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Abstract

Let be given a graph G = (V,E) whose edge set is partitioned into a set R of red edges and a set B of blue
edges, and assume that red edges are weighted and contain a spanning tree of G. Then, the Bilevel Minimum
Spanning Tree Problem (BMSTP) is that of pricing (i.e., weighting) the blue edges in such a way that the total
weight of the blue edges selected in a minimum spanning tree of the resulting graph is maximized. In this paper
we present different mathematical formulations for the BMSTP based on the properties of the Minimum Spanning
Tree Problem and the bilevel optimization. We establish a theoretical and empirical comparison between these new
formulations and we also provide reinforcements that together with a proper formulation are able to solve medium
to big size instances random instances. We also test our models in instances already existing in the literature.

Keywords: Minimum Spanning Tree; Bilevel optimization; Stackelberg game

1. Introduction

Let G be a given a graph whose edge set is partitioned into a set of red edges and a set of blue edges, and
assume that red edges are weighted and contain a spanning subgraph of G. Then, the Bilevel Minimum
Spanning Tree Problem (BMSTP) consists in pricing (i.e., weighting) the blue edges in such a way that
the total weight of the blue edges selected in a Minimum Spanning Tree (MST) of the resulting graph is
maximized.
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An example of the BMSTP is the following. Suppose a telecommunications company (TC) owns
several connections (blue edges) between different nodes of a network. A new provider wants to enter
into the market building a network that connects all nodes at minimum cost. It may use the connections
of TC or those of its competitors (red edges). The target is to maximize the profit of the connections that
TC could sell to the new provider.

The BMSTP can be seen as a bilevel optimization problem where the second level is a MST and where
the objective functions are bilinear at both levels. Optimization problems related to spanning trees, or
simply Spanning Tree Problems (STP), are among the core problems in combinatorial optimization. On
the one hand, the combinatorial object that represents spanning trees has important structural properties.
On the other hand, from a practitioner point of view, spanning trees are found in a wide range of applica-
tions in many fields (e.g. computer networks design, telecommunications networks, transportation, etc).
Furthermore, they often appear as subproblems of other more complex optimization problems.

In game theory, a bilevel optimization problem is known under the name of Stackelberg game (von
Stackelberg, 1934) and it consists in a game between a leader and a follower who play sequentially.
Those players compete with each other: the leader makes the first move, and then the follower reacts
optimally to the leader’s action. This kind of hierarchical game is asymmetric in nature, where the leader
and the follower cannot be interchanged. The leader knows ex ante that the follower observes its actions
before responding in an optimal manner. Therefore, to optimize its objective, the leader anticipates the
optimal response of the follower. In this setting, the leader’s optimization problem contains a nested
optimization task that corresponds to the follower’s optimization problem.

Several papers have been published covering the problem in which the second level consists in choos-
ing shortest paths between pairs of origins and destinations. The problem was first introduced by Labbé
et al. (1998). Roch et al., 2005 show that the problem is strongly NP-hard even when the second level
consists in one single shortest path. More references regarding that bilevel optimization problem can be
found in the surveys of van Hoesel (2008) and Labbé and Violin (2013).

Gassner (2002) studied a discrete variant of the bilevel minimum spanning tree problem where a
partition of the set of edges into leader- and follower-edges is given. The leader’s action is to choose a
subset of his edges while the follower’s reaction is to build up a spanning tree that includes the edges
chosen by the leader. Hence, the leader’s and follower’s decision vectors are discrete.

Cardinal et al. (2011) proved the APX-hardness of the BMSTP even when the number of red edge
costs is 2, and gave an approximation algorithm with guaranteed worst case performance. They also
give an integer programming formulation for the problem and study its linear programming relaxation.
Further Cardinal et al. (2013) proved that the problem remains NP-hard even if G is planar, while it can
be solved in polynomial time once that G has bounded treewidth.

Bilò et al. (2015) point out that the hardness in finding an optimal solution for the BMSTP lies in the
selection of the optimal set of blue edges that will be purchased by the follower. Since once a set of blue
edges is part of the final MST, their best possible pricing can be computed in polynomial time, as shown
in Cardinal et al. (2011).

Morais et al. (2016) introduce a reformulation and a Branch-and-cut-and-price algorithm for BM-
STP. The reformulation is obtained after applying KKT optimality conditions to a BMSTP non-compact
Bilevel Linear Programming formulation and is strengthened with a partial rank-1 RLT and with valid
inequalities from the literature. They also implemented a Branch-and-cut algorithm for an extended for-
mulation derived from another one in the literature and a preliminary computational study comparing
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both methods is presented.
In this paper we will present different mathematical formulations for the BMSTP based on the prop-

erties of the MSTP and the bilevel optimization paradigm. We establish a theoretical and empirical
comparison between these new formulations that are able to solve medium to big size random instances.
We also test our models in instances already existing in the literature taken from Morais et al. (2016).

The remainder of the paper is organized as follows. In Section 2 we formally define BMSTP and
provide a new heuristic algorithm. Sections 3 and 4 present the catalogue of formulations that we study
for the BMSTP including those corresponding to the MST subproblem. The empirical performance of
the resulting BMSTP formulations is analyzed in Section 5, where we present extensive numerical results
and a comparison with existing ones. Finally, some conclusions are summarized in Section 6.

2. Problem description and preliminary results

The BMSTP can be formally defined as follows. Let be given a graph G = (V,E) whose edge set E is
partitioned into a setB of blue edges (controlled by the leader) and a setR of red edges, and assume that
red edges are weighted and contain at least one spanning tree of G, thus, |R| ≥ |V | − 1. A positive cost
ce is associated to each red edge e ∈ R and a positive price Te (T = [T1, ..., T|E|]) has to be determined
for each blue edge e ∈ B. We denote by x = [x1, ..., x|E|] the design variables used to describe the
spanning tree polytope T .

Then, the Bilevel Minimum Spanning Tree Problem (BMSTP) consists in determining Te for each
e ∈ B in such a way that the total weight of the blue edges selected in a minimum spanning tree of the
resulting graph is maximized. A very general non-linear model for the BMSTP is then the following:

BMSTP : max
T≥0

∑
e∈B

Texe (1a)

s.t.: x = argmin
x∈T

{
∑
e∈B

Texe +
∑
e∈R

cexe}. (1b)

Objective function (1a) maximizes the total weight of the blue edges selected in the solution. Con-
straints (1b) return the MST in the graph for a given cost vector T .

Example 1. LetG be a graph as depicted in Figure 1 left where red edges provide a spanning tree of total
cost 20. Blue edges can be priced as in Figure 1 center or Figure 1 right in order to provide a BMSTP
solution of value 15.
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Fig. 1. Graph with edge costs (left) and two BMST optimal solutions for |B| = |E| − (|V | − 1)
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2.1. Basic results

We first observe (see Cardinal et al., 2013) that in every optimal BMSTP solution the prices Te, e ∈ B
take values in the set of red edges cost.

