not only to optimize services, as a P4 compiler would do, but

also to extract qualitative properties. On the other hand, the

architecture we have proposed allows a global and hierarchical

management of a network, by delegating local processing logic

to local controllers. This distribution, in the operation, allows

to reduce the complexity in the management and to better

manage networks at scale.

In this paper, we propose a proof of concept using the

Click platform [13], in which we have previously developed

different modules [14]. Note that our solution could have

been developed based on eBPF or even VPP, which are more

adapted to virtualized environments.

III. DESIGN GUIDELINES

A. Guidelines and principles of the proposed architecture

We proposed a general framework of a service driven SDN

architecture in [12]. At a high level, the architecture consists

of:

• An orchestrator whose goal is to assemble, deploy and

carry out network services in the network based on

templates describing elementary network services, which

are stored in a repository.

• Distributed controllers that drive the network elements

and are in charge of executing the network services. They

form together what we call an extended and distributed

SDN control plane.

1IOvisor Project. https://www.iovisor.org/.

• Simplified, generic, programmable and efficient network

elements (white boxes) in charge of the forwarding plane,

which are driven by the local controllers in order to

implement the different network services.

Two principles underlie and guide the definition of this frame-

work.

Firstly, the introduction of models enabling the dynamic

definition of network services. These models rely on templates

that describe elementary network services. They are used and

assembled by the orchestrator to compose, validate and deploy

the targeted service.

Secondly, a generic SDN controller function is available and

ready to be instantiated and activated in all the network

components. These controllers functions can be organised

hierarchically at different levels to manage the control plane

logic and different levels of locality.

Figure 1 depicts a set of generic networks nodes com-

monly referred to as ”white boxes” carrying distributed and

differentiated network services modeled with components.

These network services components are composed of a set

of elementary network functions assembled using a graph

modeling approach and Petri nets models as described in [12].

Petri nets modeling provides the necessary tools to check

the consistency of the adopted models. A communication

channel carries management and control messages between

the orchestrator and the network nodes.

1) SDN management plan: The deployment of these com-

ponents is ensured on demand by the orchestration function

through the control & management channel. The management

channel, represented by a yellow arrow in figure 1, is used to

set up new components on nodes corresponding to different

data plane functions or to update the current components run-

ning on the data plane. The orchestrator function is in charge

of network functions deployment decisions based on human

requirements or based on some automatic processes. It is also

in charge of the effective deployment and of the update of

the network components. The network service component can

be completely updated, partially updated, i.e. some network

elements in the graph, or completely or partially removed and

modified.

2) SDN control plane: The SDN control plane channel is

encapsulated in the communication channel like the manage-

ment channel. It is represented by the green arrows which con-

nect the upper controller and the local controllers integrated

in the different components nodes. The SDN control plane is

also distributed between the upper controllers and the local

controllers connected to the elements of components which

compose the data plane. Upper controllers and local controllers

carry the smart functions of the data plane. These functions are

distributed between the local and upper controllers to manage

hierarchically different levels of locality.

B. The distributed controller function

To implement our distributed SDN controller function we

use the programmable controller for unified management of

virtualized network infrastructures proposed in [14]. The role
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of this controller is to expose heterogeneous resources in a

unified way to the control and management entities. It is

also able to provide computation resources to manage local

or global configuration decisions. In the reference paper, the

concept is illustrated in the context of a networking usecase

based on the Click software router environment [13]. We

reuse this Click controller element as a SDN controller in

our own design. This controller can be inserted in the data

plane and triggered through packets arrivals as other Click

elements or, it can operate autonomously and independently

of the packets sequences. It is able to manipulate elements

handlers making read and write functions on individual Click

elements or on sets of elements like Click components. It

also integrate a simple syntax langage to describe computing

operations executed using read parameters.

Thus, this flexible controller function can be used for our

SDN control plane in a distributed or in a hierarchical way.

We however extend its functionalities in programmability and

make it able to connect and exchange with other controllers

to distribute analysis and decision functions.

IV. A DISTRIBUTED MONITORING USE CASE

A. Use case motivations

The architectural concepts of the proposed extended SDN

control plane are illustrated through a distributed monitoring

function as it presents the following characteristics:

• A monitoring function is an elementary subset of any

network service function. It is necessary in the design of

a network service. It must be available on any node.

• A monitoring function can involve some intelligence at

the local node level. Such intelligence cannot be managed

with standard Openflow switches.

• Monitoring functions can be more or less complex de-

pending on operator requirements and context scenarios

and can be designed as context aware and upgraded

dynamically, on demand.

• A monitoring function can generate a lot of control traffic

particularly in the case of SDN OpenFlow networks,

where the monitoring is centralized and is done by

pooling.

• A monitoring function can involve some locality con-

straints for instance if a high responsiveness is required.

• A monitoring function can involve a lot of ressources

when a sophisticated analysis is required. It justifies the

benefit of dynamically adjusting the use of computing

resources.

B. Use case description

The general principle of the use case is as follows. The

goal is to detect an elephant flow, which consumes too

much bandwidth, at the expense of other flows; then to take

corrective measures if necessary at the node that detects this

flow, usually a network entry point.

