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Revisiting random walk based sampling 
in networks: evasion of burn‑in period 
and frequent regenerations
Konstantin Avrachenkov1  , Vivek S. Borkar2, Arun Kadavankandy3 and Jithin K. Sreedharan4* 

Abstract 

Background:  In the framework of network sampling, random walk (RW) based esti-
mation techniques provide many pragmatic solutions while uncovering the unknown 
network as little as possible. Despite several theoretical advances in this area, RW 
based sampling techniques usually make a strong assumption that the samples are in 
stationary regime, and hence are impelled to leave out the samples collected during 
the burn-in period.

Methods:  This work proposes two sampling schemes without burn-in time constraint 
to estimate the average of an arbitrary function defined on the network nodes, for 
example, the average age of users in a social network. The central idea of the algo-
rithms lies in exploiting regeneration of RWs at revisits to an aggregated super-node 
or to a set of nodes, and in strategies to enhance the frequency of such regenerations 
either by contracting the graph or by making the hitting set larger. Our first algorithm, 
which is based on reinforcement learning (RL), uses stochastic approximation to derive 
an estimator. This method can be seen as intermediate between purely stochastic 
Markov chain Monte Carlo iterations and deterministic relative value iterations. The 
second algorithm, which we call the Ratio with Tours (RT)-estimator, is a modified form 
of respondent-driven sampling (RDS) that accommodates the idea of regeneration.

Results:  We study the methods via simulations on real networks. We observe that 
the trajectories of RL-estimator are much more stable than those of standard random 
walk based estimation procedures, and its error performance is comparable to that of 
respondent-driven sampling (RDS) which has a smaller asymptotic variance than many 
other estimators. Simulation studies also show that the mean squared error of RT-esti-
mator decays much faster than that of RDS with time.

Conclusion:  The newly developed RW based estimators (RL- and RT-estimators) allow 
to avoid burn-in period, provide better control of stability along the sample path, and 
overall reduce the estimation time. Our estimators can be applied in social and com-
plex networks.

Keywords:  Network sampling, Random walks on graph, Reinforcement learning, 
Respondent-driven sampling
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Background
The prohibitive sizes of most social networks make graph-processing that requires com-
plete knowledge of the graph impractical. For instance, social networks like Facebook or 
Twitter have billions of edges and nodes. In such a situation, we address the problem of 
estimating global properties of a large network to some degree of accuracy. Some exam-
ples of potentially interesting properties include the size of the support base of a certain 
political party, the average age of users in an online social network (OSN), the propor-
tion of male–female connections with respect to the number of female–female connec-
tions in an OSN, and many others. Naturally, since graphs can be used to represent data 
in myriad of disciplines and scenarios, the questions we can ask are endless.

Graph sampling is a possible solution to address the above problem. To collect infor-
mation from an OSN, the sampler issues an Application Programming Interface (API) 
query for a particular user, which returns its one-hop neighborhood and the contents 
published. Though some OSNs (for instance Twitter) allow access to the complete data-
base with additional expense, we focus here on the typical case when a sampler can get 
information only about the neighbors of a particular user by means of API queries. There 
are several ways to collect representative samples in a network. One straightforward way 
is to collect independent samples via uniform node or edge sampling. However, uniform 
sampling is not efficient because we do not know the user ID space beforehand. Conse-
quently, the sampler wastes many samples issuing invalid IDs resulting in an inefficient 
and costly data collection method. Moreover, OSNs typically impose rate limitations on 
the API queries, e.g., Twitter with 313 million active users enforces a limit of 15 on 
requests in a 15-min time window for most of APIs.1 With this limitation, the crawler 
will need 610 years to crawl the whole Twitter. Therefore, if only a standard API is avail-
able to us, we inevitably need to use some sampling technique, and RW based tech-
niques appear as a good option.

Important notation and problem formulation

Let G = (V ,E) be an undirected labeled network, where V is the set of vertices and 
E ⊆ V × V  is the set of edges. Although the graph is undirected, in later use it would 
be more convenient to represent edges by ordered pairs (u, v). Of course, if (u, v) ∈ E, 
it holds that (v,u) ∈ E, since G is undirected. With a slight abuse of notation, the total 
number of undirected edges |E|/2 is denoted as |E|.

Both edges and nodes can have function values defined on them. For instance, in an 
OSN, the node function can be the age or number of friends and the edge function can 
be an indicator function when the terminal nodes of the edge are of same gender. Let us 
denote by g : V → R, where R is the real number space, a function on the vertices of the 
graph. We aim to estimate the following network function average:

1  https://dev.twitter.com/rest/public/rate-limits.

(1)ν(G) = 1

|V |
∑

u∈V
g(u).

https://dev.twitter.com/rest/public/rate-limits
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The constraint on the estimator is that it does not know the whole graph, and can only 
issue API requests. Each API request furnishes the function value g(·) at the node que-
ried and the list of its neighbors. Let ν̂(n)XY(G) be our estimate of ν(G) formed from n sam-
ples using the scheme XY. We will occasionally drop n and the scheme if it is clear from 
the context.

