C. Ansótegui, M. Bonet, L. , and J. , SAT-based MaxSAT algorithms, Artificial Intelligence, vol.196, pp.77-105, 2013.

C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving, 2003.

S. Becker, A. Feist, M. Mo, G. Hannum, B. Palsson et al., Quantitative Prediction of Cellular Metabolism with Constraint-based Models: The COBRA Toolbox, Nature Protocols, vol.2, pp.727-738, 2007.

R. Caspi, R. Billington, L. Ferrer, H. Foerster, C. A. Fulcher et al., The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic acids research, vol.44, pp.471-80, 2016.

G. Collet, D. Eveillard, M. Gebser, S. Prigent, T. Schaub et al., Extending the metabolic network of Ectocarpus siliculosus using answer set programming, Proceedings of the Twelfth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'13, vol.8148, pp.245-256, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853752

G. Dantzig, Linear Programming and Extensions, 1963.

A. Ebrahim, J. Lerman, B. Palsson, and D. Hyduke, COBRApy: COnstraints-Based Reconstruction and Analysis for Python, BMC Systems Biology, vol.7, p.74, 2013.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub et al., Theory solving made easy with clingo 5, Technical Communications of the Thirty-second International Conference on Logic Programming (ICLP'16, vol.52, pp.1-2, 2016.

M. Gebser, R. Kaminski, B. Kaufmann, J. Romero, and T. Schaub, Progress in clasp series 3, Proceedings of the Thirteenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'15, vol.9345, pp.368-383, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186997

M. Gelfond and V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Generation Computing, vol.9, pp.365-385, 1991.

T. Handorf, O. Ebenhöh, H. , and R. , Expanding metabolic networks: Scopes of compounds, robustness, and evolution, Journal of Molecular Evolution, vol.61, pp.498-512, 2005.

C. Frioux, T. Schaub, S. Schellhorn, A. Siegel, and P. Wanko,

T. Janhunen, R. Kaminski, M. Ostrowski, T. Schaub, S. Schellhorn et al., Clingo goes linear constraints over reals and integers, Theory and Practice of Logic Programming, vol.17, pp.872-888, 2017.

M. Latendresse, Efficiently gap-filling reaction networks, BMC bioinformatics, vol.15, p.225, 2014.

C. Maranas and A. Zomorrodi, Optimization methods in metabolic networks, 2016.

J. Orth and B. Palsson, Systematizing the generation of missing metabolic knowledge, Biotechnology and bioengineering, vol.107, pp.403-415, 2010.

M. Ostrowski and T. Schaub, ASP modulo CSP: The clingcon system, Theory and Practice of Logic Programming, vol.12, pp.485-503, 2012.

S. Prigent, G. Collet, S. Dittami, L. Delage, F. Ethis-de-corny et al., The genome-scale metabolic network of ectocarpus siliculosus (ectogem): a resource to study brown algal physiology and beyond, The Plant Journal, vol.80, pp.367-381, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01057153

S. Prigent, C. Frioux, S. Dittami, S. Thiele, A. Larhlimi et al., Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks, PLOS Computational Biology, vol.13, p.212, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01449100

T. Schaub and S. Thiele, Metabolic network expansion with ASP, Proceedings of the Twenty-fifth International Conference on Logic Programming (ICLP'09, vol.5649, pp.312-326, 2009.

P. Simons, I. Niemelä, and T. Soininen, Extending and implementing the stable model semantics, Artificial Intelligence, vol.138, pp.181-234, 2002.

I. Thiele, N. Vlassis, F. , and R. , fastGapFill: efficient gap filling in metabolic networks, Bioinformatics, vol.30, pp.2529-2531, 2014.

E. Vitkin and T. Shlomi, MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks, Genome Biology, vol.13, p.111, 2012.

, S1 " , s ). metabolite (" S2 " , s ). metabolite

, R_importS 1 " , s ). reaction (" R_importS2

, R_importS 2 "), R_importS1 "). reversibl e

, R0 " , d ). reaction (" R1

, R2 " , d ). reaction (" R3

, R4

, R5

, R7 " , r ). reaction (" R8

R. , T. , T. ). , and T. , , p.-reaction

, Listing 2: Example instance of metabolic network

, Note that in lines 33 to 37 of Listing 2, the values of objective and bounds are set globally, but they may be arbitrary in general