In order to optimize CPU resources, we only integrate at

first a basic monitoring function in the network nodes. This

function is generic and has little impact on resources and is

distributed on all nodes of the network in the same way (step

1 in figure 2). This basic monitoring function is only able of

detecting, at wire speed, a large, increasing variation in traffic

on one of the nodes via a local controller and a global counter

shown in figure 3.

If an abnormal increase in traffic is detected by a controller,

this latter sends an alert to the higher-level controller, which

then decides to install, on-the-fly, a more elaborated monitor-

ing function, taking into account other possible criteria such as

the position of the node in the network graph. For example, if it

is an ingress node, the more complex monitoring configuration

would then be able to perform a fine-grained analysis and

identify the abnormal flow at the origin of the anomaly (step

2 in figure 2). The identification is achieved through an

enhanced monitoring service, which can identify IP sessions

and calculate their average throughput. This computation can

be done in particular through additional controllers, i.e. local

flows controllers that will interact with the first global flow

controller in figure 4.

When detecting an anomaly, a corrective action is imple-

mented by the local controller (step 3 in figure 2). It may

consist in activating and configuring a traffic shaper that is

included in the enriched configuration and that will limit the

rate of the elephant flow.

A threshold-based mechanism on the global traffic volume

allows the return to the initial monitoring configuration with-

out risks of oscillations.

We illustrate by this use case the following properties that

cannot be realized in an Openflow context for the already

mentioned reasons:

• upgrade, without interruptions, of a generic configuration,

• resources’ optimization on nodes,

• intelligent processing and local analysis of flows,

• distribution of the analysis on several elementary con-

trollers that interact and organize in a distributed or

hierarchical way the control plane,

• differentiated distribution of functions according to nodes

and needs,



• complexification or simplification of processing at a node

level as required.
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V. IMPLEMENTATION OF THE USE CASE

A. Click

The Click Modular Router [13] solution consists in launch-

ing a “Click” engine (program), in partial or total replacement

of the standard linux kernel network of a physical or virtual

machine. The engine provides a library of “elements” that

can be assembled through a configuration script to compose a

directed graph datapath, representing a particular service.

Packets travel along oriented edges between vertices (ele-

ments) in which specific processing is applied (classification,

rewriting . . . ). The class of an element specifies a fixed or

open number of input/output ports and its behavior (function).

The generic syntax is:

(elementa)[outputx] − packets → [inputy](elementb).
Packets are processed, following the functions coded in each

element possibly parametrized through a configuration string.

At the border, ‘FromDevice’ & ‘ToDevice’ elements achieve

input/output from/to network interfaces. Besides, elements

expose “handlers” (interfaces) for exchanging with each other

or with a remote manager, at run time.

The Click engine itself exposes “global handlers” for con-

trolling the overall operations. In particular, one of them allows

a “hot-reconfiguration” meaning a fast reloading on the fly of

a whole new graph.

At design time, the Click router is made from standard

and customized sources (C++ classes), allowing to extend

the library of elements. Click can be built for running ei-

ther as a user application which is more convenient for

testing/debugging experimental developments, or as a kernel

module when better performances are expected.

A configuration script is given as an argument when launch-

ing the Click router. It comprises the definitions of the graph

and initial parametrization of its elements. Basically, standard

elements accomplish simple though efficient operations. Smart

processing can be specified through classification rules for

example, to dispatch different flows onto different edges.

B. A new controller element in Click to control the dataplane

For the needs of our demonstrator and to illustrate the

proposed concepts, we extended the functionality of the Click

controller agent introduced in [14]. This element offers a

programmable automation mechanism where some actions can

be performed, as a result of a logical/arithmetical combina-

tion of global or local element handlers, following a control

expression written in an ad hoc language. This expression is

evaluated periodically, upon packet event or on demand. If

need be, actions are started by writing to arbitrary handlers. An

External Call element exposes a ’command’ handler informing

about a job to be done when active. It can be polled by

the upper controller which could in turn achieve a remote

feedback. This logic is used, in our experiment to reconfigure

on the fly the Click engine.

Beyond the basic logic functions of handlers composition,

the main points of our extensions are:

• The ability to maintain variable values in memory. These

variables make it possible, for example, to compute the

Infinite Impulse Response (IIR) filter which allows us to

smooth the traffic, to perform a traffic rate measurement.

• The possibility to read and write handlers of other

controllers so as to be able to compose logically or

arithmetically the results coming from several controllers

attached to different Click components.

Our controller can be programmed to perform the required

operations by simple configuration like any Click element.

Configuring a controller consists in configuring it with a

control expression that describes the operations to be per-

formed such as reading or writing handlers of Click elements,

composing the values of these handlers to produce new results

to trigger actions either directly at the local level, or at a more

global level through the external element (cf. figure 3 for more

details).

C. Implementation

Figure 3 shows how the basic monitoring function is im-

plemented in Click (i.e. first step of the process illustrated in

figure 2). The incoming stream is retrieved by the Click From

Device element and goes through a Click classifier element

that allows to collect the data streams on which the monitoring

applies, for example TCP or UDP streams. The flow of interest

then pass through a counter element and then through the

queue and output interface elements.