Property 1. In every optimal BMSTP solution Te ∈ CR = {ce′ : e′ ∈ R} for each e ∈ B.

Second, we observe (see Cardinal et al., 2013) that the cost of each blue edge belonging to an optimal
solution is bounded from above by the minimum among the maximum of the red costs of each cycle
that contain the blue edge. Let C(e, S) be the set of cycles of G that include edge e and edges of the set
S ⊆ E\{e}. Then,

Property 2. (Strong necessary condition for optimal BMSTP solution) If T
∗

is an optimal BMSTP
solution and T ∗ the associated tree, then

Te ≤ min
Θ∈C(e,E)

max
e′∈Θ∩R

ce′ , e ∈ B ∩ T
∗

In particular, we observe that each blue edge in an optimal solution verifies that its price is upper
bounded by the maximum cost of red edges for which belongs to a path linking the end vertices of the
blue edge and containing only red edges. Analogously, the cost of each blue edge of an optimal spanning
tree is bounded from below by the minimum cost of a red edge that belongs to a path linking the end
vertices of the blue edge and containing only red edges.

Property 3. (Weak necessary condition for optimal BMSTP solution) If T is an optimal BMSTP solution
then

me = min
Θ∈C(e,R),e′∈Θ

ce′ ≤ Te ≤ max
Θ∈C(e,R),e′∈Θ

ce′ = Me e ∈ B

Property 3 provides upper and lower bounds for each variable Te, e ∈ B.
It is known that a spanning tree T ∗ is an optimal MSTP solution if for each edge e 6∈ T ∗ , each edge

e′ ∈ T ∗ and in the cycle that contains e has a cost less or equal than ce, that is

T ∗ is an optimal MSTP solution ⇔ ce′ ≤ ce, ∀e ∈ E : e /∈ T ∗ , e′ ∈ C(e, T ∗) : e′ 6= e

Similarly, depending if e, e′ belong to R or B we can provide an optimality condition for the BMSTP:

Property 4. (BMSTP optimality condition) If T ∗ is the associated tree of an optimal BMSTP solution
then:

ce′ ≤ ce e ∈ R : e 6∈ T ∗ , e′ ∈ R ∩ C(e, T ∗) : e′ 6= e (2a)

Te′ ≤ ce e ∈ R : e 6∈ T ∗ , e′ ∈ B ∩ C(e, T ∗) : e′ 6= e (2b)

ce′ ≤ Te e ∈ B : e 6∈ T ∗ , e′ ∈ R ∩ C(e, T ∗) : e′ 6= e (2c)

Te′ ≤ Te e ∈ B : e 6∈ T ∗ , e′ ∈ B ∩ C(e, T ∗) : e′ 6= e (2d)
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Cardinal et al. (2011) provides a simple approximation algorithm, called Best-Out-Of-k algorithm:
Let c1 < ... < c|K| be the |K| different edge costs that appear in the initial red set of edges, where
k ∈ K is the index of the k− th cost and CR = {c1 < ... < c|K|} is the set of costs. The Best-Out-Of-k
algorithm consists in choosing the best cost ck to be assigned to all T values. We can also rewrite this
algorithm as a property in the following way:

Property 5. (BMSTP feasibility) A feasible BMSTP solution (lower bound) is given by:

T = (ck)1×|B| / k = arg max
k∈K

{∑
e∈B

ckxe : x = argmin
x∈T

{
∑
e∈B

ckxe +
∑
e∈R

cexe}

}

2.2. A general framework for providing BMSTP feasible solutions

Algorithm 1: BMSTP-H algorithm
input :
• solbest: Current best solution (by default Te = c|K|, ∀e ∈ B).
• b: Number of blue edges to modify (by default b = |B|)
• S: Set of edges that has been chosen in previous iterations (by default S = ∅)
• p1: probability of choosing edges from B or from B\S (by default p1 = 0)
• p2: probability of choosing a direction of movement where “moving up” is chosen with probability
p2 and “moving down” with probability 1− p2 (by default p2 = 0)
• STOPc: STOP condition (by default “repeat |K| times”)

output: solbest: Current best solution.
1 while STOPc = false do
2 According to p1, a subset BS of b blue edges is chosen from B ∪ S or from B\S.
3 S ← S ∪BS .
4 Edges e ∈ BS verifying Te > Me or Te < me are removed from BS .
5 According to p2, for each e ∈ BS increase/decrease by one unit k in cke .
6 Evaluate the BMSTP solution updating cke for all e ∈ BS .
7 if solbest is outperformed then
8 Update solbest
9 else

10 reset values cke for all e ∈ BS

In this subsection we generalize the Best-Out-Of-k algorithm by means of a local search algorithm
that we denote BMSTP-H. Basically, this algorithm starts fixing the prices of the blue edges with a given
value (current best solution) and iteratively, a subset of blue edges is chosen and their associated prices
are increased/decreased. The BMSTP solution is then evaluated fixing the new prices of the blue edges. If
an improvement is achieved, the current best known solution is updated. Otherwise, we reset the modified
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blue edges prices and we iterate until a stop condition is fulfilled. For a particular value of the search
parameters, this algorithm has as a particular case the Best-Out-Of-k algorithm. However, BMSTP-
H allows one to intensify the search by varying (1) the number of blue edges prices to modify, (2)
increasing or decreasing the prices, (3) choosing or not blue edges already chosen in previous iterations
and (4) modifying the stop condition. Additionally the algorithm can be run several times in a row for
different values of the search parameters.

Note that the Best-Out-Of-k algorithm is equivalent to
BMSTP-H(b = |B|, p1 = 1, p2 = 0, solbest = ∅, STOPc = “repeat |K| times”).

In our experiments we apply three runs of BMSTP-H sequentially. The current best solution achieved
on each module is used as an input in the following:

1. BMSTP-H(b = |B|; p1 = 1; p2 = 0;STOPc = “repeat |K| times”)→ sol1.
2. BMSTP-H(b = 1; p1 = 0; p2 = 0; solbest = sol1; STOPc = “repeat until the set of chosen edges

have size |B|”)→ sol2.
3. BMSTP-H(b = 1, p1 = 0, p2 = 1, solbest = sol2; STOPc = “repeat until the set of chosen edges

have size |B|”)→ sol3.

We report on the performance of solutions found by the heuristic in Section 5. As an indicator Table
4 in Section 5 shows the number of times (in %) that the BMSTP-H algorithm reached the best lower
bound for each BMSTP formulation.