A simple RW (SRW) on a graph offers a viable solution to this problem that respects 
the above constraints. From an initial node, a simple RW proceeds by choosing one of 
the neighbors uniformly randomly and repeating the same process at the next node and 
so on. In general, a RW need not sample the neighbors uniformly and can take any tran-
sition probability compliant with the underlying graph, an example being the Metrop-
olis–Hastings schemes [1]. Random walk techniques are well known (see for instance 
[2–11] and references therein). A drawback of random walk techniques is that they all 
suffer from the problem of initial burn-in, i.e., a number of initial samples need to be 
discarded to get samples from a desired probability distribution. The burn-in period (or 
mixing time) of a random walk is the time period after which the RW produces almost 
stationary samples irrespective of the initial distribution. This poses serious limitations, 
especially in view of the stringent constraints on the number of samples imposed by API 
query rates. In addition, subsequent samples of a RW are obviously not independent. To 
get independent samples, it is customary to drop intermediate samples. In this work, we 
focus on RW based algorithms that bypass this burn-in time barrier. We focus on two 
approaches: reinforcement learning and tour-based ratio estimator.

Related work and contributions

Many random walk based sampling techniques have been introduced and studied in 
detail recently. The estimation techniques in [2–5] avoid the burn-in time drawback of 
random walks, similar to our aim. The works [2–4] are based on the idea of a random 
walk tour, which is a sample path of a random walk starting and ending at a fixed node. 
Massoulié et al. [3] estimate the size of a network based on the return times of RW tours. 
Cooper et al. [2] estimate the number of triangles, network size, and subgraph counts 
from weighted random walk tours using the results of Aldous and Fill  [12, Chapters 2 
and 3]. The work in [4] extends these results to edge functions, provides real-time Bayes-
ian guarantees for the performance of the estimator, and introduced some hypothesis 
tests using the estimator. Instead of the estimators for the sum function of the form ∑

u∈V g(u) proposed in these previous works; here we study the average function (1). 
Walk-estimate proposed in [5] aimed to reduce the overhead of burn-in period by con-
sidering short random walks and then using acceptance–rejection sampling to adjust 
the sampling probability of a node with respect to its stationary distribution. This work 
requires an estimate of probability of hitting a node at time t, which introduces a compu-
tational overhead. It also needs an estimate of the graph diameter to work correctly. Our 
algorithms are completely local and do not require these global inputs.

There are also specific random walk methods tailored for certain forms of function g(v) 
or criterion, for instance, in [10] the authors developed an efficient estimation technique 
for estimating the average degree, and Frontier sampling in [11] introduced dependent 
multiple random walks in order to reduce estimation error.
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Two well-known techniques for estimating network averages ν(G) are the Metropolis–
Hastings MCMC (MH-MCMC) scheme [1, 9, 13, 14] and Respondent-Driven sampling 
(RDS) [6–8].

In our work, we first present a theoretical comparison of the mean-squared error of 
MH-MCMC and RDS estimators. It was observed that in many practical cases RDS out-
performs MH-MCMC in terms of asymptotic error. We confirm this observation here 
using theoretical expressions for the asymptotic mean-squared errors of the two estima-
tors. Then, we introduce a novel estimator for the network average based on reinforce-
ment learning (RL). By way of simulations on real networks, we demonstrate that, with 
a good choice of cooling schedule, RL can achieve similar asymptotic error performance 
to RDS but its trajectories have smaller fluctuations.

Finally, we extend RDS to accommodate the idea of regeneration during revisits to a 
node or to a ‘super-node,’ formed by aggregating several nodes, and propose the RT-esti-
mator, which does not suffer from burn-in period constraints and significantly outper-
forms the RDS estimator.

Notational conventions

Expectation w.r.t. the initial distribution η of a RW is denoted by Eη, and if the dis-
tribution degenerates at a particular node j, the expectation is Ej. Matrices in Rn×n 
are denoted by boldface uppercase letters, e.g., A, and vectors in Rn×1 are denoted 
by lowercase boldface letters, e.g., x, whereas their respective elements are denoted 
by non-bold letters, e.g., Aij , xi. Convergence in distribution is denoted by D−→ . By 
L(X) we mean the law or the probability distribution of a random variable. We use 
N (µ, σ 2) to denote a Gaussian random variable with mean µ and variance σ 2. Let 
us define the fundamental matrix of a Markov chain as Z := (I − P + 1π⊺)−1. For 
two functions f , g : V → R, we define σ 2

ff := 2�f ,Zf �π − �f , f �π − �f , 1π⊺f �π , and 
σ 2
fg := �f ,Zg�π + �g ,Zf �π − �f , g�π − �f , 1π⊺g�π , where �x, y�π :=

∑
i xiyiπi, for any 

two vectors x, y ∈ R
|V|×1,π being the stationary distribution of the Markov chain.

