E. Arias, -. Castro, and A. Rodríguez-casal, On estimating the perimeter using the alpha-shape, Ann. Inst. Henri Poincaré Probab. Stat, vol.53, issue.3, pp.1051-1068, 2017.

J. Baudry, C. Maugis, and B. Michel, Slope heuristics: overview and implementation, Stat. Comput, vol.22, issue.2, pp.455-470, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00461639

C. P. Henry and . Berbee, Random walks with stationary increments and renewal theory, Mathematical Centre Tracts. Mathematisch Centrum, vol.112, 1979.

K. Bertin, S. E. Kolei, and N. Klutchnikoff, Adaptive density estimation on bounded domains, Accepted for publication in Annales de l'institut Henri Poincarré: Probabilités et Statistiques, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01934913

M. Bossy, E. Gobet, and D. Talay, A symmetrized Euler scheme for an efficient approximation of reflected diffusions, J. Appl. Probab, vol.41, issue.3, pp.877-889, 2004.

I. Zdravko, J. F. Botev, D. P. Grotowski, and . Kroese, Kernel density estimation via diffusion, Ann. Statist, vol.38, issue.5, pp.2916-2957, 2010.

S. Boucheron, G. Lugosi, and O. Bousquet, Concentration inequalities, Advanced Lectures on Machine Learning, pp.208-240, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00777381

S. Boucheron, G. Lugosi, and P. Massart, A nonasymptotic theory of independence, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794821

T. Bouezmarni, V. K. Jeroen, and . Rombouts, Nonparametric density estimation for multivariate bounded data, J. Statist. Plann. Inference, vol.140, issue.1, pp.139-152, 2010.

P. Cattiaux, J. R. León, and C. Prieur, Invariant density estimation for a reflected diffusion using an Euler scheme, Monte Carlo Methods Appl, vol.23, issue.2, pp.71-88, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01683980

B. Chazelle, Triangulating a simple polygon in linear time, Discrete Comput. Geom, vol.6, issue.5, pp.485-524, 1991.

C. Song-xi, Beta kernel estimators for density functions, Comput. Statist. Data Anal, vol.31, issue.2, pp.131-145, 1999.

A. Cholaquidis, R. Fraiman, E. Mordecki, and C. Papalardo, Level sets and drift estimation for reflected brownian motion with drift, 2016.

D. Cline and J. Hart, Kernel estimation of densities with discontinuities or discontinuous derivatives, Statistics, vol.22, issue.1, pp.69-84, 1991.

F. Comte, C. Prieur, and A. Samson, Adaptive estimation for stochastic damping Hamiltonian systems under partial observation, Stochastic Process. Appl, vol.127, issue.11, pp.3689-3718, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01659337

A. Goldenshluger and O. Lepski, On adaptive minimax density estimation on R d, Probab. Theory Related Fields, vol.159, issue.3-4, pp.479-543, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01265245

C. Michael and . Jones, Simple boundary correction for kernel density estimation, Statistics and Computing, vol.3, issue.3, pp.135-146, 1993.

M. Lejeune and P. Sarda, Smooth estimators of distribution and density functions, Comput. Statist. Data Anal, vol.14, issue.4, pp.457-471, 1992.

J. S. Marron and D. Ruppert, Transformations to reduce boundary bias in kernel density estimation, J. Roy. Statist. Soc. Ser. B, vol.56, issue.4, pp.653-671, 1994.

J. C. Marshall and M. L. Hazelton, Boundary kernels for adaptive density estimators on regions with irregular boundaries, J. Multivariate Anal, vol.101, issue.4, pp.949-963, 2010.

H. Müller, Smooth optimum kernel estimators near endpoints, Biometrika, vol.78, issue.3, pp.521-530, 1991.

G. Hans-, U. Müller, and . Stadtmüller, Multivariate boundary kernels and a continuous least squares principle, J. R. Stat. Soc. Ser. B Stat. Methodol, vol.61, issue.2, pp.439-458, 1999.

E. F. Schuster, Incorporating support constraints into nonparametric estimators of densities, Comm. Statist. A-Theory Methods, vol.14, issue.5, pp.1123-1136, 1985.

B. W. Silverman, Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability, 1986.

A. Tshipa, H. Valls-fox, H. Fritz, K. Collins, L. Sebele et al., Partial migration links local surfacewater management to large-scale elephant conservation in the world's largest transfrontier conservation area, Biological Conservation, vol.215, pp.46-50, 2017.

A. Tsybakov, Revised and extended from the 2004 French original, Springer Series in Statistics, 2009.

H. Valls-fox, M. De-garine-wichatitsky, H. Fritz, and S. Chamailléjammes, Resource depletion versus landscape complementation: habitat selection by a multiple central place forager, Landscape Ecology, vol.33, issue.1, pp.127-140, 2018.

G. Viennet, Inequalities for absolutely regular sequences: application to density estimation, Probab. Theory Related Fields, vol.107, issue.4, pp.467-492, 1997.

V. A. Volkonskii and . Yu-a-rozanov, Some limit theorems for random functions, Theory of Probability & Its Applications, vol.4, pp.178-197, 1959.

G. Walther, On a generalization of Blaschke's rolling theorem and the smoothing of surfaces, Math. Methods Appl. Sci, vol.22, issue.4, pp.301-316, 1999.

M. Wikelski and . Kays, Movebank: archive, analysis and sharing of animal movement data. World Wide Web electronic publication, 2018.