3. Primal-dual BMSTP formulations

Let minx≥0{cx : x ∈ T } be a continuous linear MSTP formulation and maxµ≥0{dµ : µ ∈ T D(c)} its
dual form. We also denote by T D(c, T ) the polyhedron resulting by replacing ce by Te for each e ∈ B
of T D. We therefore can express the BMSTP as

F 0 : max
T≥0

∑
e∈B

Texe (3a)

s.t.: x ∈ T (3b)

µ ∈ T D(c, T ) (3c)∑
e∈B

Texe +
∑
e∈R

cexe = dµ. (3d)

Since T and T D(c, T ) define linear domains, the strong duality theorem holds and the primal and dual
solutions can be forced to take the same value as in (3d). Therefore, the revenue (3a) can be optimized
ensuring that an optimal minimum spanning tree is chosen by the follower. In addition, if ce are integers,
at least one optimal solution has integers variables Te as well (as previously mentioned) and, therefore,
integrality constraints are not needed for variables x.

Note that the product of T and x variables makes F 0 non-linear. In this section, we firstly propose
two linearizations of F 0. Second we develop a polyhedral description of the Spanning Trees (ST) of G
(coming from the one given by Martin, 1991) and its dual form. Finally we propose different alternatives
to describe the spanning tree polyhedron T within F 0.
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3.1. Linear BMSTP formulations

The product of variables Tx can be linearized defining a new set of variables pe = xeTe, e ∈ B as the
profit of edge e. In the following we denote by Fp the linearization of (3a)–(3d) using variables p, that is

Fp : max
T≥0

∑
e∈B

pe (4a)

s.t. x ∈ T (4b)

µ ∈ T D(c, T ) (4c)∑
e∈B

pe +
∑
e∈R

cexe = dµ. (4d)

mexe ≤ pe ≤Mexe e ∈ B (4e)
pe ≤ Te e ∈ B (4f)
Te ≤ pe +Me(1− xe) e ∈ B (4g)
me ≤ Te ≤Me e ∈ B (4h)
xe ∈ {0, 1} e ∈ E (4i)

Constraints (4e)–(4g) provide a linearization of the bilinear terms pe = xeTe, e ∈ B by means of the
standard McCormick linearization (McCormick, 1976).

Note that once Tx is linearized, the integrality property of the problem is lost and integrality
conditions (4i) are required.

We observe that variables Te and pe can be discretized, thus obtaining alternative formulations. Indeed,
let {0, c2, ..., c|K|} be the set made up of the zero value and the |K − 1| different edge costs that appear
in the initial red tree, where k ∈ K is the index of the k− th cost and K is a sorted set in non-decreasing
order. More precisely, we can also define the set K for each edge as Ke = {k ∈ K : me ≤ ck ≤ Me}.
Let zke be a binary variable equal to one if and only if the price of edge e is equal to the k-th cost, that is,

Te =
∑
k∈Ke

zke c
k e ∈ B. (5)

Analogously, the values of p can be also discretized by using the binary variable z̄ke equal to one if and
only if edge e is priced with the k − th cost, that is,

pe =
∑
k∈Ke

z̄ke c
k, e ∈ B. (6)

Therefore Fp can be rewritten as follows:
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Fz : max

∑
e∈B

∑
k∈Ke

z̄ke c
k (7a)

s.t. x ∈ T (7b)

µ ∈ T D(c, z) (7c)∑
e∈B

∑
k∈Ke

z̄ke c
k +

∑
e∈R

cexe = dµ (7d)

∑
k∈Ke

zke = 1 e ∈ B (7e)

∑
k∈Ke

z̄ke = xe, e ∈ B (7f)

z̄ke ≤ zke , e ∈ B, k ∈ Ke (7g)

zke ≤ z̄ke + (1− xe), e ∈ B, k ∈ Ke (7h)

zke , z̄
k
e ∈ {0, 1} e ∈ E, k ∈ Ke (7i)

xe ∈ {0, 1} e ∈ E (7j)

Constraint (7e) ensures that each edge is priced with one of the costs. Constraint (7f) ensures that each
edge leaves a profit coming from one of the costs if the edge is chosen by the follower and a null profit
otherwise. Constraint (7g) ensures that the benefit of a blue edge is lower or equal than the profit of the
edge. Constraint (7h) together with (7g) ensures that if a blue edge is chosen, its profit is equal to its
price.

In addition, we note in constraints (7c) by T D(c, z) the polyhedron coming from T D(c, T ) when
variables Te, e ∈ B are replaced by the values given in (5).

Therefore, note that (4e)–(4h) are implied by (7e)-(7j) as we show in the following property.

Property 6. Let Ωp,T ;x
LR be the projection of the polyhedron defined by constraints (4b)–(4g) over the

x variables and Ωz,z̄;x
LR the projection of the polyhedron given by (7b)–(7h) over the x variables. Then

Ωz,z̄;x
LR ⊆ Ωp,T ;x

LR .
Proof.
⊆) Let (x, z, z̄) ∈ Ωz,z̄;x

LR , we prove that (x, z, z̄) verifies (4e)–(4h).
First, by replacing relations (5) and (6) in (7c) and (7d) we obtain (4c) and (4d).
Now, we prove that (x, z, z̄) verifies (4e), (4f) and (4g):

• For each e ∈ B, (6)⇒ pe =
∑

k∈Ke c
kz̄ke ≤Me

∑
k∈Ke z̄

k
e

(7e)
= Mexe⇒ (4e).

• For each e ∈ B, k ∈ Ke, (7g) ⇒ z̄ke ≤ zke ⇒ ckz̄ke ≤ ckzke ⇒
∑

k∈Ke c
kz̄ke ≤

∑
k∈Ke c

kzke ⇒
pe ≤ Te⇒ (4f).

• For each e ∈ B, k ∈ Ke, (7g) ⇒ 0 ≤ zke − z̄ke ≤
∑

k∈Ke c
k(zke − z̄ke ) ≤ Me

∑
k∈Ke(z

k
e − z̄ke ) =

Me(1− xe)⇒ (4g).
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�

3.2. KM-MST formulation and dual form

We recall that the general schemes proposed in the previous section require a linear STP formulation, T ,
and its dual form, T D. For that aim, we present next the Kipp Martim MSTP formulation and its dual
form.

Martin (1991) proposes a TDI formulation for the MST problem with a number of variables and
constraints which are polynomial in the input size. For this, an arborescence rooted at each vertex k ∈ V
is modeled. The arcs of such arborescences are then related to the design variables x defined above. For
k ∈ V, (u, v) ∈ E, let us denote by qkuv and qkvu to the decision variables that respectively indicate
whether or not arc (u, v) and (v, u) belong to the arborescence rooted at k, where A stands for the set or
arcs. Then, the formulation is as follows:

min
∑
e∈E

cexe (8a)

s.t.
∑
e∈E

xe = n− 1 (8b)∑
s∈V :(k,s)∈A

qkks ≤ 0 k ∈ V (8c)

∑
v∈V :(u,v)∈A

qkuv ≤ 1 k, u ∈ V : u 6= k (8d)

qkuv + qkvu = xuv k ∈ V, (u, v) ∈ E (8e)
xuv ≥ 0 (u, v) ∈ E (8f)
qkuv ≥ 0 k ∈ V, (u, v) ∈ A (8g)

Constraint (8a) ensures that the tree has n − 1 edges. Constraints (8b)-(8d) break cycles that could
be generated by the n − 1 edges. Note that if there is a cycle of undirected edges containing vertex k,
then by (8b) there is a corresponding cycle of directed edges defined by qkij which also contains vertex k
(refer to this set of directed arcs as the k-arcs). However, there cannot be a cycle of k-arcs which contains
vertex k. This is impossible by (8d) and the cycle cannot be directed. If the cycle is not directed, then
there is at least one vertex i with two k-arcs directed out of it. This is impossible by (8c). Thus, there are
no cycles in the solution and we have by (8a) a spanning tree.