Organization

The rest of the paper is organized as follows: In “MH-MCMC and RDS estimators” sec-
tion, we discuss MH-MCMC as well as RDS providing both known and new material on 
the asymptotic variance of the estimators.  “Network sampling with reinforcement learn-
ing (RL-technique)” section introduces the reinforcement learning based technique for 
sampling and estimation. It also details a modification for an easy implementation with 
SRW. Then, in  “Ratio with tours estimator (RT-estimator)” section, we introduce a mod-
ification of the RDS based on the ideas of super-nodes and tours. This modification also 
does not have a burn-in period and significantly outperforms the plain RDS.  “Numeri-
cal results” section contains numerical simulations performed on real-world networks 
and makes several observations about the new algorithms. We conclude the article 
with “Conclusions” section.
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MH‑MCMC and RDS estimators
The utility of RW based methods comes from the fact that for any initial distribution ν, 
as time progresses, the sample distribution of the RW at time t starts to resemble a fixed 
distribution, which we call the stationary distribution of the RW, denoted by π .

We will study mean squared error and asymptotic variance of random walk based esti-
mators in this paper. For this purpose, following extension of the central limit theorem 
for Markov chains plays a significant role:

Theorem 1  ([15]) Let f be a real-valued function f : V �→ R with Eπ [f 2(X0)] < ∞. For 
a finite irreducible Markov chain {Xn} with stationary distribution π ,

irrespective of the initial distribution, where

Note that, the above also holds for finite periodic chains (with the existence of unique 
solution to π⊺P = π⊺).

By [13, Theorem 6.5] σ 2
f  in Theorem 1 is the same as σ 2

ff . We will also need the follow-
ing theorem.

Theorem 2  ([14], Theorem 3) If f, g are two functions defined on the states of a random 
walk, define the vector sequence Zk =

[
f (Xk)

g(Xk)

]
 the following central limit theorem holds

where � is 2× 2 matrix such that �11 = σ 2
ff ,�22 = σ 2

gg and �12 = �21 = σ 2
fg .

The time required by a random walk or Markov chain to reach stationarity is meas-
ured by a parameter called mixing time defined as

where �ξ1 − ξ2�TV := maxA⊂V |ξ1(A)− ξ2(A)| is the total variational distance between 
the probability distributions ξ1 and ξ2. If the mixing time is known, then as many sam-
ples are omitted in any RW based algorithm to ensure that the samples are in stationary 

√
n

(
1

n

n−1∑

k=0

f (Xk)− Eπ [f (X0)]
)

D−→ N (0, σ 2
f ),

(2)

σ 2
f = lim

n→∞
n× E



�
1

n

n−1�

k=0

f (Xk)− Eπ [f (X0)]
�2




:= lim
n→∞

1

n
Var

�
n−1�

k=0

f (Xk)

�
.

√
n

(
1

n

n∑

k=1

Zk − Eπ (Zk)

)
D−→ N (0,�),

tmix(ǫ) := min{t : max
u∈V

�Pt(x, ·)− π�TV ≤ ǫ},
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regime. Since it is difficult to calculate the mixing time accurately, practitioners often use 
a prediction called burn-in period which is much larger than the mixing time.

Function average from RWs

The SRW is biased towards higher degree nodes and by Theorem 1, the sample averages 
converge to the stationary average. Hence if the aim is to estimate an average function 
(1), the RW needs to have uniform stationary distribution. Alternatively, the RW should 
be able to unbias it locally. In order to obtain the average, we modify the function g by 
normalizing it by the vertex degrees to get g ′(u) = g(u)/πu, where πu = du/(2|E|). Since 
π(u) contains |E| and the knowledge of |E| is not available to us initially, it also needs to 
be estimated. To overcome this problem, we consider the following modifications of the 
SRW-based estimator.

Metropolis–Hastings random walk

We review here the Metropolis–Hastings MCMC (MH-MCMC) algorithm. When the 
chain is in state i, it chooses the next state j according to transition probability pij. It then 
jumps to this state with probability qij or remains in the current state i with probability 
1− qij , where qij is given as below:

Therefore, the effective jump probability from state i to state j is qijpij , when i �= j. It fol-
lows then that such a process represents a Markov chain with the following transition 
matrix PMH

This chain is reversible with stationary distribution π(i) = 1/n ∀i ∈ V . Therefore, the 
following estimate for ν(G) using MH-MCMC, {Xn} being MH-MCMC samples, is 
asymptotically consistent.

By using Theorem 1, we can show the following central limit theorem for MH-MCMC.

Proposition 1  (Central Limit Theorem for MH-MCMC) For MCMC with uniform tar-
get stationary distribution it holds that

(3)qij =
{

min

(
pji
pij
, 1

)
if pij > 0,

1 if pij = 0.

