S. Ahn, A. K. Balan, and M. Welling, Bayesian posterior sampling via stochastic gradient Fisher scoring, Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 2012.

S. Ahn, B. Shahbaba, and M. Welling, Distributed stochastic gradient MCMC, Proceedings of the 31st International Conference on Machine Learning, vol.32, pp.22-24, 2014.

J. Baker, P. Fearnhead, E. B. Fox, and C. Nemeth, Control variates for stochastic gradient MCMC, 2017.

R. Bardenet, A. Doucet, and C. Holmes, On Markov chain Monte Carlo methods for tall data, Journal of Machine Learning Research, vol.18, issue.47, pp.1-43, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01355287

N. Brosse, A. Durmus, É. Moulines, and S. Sabanis, The Tamed Unadjusted Langevin Algorithm, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01648667

N. S. Chatterji, N. Flammarion, Y. Ma, P. L. Bartlett, and M. I. Jordan, On the theory of variance reduction for stochastic gradient Monte Carlo, 2018.

C. Chen, N. Ding, and L. Carin, On the convergence of Stochastic Gradient MCMC algorithms with high-order integrators, Advances in Neural Information Processing Systems, vol.28, pp.2278-2286, 2015.

C. Chen, W. Wang, Y. Zhang, Q. Su, and L. Carin, A convergence analysis for a class of practical variance-reduction stochastic gradient MCMC, 2017.

T. Chen, E. Fox, and C. Guestrin, Stochastic gradient hamiltonian Monte Carlo, Proceedings of the 31st International Conference on Machine Learning, pp.1683-1691, 2014.

A. Dalalyan, Theoretical guarantees for approximate sampling from smooth and log-concave densities, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.79, issue.3, pp.651-676, 2017.

A. Dalalyan, Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent, Proceedings of the 2017 Conference on Learning Theory, vol.65, pp.7-10, 2017.

A. S. Dalalyan and A. G. Karagulyan, User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient, 2017.

A. Dieuleveut, A. Durmus, and F. Bach, Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01565514

N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel et al., Bayesian sampling using stochastic gradient thermostats, Proceedings of the 27th International Conference on Neural Information Processing Systems, vol.2, pp.3203-3211, 2014.

K. A. Dubey, S. J. Reddi, S. A. Williamson, B. Poczos, A. J. Smola et al., Variance reduction in stochastic gradient Langevin dynamics, Advances in Neural Information Processing Systems, vol.29, pp.1154-1162, 2016.

A. Durmus and E. Moulines, High-dimensional Bayesian inference via the unadjusted Langevin algorithm, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01304430

A. Durmus and E. Moulines, Nonasymptotic convergence analysis for the unadjusted Langevin algorithm, Ann. Appl. Probab, vol.27, issue.3, pp.1551-1587, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01176132

M. Gelbrich, On a formula for the l2 wasserstein metric between measures on euclidean and hilbert spaces, Mathematische Nachrichten, vol.147, issue.1, pp.185-203

U. Grenander, Tutorial in pattern theory, Division of Applied Mathematics, 1983.

U. Grenander and M. I. Miller, Representations of knowledge in complex systems, J. Roy. Statist. Soc. Ser. B, vol.56, issue.4, pp.549-603, 1994.

L. Hasenclever, S. Webb, T. Lienart, S. Vollmer, B. Lakshminarayanan et al., Distributed Bayesian learning with stochastic natural gradient expectation propagation and the posterior server, Journal of Machine Learning Research, vol.18, issue.106, pp.1-37, 2017.

E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for Python, 2001.

I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, 1991.

A. Korattikara, Y. Chen, and M. Welling, Austerity in MCMC land: cutting the Metropolishastings budget, Proceedings of the 31st International Conference on International Conference on Machine Learning, vol.32, 2014.

C. Li, C. Chen, D. Carlson, and L. Carin, Preconditioned stochastic gradient Langevin dynamics for deep neural networks, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI'16, pp.1788-1794, 2016.

W. Li, S. Ahn, and M. Welling, Scalable MCMC for mixed membership stochastic blockmodels, Artificial Intelligence and Statistics, pp.723-731, 2016.

Y. Ma, T. Chen, and E. Fox, A complete recipe for stochastic gradient MCMC, Advances in Neural Information Processing Systems, vol.28, pp.2917-2925, 2015.

T. Nagapetyan, A. B. Duncan, L. Hasenclever, S. J. Vollmer, L. Szpruch et al., The true cost of stochastic gradient Langevin dynamics, 2017.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation approach to stochastic programming, SIAM Journal on Optimization, vol.19, issue.4, pp.1574-1609, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00976649

S. Patterson and Y. W. Teh, Stochastic gradient riemannian Langevin dynamics on the probability simplex, Advances in Neural Information Processing Systems, vol.26, pp.3102-3110, 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

G. O. Roberts and R. L. Tweedie, Exponential convergence of Langevin distributions and their discrete approximations, Bernoulli, vol.2, issue.4, pp.341-363, 1996.

I. Sato and H. Nakagawa, Approximation analysis of stochastic gradient Langevin dynamics by using Fokker-Planck equation and Ito process, Proceedings of the 31st International Conference on Machine Learning, vol.32, pp.22-24, 2014.

Y. W. Teh, A. H. Thiery, and S. J. Vollmer, Consistency and fluctuations for stochastic gradient Langevin dynamics, The Journal of Machine Learning Research, vol.17, issue.1, pp.193-225, 2016.

C. Villani, Optimal transport : old and new. Grundlehren der mathematischen Wissenschaften, 2009.

S. J. Vollmer, K. C. Zygalakis, and Y. W. Teh, Exploration of the (non-)asymptotic bias and variance of stochastic gradient Langevin dynamics, Journal of Machine Learning Research, vol.17, issue.159, pp.1-48, 2016.

M. Welling and Y. W. Teh, Bayesian learning via stochastic gradient Langevin dynamics, Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML'11, pp.681-688, 2011.

D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. on Optimization, vol.6, issue.3, pp.714-726, 1996.