Formulation (8a)-(8f) can be simplified removing variables qkkv = 0, k ∈ V, (k, v) ∈ A as follows:
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min
∑
e∈E

cexe (9a)∑
e∈E

xe = n− 1 (9b)∑
(u′,v)∈E:

(u′=k∧v=u)∨
(u′=u∧v=k)

xu′v +
∑

(u,v)∈A:v 6=k

qkuv ≤ 1 k, u ∈ V : u 6= k (9c)

qkuv + qkvu = xuv k ∈ V, (u, v) ∈ E : u, v 6= k (9d)
xuv ≥ 0 (u, v) ∈ E (9e)
qkuv ≥ 0 k ∈ V, (u, v) ∈ A : v 6= k (9f)

In the following, we denote by T km to the polyhedron associated to the KM-MSTP formulation, that is,
equations (9b)–(9f). In addition, the dual of (9a)–(9f) can be written as:

maxα(n− 1)−
∑
k∈V

∑
u∈V :v 6=k

βku (10a)

α− βuv − βvu −
∑

k′∈V :k′ 6=u,v
γk
′

uv ≤ cuv (u, v) ∈ E (10b)

− βku +
∑

(u′,v′)∈E:
(u′=u∧v′=v)∨
(u′=v∧v′=u)

γku′v′ ≤ 0 k ∈ V, (u, v) ∈ A : u, v 6= k (10c)

βku ≥ 0 k, u ∈ V : u 6= k (10d)

γkuv k ∈ V, (u, v) ∈ E : u, v 6= k (10e)

Finally, we denote by T D to the polyhedron associated to the KM-MSTP dual formulation, that is,
equations (10b)–(10e). Note that now, both T km and T D can be implemented in previous BMSTP
formulations to set effective valid representations.

3.3. Other primal-dual BMSTP formulations

Previous BMSTP formulations assume constraint x ∈ T km. Note that this constraint can be replaced
by any other STP polyhedron, namely subtour elimination, Miller-Tucker-Zemlim (MTZ), flow, etc (see
Magnanti and Wolsey, 1995; Fernández et al., 2017). For example, the Miller-Tucker-Zemlim formula-
tion (Miller et al., 1960) uses variables yuv which take the value 1 if and only if arc (u, v) belong to the
arborescence and continuous variables lu, denoting the position that node u occupies in the arborescence
with respect to the root node.

It is well-known that STP formulations exist with the integrality property. Unfortunately, when they
are embedded within the BMSTP framework the integrality property is lost. Then, alternative STP for-
mulations without such property may now be superior (in computational terms) and this explains why
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some of the formulations we have used lack the integrality property. In Table 0 we resume the main
properties of the STP formulations that we have considered. The criteria that have guided the selection
of the formulations are either their good theoretical properties or some characteristic that seemed useful
as, for instance, a small number of variables or constraints.

Table 0
Main properties of the MST formulations considered

Formulation notation main constraints root # vars # const. int

Subtour
Edmonds (1970)

T sub
∑

e∈E(S)

xe ≤ |S| − 1, ∅ 6= S ⊂ V O(|E|) Exp(n) Yes

Kipp Martin
Martin (1991)

T km
∑

(u,v)∈δ+(u)

qkuv ≤

{
1, k ∈ V, u ∈ V : u 6= k

0, k ∈ V, u = k
∀k O(n|E|) O(n|E|) Yes

Miller-Tucker-Zemlim
Miller et al. (1960)

T mtz lv ≥ lu + 1− n(1− yuv), (u, v) ∈ A r O(|E|) O(|E|) No

Flow
Gavish (1983)

T flow
∑

(u,v)∈δ+(u)

ϕuv −
∑

(v,u)∈δ−(u)

ϕvu =


n− 1, u = r

−1, u ∈ V \ {r}
r O(|E|) O(|E|) No

KM extended
Fernández et al. (2017)

T km2
∑

(u,v)∈δ+(u)

quv ≤

{
1, u ∈ V : u 6= r

0, u = r
r O(|E|) Exp(n) Yes

In particular, the subtour and Kipp Martin formulations present the advantage of the integrality prop-
erty (as you see in the last column) but they exhibit the inconvenience of an exponential number of
constraints in the case of the subtour, or a cubic number of variables and constraints as it is the case
of Kipp Martin. As an alternative, the MTZ and FLow formulations present lower dimensions and are,
therefore, easier to handle.

We propose as an alternative STP formulation a relaxation of Kipp Martin that instead of building
an arborescence at each node, it builds only one of them (see Fernández et al., 2017). Therefore cut-set
inequalities will be required to be included dynamically in a Branch&Cut algorithm. The separation of
this inequalities can be carried out in polynomial time by finding the cut Gomory-Hu tree.

4. A path-based BMSTP formulation

In this section we present an alternative BMSTP formulation that does not require the strong duality
property. Instead, we impose minimum cost optimality constraints to a path-based STP formulation. In
this way, we can impose in the objective function a maximization of the benefits of the blue edges which
in turns ensures the validity of this approach.

First, we propose the announced path-based formulation for the STP. Let P denote the set of pairs
of nodes such that i < j. We define now ϕijuv as the flow through edge (u, v) going from origin i to
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destination j with (i, j) ∈ P . The following set of constraints define a polyhedral description of the
spanning trees of G.

T path :
∑

v∈V :(i,v)∈A

ϕijiv = 1 (i, j) ∈ P (11a)

∑
(u,v)∈A

ϕijuv −
∑

(v,u)∈A

ϕijvu = 0 (i, j) ∈ P, v ∈ V : v 6= i, j (11b)

∑
(u,j)∈A

ϕijuj = 1 (i, j) ∈ P (11c)

ϕijuv + ϕij
′

vu ≤ xuv (i, j) ∈ P, (i, j′) ∈ P, (u, v) ∈ E : u, v 6= i, j (11d)∑
(u,v)∈E

xuv = n− 1 (11e)

ϕijuv ≥ 0 (i, j) ∈ P, (u, v) ∈ A : v 6= i, u 6= j (11f)
0 ≤ xe ≤ 1 e ∈ E (11g)

Formulation (11a)-(11g) defines a tree on the graph G. Constraints (11a)-(11c) guarantee that the flow
subnetwork is connected. Constraints (11d) ensure that an edge is selected if there is a positive flow
traversing any of its arcs.