PMH
ij =





1
max(di ,dj)

if (i, j) ∈ E,

1−
�

k �=i
1

max(di ,dk )
if i = j,

0 if (i, j) /∈ E, i �= j.

ν̂
(n)
MH(G) = 1

n

n∑

k=1

g(Xk)

√
n
(
ν̂
(n)
MH

(G)− ν(G)

)
D−→ N (0, σ 2

MH),
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as n → ∞, where σ 2
MH = σ 2

gg = 2
|V |g

⊺ZMHg − 1
|V |g

⊺g −
(

1
|V |g

⊺1
)2

 and 

ZMH = (I − PMH + 1
|V |11

⊺)−1.

Respondent‑driven sampling technique (RDS‑technique)

The estimator with respondent-driven sampling uses the SRW on graphs but applies a 
correction to the estimator to compensate for the non-uniform stationary distribution, 
i.e.,

We define hnm(Xk) := g(Xk)/d(Xk), hdm(Xk) := 1/d(Xk). Note that this estimator does 
not require |E|.

The asymptotic unbiasedness derives from the Ergodic Theorem and also as a conse-
quence of the CLT given below.

Now we have the following CLT for the RDS Estimator.

Proposition 2  The RDS estimator ν̂(n)RDS(G) satisfies a central limit theorem given below

where σ 2
RDS is given by

where 
σ 2
1 = 1

|E|
∑

i,j∈V giZijgj/dj− 1
2|E|

∑
i∈V

gi
di
−( 1

2|E|
∑

i∈V gi)
2, σ 2

2 = 1
|E|

∑
i,j∈V Zij/dj−

1
2|E|

∑
i
1
di
− ( 1

dav
)2, σ 2

12 = 1
2|E|

∑
i,j∈V giZij/dj + 1

2|E|
∑

i,j∈V Zij/di − 1
2|E|dav

∑
i gi.

Proof  Define the vector zt =
[
hnm(xt)
hdm(xt)

]
, and let z̃n = √

n
(
1
n

∑n
t=1 zt − Eπ (zt)

)
. Then 

by Theorem  2, z̃n
D−→ Normal(0,�), where � is the correlation matrix, whose formula 

given in Theorem 2. Let z̃n = (z̃
1
n, z̃

2
n). Then we have

(4)ν̂
(n)
RDS(G) =

∑n
k=1 g(Xk)/d(Xk)∑n

k=1 1/d(Xk)
.

√
n
(
ν̂
(n)
RDS

(G)− ν(G)

)
D−→ Normal(0, σ 2

RDS),

σ 2
RDS = d2av

(
σ 2
1 + σ 2

2 ν
2(G)− 2ν(G)σ 2

12

)
,

∑n
t=1 hnm(xt)∑n
t=1 hdm(xt)

=
1√
n
z̃
1
n + µhnm

1√
n
z̃
2
n + µhdm

= z̃
1
n +

√
nµhnm

z̃
2
n +

√
nµhdm

= z̃
1
n +

√
nµhnm

√
nµhdm

(
1+ z̃

2
n√

nµhdm

)

= 1√
nµhdm

(
z̃
1
n −

z̃
1
nz̃

2
n√

nµhdm

+
√
nµhnm − z̃

2
nµhnm

µhdm

+Op

(
1√
n

))
,
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where Op(
1√
n
) is a term that goes to zero in probability at least as fast as 1√

n
, and 

µhnm ,µhdm are, respectively, Eπ (hnm) and Eπ (hdm). Then

by Slutsky’s lemma [16]. The result then follows since (z̃1n, z̃
2
n) converges to jointly Gauss-

ian random variable, and by continuous mapping theorem. � �

Comparing random walk techniques

Random walks can be compared in many ways. Two prominent ways to compare RW 
estimators are based on their mixing times tmix and their asymptotic variances. Mixing 
time is relevant in the situations where the speed at which the RW approaches the sta-
tionary distribution matters. But many MCMC algorithms discard some initial samples 
(called burn-in period) to mitigate the dependence on the initial distribution and this 
amounts to the mixing time. After the burn-in period, the number of samples needed for 
achieving a certain estimation accuracy can be determined from the Gaussian approxi-
mation given by the central limit theorem (see Theorem 1). Hence, another measure for 
comparison of the random walks is the asymptotic variance in the Gaussian approxima-
tion. The lower the asymptotic variance, the smaller the number of samples needed for 
a certain estimation accuracy. Many authors consider asymptotic unbiasedness as the 
principal parameter to compare RW based estimators. For instance, the authors in [17] 
prove that non-backtracking random walks perform better than the SRW and MH-
MCMC methods in terms of the asymptotic variance of the estimators. The asymptotic 
variance can be related to the eigenvalues of P as follows:

where �x, y�π =
∑

i∈V xiyiπi  [13, Chapter 6]. When the interest is in the speed of con-
vergence to equilibrium, then only the second-largest eigenvalue modulus matters. 
However, if the aim is to compute Eπ [f (X0)] as the ergodic mean limn→∞ 1

n

∑n
k=1 f (Xk) , 

then all the eigenvalues become significant and this is captured when the quality of the 
ergodic estimator is measured by the asymptotic variance.