A local controller allows reading the global counter and

smoothing the extracted values. If the average value exceeds a

fixed threshold, the controller activates the “external element”

which allows raising a flag. Once this flag detected, the

central controller downloads via the communication channel

a more sophisticated Click monitoring configuration allowing

a detailed analysis on flows.

Figure 4 shows how the more sophisticated monitoring

function is designed in Click, to allow a detailed flows

analysis. The yellow elements are those that are downloaded

and added to the previous configuration. We develop the
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Contrack element. It allows to identify and separate TCP or

UDP sessions, on the different outputs. It includes variables

allowing to build a finite state machine and the identification

and the tracking of TCP or UDP sessions. On each output of

the Contrack element, we find a chain of elements composed

of a counting element, a queue element and a shaper. This

chain is used for measuring the session flow bit rate on each

output. The local flow controller of each visible chain in the

diagram is used to measure the bit rate of the session flow and

to compare it to the global flow measured by the global flow

controller. Both controllers work in coordination to activate

the shaper if needed by a simple configuration of the shaper

element in step 3 of figure 2. The configuration of the shaper

is therefore done locally.

VI. IMPLEMENTATION RESULTS & FEEDBACK

Figure 5 illustrates the proof of concept composed of three

virtual machines running on one physical machine. The VM2

node carries the simple or complex monitoring function that

applies to a route flow between two input/output interfaces

of the virtual machine. A traffic source and a receiver on the

VM1 and VM3 virtual machines allow traffic scenarios to be

performed. The global controller is set up on the physical ma-

chine and is in charge of downloading the complex monitoring

configuration. It is a simple Python script daemon. The traffic

generator successively generates over time a sequence of UDP

sessions of variable time durations and bit rates. When an

elephant flow is generated, there is a large growth of traffic

which triggers steps 2 and 3 of figure 2.

A test sequence is plotted in figure 6. It shows the progress

of the test sequence that we performed with the incoming and

outgoing flows. The sum of the incoming flows is drawn in

blue, the outgoing flows in red. The incoming elephant flow is

in green, the outcoming flow is in orange. It can be seen that

the elephant flow is limited as soon as it appears in order to
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maintain the overall traffic in a planned gauge. The transition

occurs at around t = 50s. We can see just at this time a short

loss of packets of around 40 ms related to the upgrade on the

fly of the monitoring component. It shows that the upgrade is

not fully transparent and impacts the traffic. Indeed in Click

the upgrade of Click components is done through a complete

replacement of the component by the new component. It would

be necessary to implement much more fine-tuned upgrade

mechanisms acting separately on part of the Click component

graphs to expect an update with limited impact. Nevertheless

the loss of packets remains moderate and short.

VII. CONCLUSION

In this paper, we demonstrate the feasibility of an extended

and flexible SDN control plane that overcomes the limitations
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of the openflow approach. Such limitations are as follows:

Firstly, the low programmability of Openflow switches which

prevents sophisticated local processing. Secondly, The strong

centralization that is inherent in the Openflow architecture

limits the distribution possibilities. We base this concept on

several design principles:

• A white box approach of generic programmable switches.

• A disaggregation of network services into elementary

components assembled via templates that model the ser-

vice using a graph framework.

• A service execution engine hosted on all nodes.

• The introduction of a controller function that takes the

form of an intelligent and programmable agent that can

be flexibly distributed in network service components.

We then illustrate this concept on an adaptive monitoring

use case with the objective of detecting and limiting elephant

flows. We are therefore relying on the Click architecture for

which we have developed the controller function inside the

framework of a Click element. This implementation allows

us to demonstrate the feasibility of the proposed concept. It

also allows us to highlight, limitations inherent to the Click

environment:

Firstly, regarding current Click implementation, actual data

links are statically defined. Therefore, only a reasonable

number of flows can be considered. In contrast, the logic

inside a given element has ”no limit” in terms of complexity

since this is pure software. For example, it can implement an

open list of session/flow contexts, each with a state-machine.

We developed such an element: Contrack implementing the

basis of a statefull firewall. Therefore, two axes appear for

implementing a complex logic with the Click technology:

• Gather all the logic in rich and specific multi-function

elements, which can be inconsistent with the intent of

the Click approach.

• Distribute the algorithm onto several more generic ele-

ments which require to find a way to keep the contextual

knowledge between them, using meta-data for example.

Secondly, the limitations of the hot upgrade mechanism of

Click components that causes packet loss. It would probably

require a differentiated and fine-tuned mechanism for updating

components in order to reduce losses.

However, the proposed architecture allows flexible and

reconfigurable network services to be implemented, distributed

or centralized according to requirements. It can also be

implemented to create the primitive OpenFlow scenario as

a reference. In the following part of this work, we want

to complete the notion of controller that we presented by

specifying in detail the scope of the functionalities necessary

to ensure a satisfactory programmability and modularity in

order to be able to centralize or distribute the SDN control

plane according to the requirements of network services.
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