Note that we do not define variables ϕijui and ϕijjv in T path since flow that is sent from i to j does not
arrive to i or depart from j. In addition, constraints (11d) can alternatively be defined as

ϕijuv + ϕijvu ≤ xuv (i, j) ∈ P, (u, v) ∈ E : u, v 6= i, j. (12)

Replacing (11d) by (12) reduces significantly the number of variables and constraints in T path. However,
with this enhancement the integrality property of variables x in T path is lost.

Next, we can add an additional constraint to T path in order to guarantee this tree to be optimal (mini-
mal cost):

(ϕijuv + ϕijvu)cuv ≤ cij(1− xij) (i, j) ∈ P, (u, v) ∈ E : (u, v) 6= (i, j) (13a)

Constraint (13a) impose that if there is flow sent from i to j along arcs (u, v) or (v, u) (that is ϕijuv +

ϕijvu 6= 0, what implies xij = 0) then cuv ≤ cij . This let us formulate the BMSTP as follows:
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F path : max
∑
e∈B

Texe (14a)

s.t. (x, ϕ) ∈ T path (14b)

(ϕijuv + ϕijvu)(cuv + Tuv) ≤ (Tij + cij)(1− xij) (i, j) ∈ E, (u, v) ∈ E : (u, v) 6= (i, j)
(14c)

vars: xe ∈ {0, 1} e ∈ E (14d)

ϕijuv ≥ 0 (i, j) ∈ P, (u, v) ∈ A (14e)
Te ≥ 0 e ∈ B (14f)

Note that for each (u, v) ∈ E constraints (14c) are well defined because we assume ce = 0, e ∈ B
and Te only defined in B.

The linear formulation that removes the non-linearity of the product of p and T variables and the
product of ϕ and T variables can be obtained by standard techniques. However, adding the new required
inequalities destroys the integrality property of the tree polytope. Therefore, to have a valid formulation,
constraint (15m) must be augmented.

Page 13 of 20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only
F pathp : max

∑
e∈B

pe (15a)

s.t. (x, ϕ) ∈ T path (15b)
pe ≤Mexe e ∈ B (15c)
pe ≤ Te e ∈ B (15d)
Te ≤ pe +Me(1− xe) e ∈ B (15e)

tijuv ≤ (ϕijuv + ϕijuv)Me (i, j) ∈ P, (u, v) ∈ B (15f)

tijuv ≤ Tuv (i, j) ∈ P, (u, v) ∈ B (15g)

Tuv ≤ tijuv +Me(1− ϕijuv − ϕijvu) (i, j) ∈ P, (u, v) ∈ B (15h)

(ϕijuv + ϕijvu)cuv ≤ cij(1− xij) (i, j) ∈ R, (u, v) ∈ R : (u, v) 6= (i, j) (15i)

tijuv ≤ cij(1− xij) (i, j) ∈ R, (u, v) ∈ B : (u, v) 6= (i, j) (15j)

(ϕijuv + ϕijvu)cuv ≤ Tij − pij (i, j) ∈ B, (u, v) ∈ R : (u, v) 6= (i, j) (15k)

tijuv ≤ Tij − pij (i, j) ∈ B, (u, v) ∈ B : (u, v) 6= (i, j) (15l)
xe ∈ {0, 1} e ∈ E (15m)

ϕijuv ≥ 0 (i, j) ∈ P, (u, v) ∈ A (15n)
Te ≥ 0 e ∈ B (15o)

tijuv ≥ 0 (i, j) ∈ P, (u, v) ∈ A (15p)
pe ≥ 0 e ∈ B (15q)

Constraints (15c)–(15e) provide a linearization of the product pe = xeTe, e ∈ B by means of the
standard McCormick linearization. Constraints (15f)–(15h) provide a linearization of the product ϕT by
means of variable t defined as

tijuv = (ϕijuv + ϕijvu)Tuv (i, j) ∈ P, (u, v) ∈ B (16)

and by means of the standard McCormick linearization. Constraints (15i)–(15l) provide a linearization
of (14c) by means of variable t and distinguishing the different cases where (i, j) ∈ R or B and (u, v) ∈
R or B.

There exists a similar formulation translating variables T and p into variables z and z̄. Given that such
formulation has not provided good results in computational terms, we skip its description for the sake of
readability.
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5. Computational results

Next, we report on the results of some computational experiments that we have run, in order to compare
empirically the proposed formulations. We have studied the BMSTP combining the different formula-
tions proposed for the STP.

Instances G = (V,E) are generated as in Morais et al. (2016). We first generate a complete graph
G = (V,Ec) according to different values of |V | and the components of the cost vectors are randomly
chosen from a set K of |K| random integers drawn from a uniform distribution on [1, cmax]. We then
compute a MST solution (V, Ê) and we initialize E ← Ê, R ← Ê, B ← ∅. Additional edges are then
randomly picked from Ec\Ê, until a desired graph density d is obtained. If a given edge e ∈ Ec\Ê is
added to E, we choose with a probability p if R ← R ∪ {e} otherwise, B ← B ∪ {e}. If e is added to
R, the cost assigned to e (ce) is randomly chosen from a set K of |K| random integers. In particular, we
choose |V | ∈ {20, 30, 50, 70}, cmax = 150, d ∈ {10%, 20%, 30%, 50%}, p = 0.5, and |K| = {3, 5, 7}.
Note that in this case the mean value of |B| is |V |(|V |−2)

2 .
In all tables, reported results correspond to groups of 10 instances with the same triplet (|V |, d, |C|).

We present average results (and some maximum values) for each group. This way, in total, we have a
set of 240 benchmark instances. All instances were solved with the MIP Xpress 7.7 optimizer, under a
Windows 10 environment in an Intel(R) Core(TM)i7 CPU 2.93 GHz processor and 16 GB RAM. Default
values were initially used for all parameters of Xpress solver and a CPU time limit of 1800 seconds was
set. We have also tested different combinations of parameters for the solver cut strategy and intensity of
heuristics but, unless it is specified, the best results were obtained with the parameters of the solver set
to the default values. An initial solution was given to the problem by the three modules of BMSTP-H
described in Section 2.2. The separation of the cutset inequalities in formulation T km2 was implemented
using a max-flow based algorithm (Gusfield, 1990).

Tables are grouped in blocks. The first block contains three columns with the values of the instances
parameters. Then, we give a block of 7 columns for each tested formulation. The columns of each block
are the following:

1. Columns gRL give the percentage relative gap, computed as 100objR−objLobjR
, where objR denotes the

optimal value of the linear relaxation at the root node and objL denotes the best known lower bound
obtained in all our experiments.

2. Columns gUL give the percentage relative gap, computed as 100objU−objLobjU
, where now objU denotes

the upper bound at termination.
3. Columns gUL give the percentage relative gap, computed as 100objU−objLobjU

, where now objU denotes
the best known upper bound obtained in all our experiments and objL denotes the lower bound at
termination.