Network sampling with reinforcement learning (RL‑technique)
We will now introduce a reinforcement learning approach based on stochastic approxima-
tion to estimate ν(G). The underlying idea relies on the idea of tours and regeneration intro-
duced in [2–4]. We will compare the mean squared error of the new estimator with that of 
MH-MCMC and RDS, and see how the stability of the sample paths can be controlled.

Estimator

Let V0 ⊂ V  with |V0| << |V |. We assume that the nodes inside V0 are known before-
hand. Consider a simple random walk {Xn} on G with transition probabilities 
p(j|i) = 1/d(i) if (i, j) ∈ E and zero otherwise. A random walk tour is defined as the 
sequence of nodes visited by the random walk during successive return to the set V0. Let 

(5)
lim
n→∞

L

(
√
n

(∑n
t=1 f

′
(Xt)∑n

t=1 g(Xt)
−

µf
′

µg

))
= lim

n→∞
L

(
1

µg

(
z̃
1
n − z̃

2
n

µf
′

µg

))
,

σ 2
f =

|V |∑

i=2

1+ �
P
i

1− �
P
i

|�f ,uP
i �π |

2
,
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τn := successive times to visit V0 and let ξk := τk − τk−1. We denote the nodes visited in 
the kth tour as X (k)

1 ,X
(k)
2 , . . . ,X

(k)
ξk

. Note that considering V0 helps to tackle a discon-
nected graph2 with RW theory and makes tours shorter. Moreover, the tours are inde-
pendent of each other and can have massively parallel implementation. The estimators 
derived below and later in “Ratio with tours estimator (RT-estimator)” section  exploit 
the independence of the tours and the result that expected sum of functions of nodes 
visited in a tour is proportional to 

∑
u∈V g(u) [4, Lemma 3].

Define Yn := Xτn. Then {(Yn, τn)} is a semi-Markov process on V0 [18, Chapter 5]. In 
particular, {Yn} is a Markov chain on V0 with transition probability matrix (say) [pY (j|i)]. 
We have ξ1 := min{n > 0 : Xn ∈ V0}. For a prescribed g : V �→ R, define

Consider an average cost Markov decision problem (MDP), then the Poisson equation 
for the semi-Markov process {(Yn, τn)} is [18, Chapter 7]

which is to be solved for the pair (V ,β), where V : V0 �→ R and β ∈ R. Under mild con-
ditions, (6) has the solution (V ∗,β∗). The optimal β∗ is the average expected cost station-
ary average of g, Eπ [g(X1)] [18, Theorem 7.6]. In the following, we provide numerical 
ways to solve (6). This could be achieved using the classical MDP methods like relative 
value iteration; instead we look for solutions from reinforcement learning in which the 
knowledge of transition probability [pY (j|i)] is not needed. Stochastic approximation 
provides a simple and easily tunable solution as follows. The relative value iteration algo-
rithm to solve (6) is

We can implement this using stochastic approximation as follows: let {Zn, n ≥ 1} be 
from the stationary distribution of the underlying RW conditioned on being in V0. Con-
struct a tour for n ≥ 1 by starting a SRW X (n)

i , i ≥ 0, with X (n)
0 = Zn and observing its 

sample path until it returns to V0.
A learning algorithm for (6) along the lines of [19] then is, for i ∈ V0,

2  The underlying Markov chain of the RW requires to be irreducible in order to apply many results of the RWs and this 
is satisfied when the graph is connected. In case of a disconnected graph, taking at least one seed node from each of the 
components to form V0 helps to achieve this.

Ti := Ei[ξ1],

h(i) := Ei

[
ξ1∑

m=1

g(Xm)

]
, i ∈ V0.

(6)V(i) = h(i)− βTi +
∑

j∈V0

pY (j|i)V(j), i ∈ V0,

(7)Vn+1(i) = h(i)− Vn(i0)Ti +
∑

j

pY (j|i)Vn(j).

(8)

Vn+1(i) = Vn(i) + a(n)I{Zn = i}×
[(

ξn∑

m=1

g(X (n)
m )

)
− Vn(i0)ξn + Vn(X

(n)
ξn

)− Vn(i)

]
,
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where a(n) > 0 are stepsizes satisfying 
∑

n a(n) = ∞,
∑

n a(n)
2 < ∞. (One good 

choice is a(n) = 1/⌈ n
N ⌉ for N = 50 or 100.) Here I{A} denotes indicator function for the 

set A. Also, i0 is a prescribed element of V0. One can use other normalizations in place 
of Vn(i0) , such as 1

|V0|
∑

j Vn(j) or mini Vn(i), see e.g., [20]. Then this normalizing term 
(Vn(i0) in (8)) converges to β∗, Eπ [g(X1)], as n increases to ∞.

