Skip to Main content Skip to Navigation
Conference papers

Graphlet Count Estimation via Convolutional Neural Networks

Abstract : Graphlets are defined as k-node connected induced subgraph patterns. For instance, for an undirected graph, 3-node graphlets include close triangle and open triangle. The number of each graphlet, called graphlet count, is a signature which characterizes the local network structure of a given graph. Graphlet count plays a prominent role in network analysis of many fields, most notably bioinformatics and social science. However, computing exact graphlet count is inherently difficult and computational expensive because the number of graphlets grows exponentially large as the graph size and/or graphlet size grow. To deal with this difficulty, many sampling methods were proposed to estimate graphlet count with bounded error. Nevertheless, these methods require large number of samples to be statistically reliable, which is still computationally demanding. Intuitively, learning from historic graphs can make estimation more accurate and avoid many repetitive counting to reduce computational cost. Based on this idea, we propose a convolutional neural network (CNN) framework and two preprocessing techniques to estimate graphlet count. Extensive experiments on two types of random graphs and real world biochemistry graphs show that our framework can offer substantial speedup on estimating graphlet count of new graphs with high accuracy.
Complete list of metadata

Cited literature [7 references]  Display  Hide  Download
Contributor : Konstantin Avrachenkov Connect in order to contact the contributor
Submitted on : Tuesday, November 27, 2018 - 4:33:19 PM
Last modification on : Tuesday, November 17, 2020 - 12:10:13 PM


Files produced by the author(s)


  • HAL Id : hal-01936850, version 1



Xutong Liu, Yu-Zhen Chen, John Lui, Konstantin Avrachenkov. Graphlet Count Estimation via Convolutional Neural Networks. Complex Networks 2018, Dec 2018, Cambridge, United Kingdom. ⟨hal-01936850⟩



Record views


Files downloads