4. Columns gUL give the percentage relative gap, computed as 100objU−objLobjU
.

5. Columns gUL∗ give the maximum of the gUL values among the 10 instances of the row.
6. Columns |#| indicate the number of instances in the group that could be solved to optimality within

the CPU time limit.
7. Columns nod indicate the average number of nodes explored in the branch-and-bound tree.

Note that, while gRL and gUL provide quality measures of the upper bounds (at the root node and at
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termination, respectively), and gUL provides a quality measure of the lower bounds. In addition, gUL
and gUL∗ provide measures of both upper and lower bounds for average and worst case performance
respectively. Entries with the symbol “-” indicates that the average/maximum gaps are 0, or in other
words, that all instances were solved to optimality.

The caption just below each block gives the formulation the block refers to. Throughout the sec-
tion, Fmor denotes the formulation with the best results reported in Morais et al. (2016) for the BM-
STP. Otherwise, we denote by F

(.)
p the combination of the BMSTP Fp formulation together with

a spanning tree polyhedron T (.) (idem with F
(.)
z ). In this way, we report results of formulations

F flowp , F kmp , Fmtzp , F km2
p and F flowz , F kmz , Fmtzz , F km2

z that have shown the best performance
in preliminary tests. Note that we do not report results of the path formulations F pathp since those results
were clearly outperformed by F (.)

p and F (.)
z in preliminary tests. Then, we have summarized the results

in five tables.

1. Table 1 shows results for F (.)
p formulations, namely F flowp , F kmp , Fmtzp and F km2

p .

2. Table 2 shows results for F (.)
z formulations, namely F flowz , F kmz , Fmtzz and F km2

z .
3. Table 3 shows the number of times (in %) that the BMSTP-H algorithm reached the best lower bound

for each formulation.
4. Table 4 choses the best blocks so far, and extends the time limit of some rows of these blocks from

1800 seconds to 5 hours.
5. Table 5 displays a comparison between the results reported in Morais et al. (2016) and the results

obtained with our best formulation, with the same set of instances.

In order to facilitate the comparison among tables, best results in each table are marked in bold. In
this sense, Tables 1 and 2 are treated as a sigle one, so as to highlight the best values among the eight
proposed formulations, namely F flowp , F kmp , Fmtzp , F km2

p , F flowz , F kmz , Fmtzz and F km2
z .

In Table 1, the results of block F flowp exhibit the worst values of gRL in the group. However, most
of these instances have similar values in terms of gUL than the other formulations of the group. As
colummn nod shows, the number or required nodes to reach the optimal values in instances (20, 30, |C|)
is the biggest in the group and consequently, gaps are bigger than in other blocks. On the contrary, the
results of block F kmp exhibit the best values of gRL. Howerver, in many cases these gaps only improve
slightly (or not improved at all) other gRL values of the group. In addition, gaps gUL and gUL∗ remain
far from the best values of the group. Note that according to the low average number of explored nodes
in the B&B tree, in particular for sizes (|V |, d) = (70, 20), solving the LP relaxation of the problem
becomes quite hard so the corresponding gaps at termination remain quite large in comparison with
other formulations. We recall that F kmp uses the largest number of variables and constraints, which can
be too high in larger graphs. Block Fmtzp shows good average gaps gRL and gUL, and it also provides
some best values of the group for gaps gUL∗ in the largest instances. Block F km2

p shows a similar
performance than Fmtzp in gaps gRL and gUL, and it also provides the best values of the group for gaps
gUL, gUL and gUL∗ in instances |V | < 70. Since many of the constraints in this formulation are added
on the fly within the B&B search tree, we can observe that consecuently, the number of explored nodes
is the largest of the group. From this table, we conclude that the most promising formulation is F km2

p for
medium to large size instances.
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In Table 2, the results of block F flowz exhibit the worst values of gRL in the group. However, most
of these instances do not remain far, in terms of gUL, from the other formulations of the group. As
in the F (.)

p case, we observe that F flowz shows nthe worst gap values in general terms. The results of
block F kmz exhibit the best values of gRL and in some cases, these gaps are improved giving rise to best
values of gaps gUL and gUL∗ in medium size instances. As in F kmp solving the LP relaxation in sizes
(|V |, d) = (70, 10) becomes quite hard giving rise to no more than three explored nodes in the B&B
tree for these cases. Block Fmtzp shows good averge gaps gRL, gUL and gUL∗ but it is outperformed in
general by block F km2

z that shows the best performace of this group. From this table, we conclude that
the most promising formulation is F km2

z for medium to small size instances.
Table 3 shows the number of times (in %) that the B&B search returned the same lower bound as the

one given by the BMSTP-H algorithm. We observe that the percentages are smaller for the F (.)
p formula-

tions compared to the F (.)
z formulations. This means that F (.)

z formulations are harder to tackle in order
to find feasible solutions (lower bounds) because the number of binary variables is highly superior to
the one of the F (.)

p formulations. Besides, we conclude from this table the BMSTP-H algorithm provides
a reasonably good feasible initial lower bound that in many cases is no able to be outperformed by the
solver after 1800 seconds of running time.

Table 4 shows a comparison of the best blocks so far, namely F km2
p and F km2

z , with a time limit
of 1800 seconds and a time limit of 5 hours. In this case, we display results for only some rows of
instances that correspond to the same combinations of (|V |, d, |C|) that were studied in Morais et al.
(2016). Obviously, mostly all gaps are improved when the time limit is extended to 5 hours but we
observe a bigger improvement for F km2

z in small-medium instances and a bigger improvement for F km2
p

in medium-big instances.
Table 5 shows a comparison between the results provided in Morais et al. (2016) and the results with

our best formulations F km2
p and F km2

z . Note that in this case, we have used the same set of instances as
in Morais et al. (2016) and only results for a single instance per row are provided. Block Fmor shows the
best results reported by Morais et al. (2016) implemented in C++ and tested with a 2.4GHz Intel XEON
E5645 machine, with 32 GB of RAM, under Linux Operating System. From this table, we observe first
that both F km2

p and F km2
z are able to provide better lower bounds objL and upper bounds objU than

those in Fmor. Consequently, gaps gUL are smaller in mostly all cases showing also that 11 out of 16
instances were able to be solved to optimality. In addition, running times (displayed in column t) show
that 6 out of 16 instances were solved to optimality for F km2

p in less than 10 minutes. In general terms,
we conclude that blocks F km2

p and F km2
z outperform significantly block Fmor.