Taking expectations on both sides of (8), we obtain a deterministic iteration that can 
be viewed as an incremental version of the relative value iteration (7) with suitably scaled 
stepsize ã(n) := a(n)

|V | . This can be analyzed the same way as the stochastic approxima-
tion scheme with the same o.d.e. limit and therefore the same (deterministic) asymptotic 
limit. This establishes the asymptotic unbiasedness of the RL estimator.

The normalizing term used in (8) (Vn(i0), 1
|V0|

∑
j Vn(j) or mini Vn(i)), along with the 

underlying random walk as the Metropolis–Hastings, forms our estimator ν̂RL(G) in RL-
based approach. The iteration in (8) is the stochastic approximation analog of it which 
replaces conditional expectation w.r.t. transition probabilities with an actual sample and 
then makes an incremental correction based on it, with a slowly decreasing stepsize that 
ensures averaging. The latter is a standard aspect of stochastic approximation theory. 
The smaller the stepsize, the less the fluctuations but slower the speed; thus, there is a 
trade-off between the two.

RL methods can be thought of as a cross between a pure deterministic iteration such 
as the relative value iteration above and pure MCMC, trading off variance against per 
iterate computation. The gain is significant if the number of neighbors of a node is much 
smaller than the number of nodes, because we are essentially replacing averaging over 
the latter by averaging over neighbors. The V-dependent terms can be thought of as con-
trol variates to reduce variance.

Extension of RL‑technique to uniform stationary average case

The stochastic approximation iteration in (8) converges to β, which is Eπ [g(X1)], where 
π is the stationary distribution of the underlying walk. To make it converge to ν(G), we 
can use the Metropolis–Hastings random walk with uniform target distribution. How-
ever, we can avoid the use of Metropolis–Hastings algorithm by the following modifica-
tion, motivated from importance sampling that achieves the convergence to ν(G) with 
the simple random walk (SRW). We propose

where

Here q(·|·) is the transition probability of the random walk with which we simulate 
the algorithm and p(·|·) corresponds to the transition probability of the random walk 
with respect to which we need the stationary average. The transition probability p can 

Vn+1(i) = Vn(i) + a(n)I{z = i} × Ŵ
(n)
ξn

×
[(

ξn∑

m=1

g(X (n)
m )

)
− Vn(i0)ξn + Vn(X

(n)
ξn

)− Vn(i)

]
,

Ŵ(n)
m =

m∏

k=1

(
p(X

(n)
k |X (n)

k−1
)

q(X
(n)
k |X (n)

k−1
)

)
.
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belong to any random walk having uniform stationary distribution such that q(·|·) > 0 
whenever p(·|·) > 0. One example is to use p as the transition probability of Metropo-
lis–Hastings algorithm with target stationary distribution as uniform and q as the transi-
tion probability of a lazy version of simple random walk, i.e., with transition probability 
matrix (I + PSRW)/2. In comparison with basic Metropolis–Hastings sampling, such 
importance sampling avoids the API requests for probing the degree of all the neigh-
boring nodes, instead requires only one such, viz., that of the sampled node. Note that 
the self-loops wherein the chain re-visits a node immediately are not wasted transitions, 
because it amounts to re-application of a map to the earlier iterate which is distinct from 
its single application.

The reinforcement learning scheme introduced above is the semi-Markov version of 
the scheme proposed in [20] and [21].

Advantages

The RL-technique extends the use of regeneration, tours and super-node introduced in 
[4] to the average function ν(G). Even though the RL-technique is not non-asymptoti-
cally unbiased unlike the algorithm in [4], it has the following advantages:

1.	 It does not need to wait until burn-in time to collect samples;
2.	 Comparison with [4]: The super-node in [4] is a single node, an amalgamation of the 

node set V0. But such a direction assumes that the contribution of all the edges inside 
the induced subgraph of V0 to ν(G) completely known. It could have been avoided if 
we could make use of the techniques for partitioning state space of a Markov chain 
(called lumpability in  [22]). The conditions stated in  [22, Theorem  6.3.2] are not 
satisfied here and hence we can not invoke such techniques. But the RL-technique, 
without using the lumpability arguments, need not know the edge functions of the 
subgraph induced by V0;

3.	 RL-technique along with the extension in  “Extension of RL-technique to uniform 
stationary average case” section can further be extended to the directed graph case 
provided the graph is strongly connected. On the other hand, for estimators from 
other RW based sampling schemes, the estimator requires knowledge of the station-
ary distribution to unbias and thus to form the estimator. But in many cases includ-
ing SRW on directed graphs, the stationary distribution does not have a closed form 
expression unlike in undirected case, and this poses a big challenge for design of sim-
ple random walk based estimators;

4.	 As explained before, the main advantage of RL-estimator is its ability to control 
the stability of sample paths and its position as a cross between deterministic and 
MCMC iteration. We will see more about this in the numerical section.