6. Conclusions

In this paper we have presented different mathematical programming formulations for the BMSTP based
on the properties of the MSTP and the bilevel optimization paradigm. We have established theoretical
and empirical comparisons between these new formulations that have shown to be effective for effi-
ciently solving medium to big size instances. In addition we are able to outperform previous existing
computational results in the literature.
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Table 1
BMSTP results for the F

(.)
p formulations.

|V | d |C| gRLgULgULgULgUL∗ |#|nod gRLgULgULgULgUL∗ |#|nod gRLgULgULgULgUL∗ |#|nod gRLgULgULgULgUL∗ |#|nod

20 30 3 13.5 - - - - 10 1e3 3.9 - - - - 10 76 4.8 - - - - 10 1e2 4.9 - - - - 10 1e2
20 30 5 18.2 - - - - 10 4e4 9.5 - - - - 10 8e3 9.5 - - - - 10 1e4 9.5 - - - - 10 2e4
20 30 7 17.4 - - - - 10 1e4 8.5 - - - - 10 5e3 9.2 - - - - 10 9e3 9.2 - - - - 10 1e4
20 50 3 4.8 1.6 - 1.6 8.8 7 2e5 3.4 1.4 - 1.4 8.6 8 5e4 3.4 1.8 - 1.8 8.1 6 1e5 3.4 0.8 - 0.8 7.8 9 1e5
20 50 5 7.1 5.8 - 5.8 12 0 4e5 7.1 5.2 - 5.2 10.6 1 2e5 7.1 5.2 - 5.2 11.1 1 3e5 7.1 5.2 - 5.2 11.4 1 4e5
20 50 7 8.9 7.8 1.7 7.9 16 1 3e5 8.9 7.9 1.6 7.9 16 1 2e5 8.9 8 1.7 8 16 1 3e5 8.9 8 1.7 8 16 1 4e5
30 30 3 6.9 3.4 0.3 3.4 14.5 6 1e4 4.4 3.3 0.3 3.3 14.8 5 1e4 4.4 3.2 0.3 3.2 15 5 2e4 4.4 2.8 0.3 2.8 13.3 6 2e4
30 30 5 9.8 6 3.1 6.1 14.1 2 3e4 7.2 6 2.9 6 14 2 2e4 7.2 6 2.9 6 14 1 5e4 7.2 6.4 2.9 6.4 14 1 6e4
30 30 7 13.4 9.4 6.8 9.5 16.2 0 6e4 10.1 9.4 6.8 9.4 15.2 0 2e4 10.1 9.4 6.9 9.5 15.2 0 5e4 10.1 9 6.8 9 13.3 0 7e4
30 50 3 0.4 0.2 - 0.2 1.6 9 3e3 0.2 0.2 - 0.2 1.6 9 1e3 0.2 0.2 - 0.2 1.6 9 4e3 0.2 0.2 - 0.2 1.6 9 4e3
30 50 5 4.1 3.8 0.8 4.1 10.3 1 3e4 3.8 3.8 0.5 3.8 7.4 1 1e4 3.8 3.8 0.5 3.8 7.6 1 3e4 3.8 3.8 0.5 3.8 7.4 1 5e4
30 50 7 5.9 5.7 4.4 6.5 21 0 3e4 5.7 5.7 4.3 6.3 19.5 0 1e4 5.7 5.7 4.5 6.5 21 0 3e4 5.7 5.7 4.2 6.2 18.5 0 6e4
50 10 3 16.2 4.1 1 4.4 13 2 1e4 3.7 1.9 0.6 1.9 10.9 7 2e3 4.4 2 0.6 2 10.4 7 2e3 4.8 1.8 0.6 1.8 9.6 6 5e3
50 10 5 19.3 5.3 1.5 6.3 9.7 1 1e4 5.5 2.4 0.5 2.5 7 5 3e3 6.3 2.9 0.5 2.9 7.2 4 7e3 6.8 2.3 0.6 2.4 7.3 5 1e4
50 10 7 22.5 6.3 2.8 7.4 18.2 2 1e4 8 3.7 1.9 4 14.9 5 2e3 8.6 4.7 1.7 4.8 13.2 4 7e3 8.6 3.4 1.6 3.4 10.5 5 9e3
50 20 3 4.1 2.6 0.6 2.6 6.6 1 5e3 2.8 2.4 0.6 2.4 6.6 2 1e3 2.8 2.5 0.6 2.5 6.6 1 4e3 3 2.7 0.6 2.7 6.6 0 8e3
50 20 5 9.4 8.2 14.4 14.8 25.1 0 5e3 8.2 8.2 9.7 10.2 17.3 0 1e3 8.2 8.2 9.9 10.3 16.6 0 5e3 8.2 8.2 8.7 9.1 14.5 0 8e3
50 20 7 13.8 12.1 20.1 20.4 30.8 0 5e3 12.1 12.1 15.7 16 25.9 0 1e3 12.1 12.1 15.5 15.8 24.1 0 5e3 12.1 12.1 14.3 14.7 26.6 0 9e3
70 10 3 16.3 7.6 7.3 11.2 21.3 0 1e3 7.3 6.8 6 9.2 19.2 1 5e2 7.5 6.5 6.4 9.3 19.1 1 9e2 7.5 6.7 6 9.1 19.5 1 1e3
70 10 5 18.7 13.1 15.7 16.4 26.6 0 9e2 13 12.4 15.8 16 26.7 0 1e2 13.1 12.8 15.4 15.9 27.3 0 8e2 13.1 12.5 14.4 14.6 23.7 0 9e2
70 10 7 21 14.8 22.7 23.4 33.2 0 9e2 15.1 14.4 22 22.3 33.2 0 1e2 15.2 14.5 22 22.3 30.4 0 7e2 15.2 14.6 19.9 20.4 32.7 0 1e3
70 20 3 1.1 1.1 4.7 5.1 18.6 0 1e3 1.1 1.1 5.7 6.1 24.6 0 25 1.1 1.1 1 1.4 3.8 0 7e2 1.1 1.1 0.9 1.3 3.8 0 5e2
70 20 5 4.7 4.6 7.7 7.7 23.9 0 2e2 4.6 4.6 7.7 7.8 24.3 0 3 4.6 4.6 5.4 5.4 13.2 0 4e2 4.6 4.6 5.2 5.3 13.8 0 6e2
70 20 7 8.1 8 11.9 11.9 23.7 0 2e2 8 8 11.9 11.9 23.7 0 0 8 8 10.1 10.1 21.8 0 4e2 8 8 10.8 10.8 21.8 0 8e2

F
flow
p Fkmp Fmtzp Fkm2

p

Table 2
BMSTP results for the F

(.)
z formulations.

|V | d |C| gRLgULgULgULgUL∗ |#|nod gRLgULgULgULgUL∗ |#|nod gRLgULgULgULgUL∗ |#|nod gRLgULgULgULgUL∗ |#|nod