Ratio with tours estimator (RT‑estimator)
In this section, we use of the idea of regeneration and tours introduced in [4] to estimate 
the average function ν(G). However, since the tour estimator only gives an unbiased esti-
mator for network sums namely 

∑
i∈V g(i), to find an estimate for ν(G) we use the same 

samples to get an estimate for |V |. Let In be the set of initial nodes recruited for form-
ing the super-node [4] and let Sn be the single combined node corresponding to In. We 
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emphasize that while in RL-technique, the set of selected nodes In stays intact, in the RT-
estimator case, we shrink all these nodes in one super-node Sn. The estimator will com-
pensate for network modification. With a sampling budget B, the RT-estimator is given by

where m(B) is the number of tours until the budget B,

The function f (u) := g(u) if u /∈ In, otherwise f (u) = 0.
This estimator is very close to RDS sampling, explained in “Respondent-driven sam-

pling technique (RDS-technique)” section, except that we miss B−
∑m(B)

k=1
ξk samples for 

the estimation purpose and we use super-node to shorten tours. Namely, we can lever-
age all the advantages of super-node mentioned in [4, Section 2] and we claim that this 
would highly improve the performance. We show this via numerical simulations in the 
next section, and theoretical properties will be studied in the future.

Note that the formation of super-node is different from V0 considered in the RL-tech-
nique, where the RW tours can start from any uniformly selected node inside V0 and 
the tours end when it hit the set V0. On the other hand, the super-node which is formed 
from n nodes in V is considered as a single node (removing all the edges in between the 
nodes in Sn) and this contracts the original graph G. Both the formulations have advan-
tages of their own: Super-node and its estimator is easy to form and compute, but one 
needs to know all the edges between the nodes in Sn, i.e., the induced subgraph from Sn 
should be known a priori. The set V0 in RL-technique does not demand this.

Numerical results
The algorithms RL-technique, RT-estimator, RDS, and MH-MCMC are compared in this 
section using simulations on three real-world networks. For the figures in this section, 
the x-axis represents the budget B which is the number of allowed samples, and is the 
same for all the techniques. We use the normalized root mean squared error (NRMSE) 
for comparison for a given B and is defined as

Datasets

We use the following datasets. All the datasets are publicly available.3

(9)ν̂RT (Dm(B)(Sn)) =

m(B)∑
k=1

ξk−1∑
t=1

f (X
(k)
t )

d
X
(k)
t

+
∑

i∈In g(i)

dSn

m(B)∑
k=1

ξk−1∑
t=1

1

d
X
(k)
t

+ n

dSn

,

m(B) := max



k :

k�

j=1

ξj ≤ B



.

NRMSE :=
√
MSE/ν(G), where MSE = E

[(
ν̂(n)(G)− ν(G)

)2]
.

3  See public repositories SNAP (https://snap.stanford.edu/data/) and KONECT (http://konect.uni-koblenz.de/).

https://snap.stanford.edu/data/
http://konect.uni-koblenz.de/
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Les Misérables network  In Les Misérables network, nodes are the characters of the 
novel and edges are formed if two characters appear in the same chapter in the novel. 
The number of nodes is 77 and number of edges is 254. We have chosen this rather 
small network in order to compare the methods in terms of theoretical limiting variance 
(which is difficult to compute for large networks).

Friendster network  We consider a larger graph here, a connected subgraph of an online 
social network called Friendster with 64,600 nodes and 1,246,479 edges. The nodes in 
Friendster are individuals and edges indicate friendship.

Enron email network  The nodes in this network are the email ID’s of the employees in 
Enron and the edges are formed when two employees communicated through email. We 
take the largest connected component with 33, 696 nodes and 180, 811 edges.

Choice of demonstrative functions

Recall that the network function average to be estimated ν(G) =
∑

u∈V g(u)/|V | . 
In the Les Misérables network, we consider four demonstrative functions: a) 
g(v) = I{d(v) > 10}, b) g(v) = I{d(v) < 4}, c) g(v) = d(v) where I{A} is the indicator 
function for set A, and d) for calculating ν(G) as the average clustering coefficient

(10)C := 1

|V |
�

v∈V
c(v), where c(v) =





t(v)/

�
dv
2

�
if d(v) ≥ 2

0 otherwise,
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with t(v) as the number of triangles that contain node v. Then g(v) is taken as c(v) itself. 
In the Friendster network, we consider the functions a) g(v) = I{d(v) > 50} and b) 
g(v) = c(v) [see (10)] used to estimate the average clustering coefficient.

In case of the Enron network, we aim to estimate the proportion of number of ele-
ments in a community, assuming each node knows which community it associates with 
it. We look for community with index 1 with 6, 225 nodes, i.e., g(v) = I{Comm(v) = 1} , 
with Comm(v) denote the community node v part of. We expect such a function will 
have an impact on the performance of RDS and MH-MCMC. The communities are 
recovered using the algorithm described in [23]. We also consider g(v) = d(v) for the 
Enron network.

NRMSE comparison of RDS, MHMC, and RL‑technique

For the RL-technique, we choose the initial set V0 by uniformly sampling nodes assum-
ing the size of V0 is given a priori.

The average in MSE is calculated from multiple runs of the simulations. The simu-
lations on Les Misérables network are shown in Fig.  1 with a(n) = 1/⌈ n

10
⌉ and |V0| as 

25. The plot in Fig. 2 shows the results for Friendster graph with |V0| = 1000. Here the 
sequence a(n) is taken as 1/⌈ n

25
⌉. Figure 3 presents the results in Enron network using 

a(n) = 1/⌈ n
20
⌉, and V0 with 1000 nodes randomly selected.

Among the three techniques compared on these figures, RDS always works better. The 
MSE of RL-technique is comparable to RDS, and in some cases very close to it.
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Study of asymptotic variance of RDS, MHMC, and RL‑technique

The mean squared error MSE = Var[ν̂(n)(G)] +
(
E[ν̂(n)(G)] − ν(G)

)2
. Here we study 

the asymptotic variance σ 2
g  [see (2)] of the estimators in terms of n×MSE, since the bias 

|E[ν̂(n)(G)] − ν(G)| → 0 as n → ∞.
In order to show the asymptotic MSE expressions derived in Propositions 1 and 2, we 

plot the sample MSE as MSE× B in Figs. 4a–c. These figures correspond to the three 
different functions we have considered for Les Misérables network. It can be seen that 
asymptotic MSE expressions match well with the estimated ones.
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Stability of RL‑technique

Now we concentrate on single sample path properties of the algorithms. Hence, the 
numerator of NRMSE becomes absolute error. Figure 5a shows the effect of increasing 
initial set V0 size while fixing step size a(n) and Fig. 5b shows the effect of changing a(n) 
when V0 is fixed. In both the cases, the green curve of RL-technique shows much stabil-
ity compared to the other techniques.

Designing tips for the RL‑technique

Some observations from the numerical experiments performed above are as follows:

1.	 With respect to the limiting variance, RDS always outperforms the other two meth-
ods tested. However, with a good choice of parameters the performance of RL is not 
far from that of RDS;

2.	 In the RL-technique, we find that the normalizing term 1/|V0|
∑

j Vn(j) converges 
much faster than the other two options, Vt(i0) and mini Vt(i);

3.	 When the size of the super-node decreases, the RL-technique requires smaller step 
size a(n). For instance in case of Les Misérables network, if the initial set V0 size is 
less than 10, RL-technique does not converge with a(n) = 1/(⌈ n

50
⌉ + 1) and requires 

a(n) = 1/(⌈n
5
⌉);
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4.	 If step size a(n) decreases or the super-node size increases, RL fluctuates less but 
with slower convergence. In general, RL has less fluctuations than MH-MCMC or 
RDS.

NRMSE comparison of RDS and RT‑estimator

Here, we compare RDS and RT estimators. The choice of RDS for comparison is moti-
vated by the results shown in the previous section that it outperforms other sampling 
schemes considered in this paper so far, in terms of asymptotic variance and mean 
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squared error. Moreover, RT-estimator can be regarded as a natural modification of RDS 
making use of the ideas of tours and super-node.

Figure  6 shows the results in Friendster network. It can be readily noticed that RT-
estimator outperforms RDS. Figure 7 presents the results for Enron email network. In 
both the cases, RT-estimator performs the best and we see this as a consequence of the 
introduction of super-node to overcome slow mixing.

Conclusions
We addressed a critical issue in the RW based sampling methods on graphs: the burn-
in period. Our ideas are based on exploiting the tours (regenerations) and on the best 
use of the given seed nodes by making only short tours. These short tours or crawls, 
which start and return to the seed node set, are independent and can be implemented 
in a massively parallel way. The idea of regeneration allows us to construct estimators 
that are not marred by the burn-in requirement. We proposed two estimators based on 
this general idea. The first, the RL-estimator, uses reinforcement learning and stochas-
tic approximation to build a stable estimator by observing random walks returning to 
the seed set. We then proposed the RT-estimator, which is a modification of the classi-
cal respondent-driven sampling, making use of the idea of short crawls and super-node. 
These two schemes have advantages of their own: the reinforcement learning scheme 
offers more control on the stability of the sample path with varying error performance, 
and the modified RDS scheme based on short crawls is simple and has superior perfor-
mance compared to the classical RDS.

In the future, our aim is to study deeply the theoretical performance of our algorithms. 
We have also left open the selection process for the initial seed set or the super-node, 
and this also suggests an interesting research topic to explore in the future.
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