20 30 3 13.5 - - - - 10 1e3 3.9 - - - - 10 52 4.8 - - - - 10 2e2 4.9 - - - - 10 5e2
20 30 5 18.2 - - - - 10 1e4 9.5 - - - - 10 5e3 9.5 - - - - 10 7e3 9.5 - - - - 10 1e4
20 30 7 17.4 - - - - 10 8e4 8.5 - - - - 10 1e4 9.2 - - - - 10 2e4 9.2 - - - - 10 1e5
20 50 3 4.8 0.7 - 0.7 6.8 9 5e4 3.4 0.8 - 0.8 8.1 9 1e4 3.4 0.7 - 0.7 6.7 9 3e4 3.4 - - - - 10 2e4
20 50 5 7.1 2.5 0.1 2.6 8 1 5e5 7.1 0.8 0.6 1.4 8.1 5 7e4 7.1 0.7 - 0.7 6.2 7 2e5 7.1 0.2 0.4 0.6 4.2 6 2e5
20 50 7 8.9 4.2 2.6 5.1 10.5 0 5e5 8.9 3.9 2 4.2 10.1 3 1e5 8.9 2.3 1.7 2.4 5.8 3 2e5 8.9 2.4 1.8 2.5 5.5 3 3e5
30 30 3 6.9 2.1 1.1 2.9 12 6 5e4 4.4 1 0.3 1 7.2 8 3e3 4.4 1.1 0.3 1.1 5.7 7 5e4 4.4 0.7 0.4 0.8 4.8 8 2e4
30 30 5 9.8 5 4.2 6.3 21.8 1 8e4 7.2 5.7 4 6.7 22.1 2 1e4 7.2 4.7 3.5 5.3 14 2 4e4 7.2 3.6 3.1 3.8 11.8 3 6e4
30 30 7 13.4 8.2 11.9 13.3 24.9 0 9e4 10.1 9.4 10.3 12.9 24.9 0 1e4 10.1 8.5 9.1 10.8 19 0 6e4 10.1 7.5 10.5 11.2 23.9 0 1e5
30 50 3 0.4 0.2 0.2 0.3 3.1 9 1e4 0.2 - - - - 10 1e3 0.2 - - - - 10 6e2 0.2 - - - - 10 2e2
30 50 5 4.1 3.8 6.1 9.1 29.5 1 7e4 3.8 3.6 5.4 8.3 29.5 2 1e4 3.8 2.4 2.3 4.1 18.5 5 2e4 3.8 1.5 0.5 1.6 4.6 4 8e4
30 50 7 5.9 5.7 9.1 11 21 0 8e4 5.7 5.7 6.4 8.4 21 0 1e4 5.7 5.7 7.2 9 21 0 6e4 5.7 4.7 7.3 8.3 20 0 1e5
50 10 3 16.2 2.7 1.1 3.2 13.5 3 1e4 3.7 1.9 0.6 1.9 10 6 1e3 4.4 1 0.8 1.2 12.2 9 1e3 4.8 1.2 0.8 1.4 8.6 6 6e3
50 10 5 19.3 5.7 2.4 7.5 10.5 0 2e4 5.5 2.6 0.6 2.7 6.6 4 2e3 6.3 2.5 1.1 3.1 12.8 3 9e3 6.8 3 1.2 3.7 12.2 2 2e4
50 10 7 22.5 7.1 3.7 9 24.2 1 1e4 8 4.8 2 5.2 13.3 3 3e3 8.6 5.2 2.4 5.9 13.5 3 8e3 8.6 4.5 2.3 5.2 14 3 1e4
50 20 3 4.1 2.4 6.5 8 25.2 2 1e4 2.8 2.3 4 5.5 25.2 3 7e2 2.8 2.4 2.3 4 13.9 2 4e3 3 1.6 1.3 2.3 6.6 2 2e4
50 20 5 9.4 8.2 16.1 16.5 26.4 0 1e4 8.2 8.2 16 16.4 26.4 0 1e3 8.2 8.2 15.1 15.6 26.4 0 8e3 8.2 8.2 15.3 15.7 26.4 0 1e4
50 20 7 13.8 12.1 20.8 21.1 30.8 0 1e4 12.1 12.1 20.6 20.9 30.8 0 9e2 12.1 12.1 20.7 21 30.8 0 8e3 12.1 12.1 21 21.3 30.8 0 1e4
70 10 3 16.3 5.8 7.7 9.9 21.2 1 1e3 7.3 6.1 7.8 10.3 19.7 1 1e2 7.5 6.4 7.8 10.5 19.7 1 6e2 7.5 6.4 7.1 10 19.3 1 8e2
70 10 5 18.7 13.2 16.6 17.5 28.1 0 1e3 13 12.6 16.3 16.6 25.5 0 1e2 13.1 12.5 16.5 16.6 26 0 6e2 13.1 12.7 16.6 17 28.1 0 1e3
70 10 7 21 14.9 22.8 23.6 33.2 0 1e3 15.1 14.2 22.7 22.8 33.2 0 1e2 15.2 14.7 22.8 23.3 33.2 0 7e2 15.2 14.6 22.8 23.3 33.2 0 1e3
70 20 3 1.1 1.1 9.3 9.7 28.4 0 2e3 1.1 1.1 9.2 9.6 28.4 0 3 1.1 1.1 4.3 4.6 28.4 0 1e3 1.1 0.9 8.3 8.5 28.4 2 2e3
70 20 5 4.7 4.6 7.7 7.8 24.3 0 3e3 4.6 4.6 7.7 7.8 24.3 0 3 4.6 4.6 7.7 7.8 24.3 0 2e3 4.6 4.6 7.7 7.8 24.3 0 5e3
70 20 7 8.1 8 12.1 12.1 24.8 0 2e3 8 8 12.1 12.1 24.8 0 3 8 8 12.1 12.1 24.8 0 1e3 8 8 12.1 12.1 24.8 0 4e3

F
flow
z Fkmz Fmtzz Fkm2

z
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Table 3
BMSTP-H results for F (.)

p and F
(.)
z formulations: % of times BMSTP-H algorithm returned the lower bound of the B&B search

|V | d F
flow
p Fkmp Fmtzp Fkm2

p F
flow
z Fkmz Fmtzz Fkm2

z

20 30 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
20 50 23.3 23.3 23.3 23.3 26.7 26.7 26.7 26.7
30 30 30.0 30.0 33.3 26.7 66.7 50.0 50.0 33.3
30 50 33.3 30.0 33.3 30.0 73.3 60.0 50.0 43.3
50 10 30.0 20.0 16.7 16.7 46.7 16.7 20.0 30.0
50 20 43.3 16.7 20.0 16.7 80.0 70.0 70.0 70.0
70 10 60.0 50.0 50.0 43.3 93.3 86.7 90.0 90.0
70 20 63.3 66.7 43.3 50.0 100.0 96.7 76.7 83.3

total 39.6 33.8 31.7 30.0 65.0 55.0 52.1 51.3

Table 4
BMSTP results comparison for the best formulations with time limits of 0.5h and 5h.

|V | d |C| gRLgULgULgULgUL∗ |#|nod gRLgULgULgULgUL∗ |#|nod gRLgULgULgULgUL∗ |#|nod gRLgULgULgULgUL∗ |#|nod

20 30 7 9.2 - - - - 10 1e4 9.2 - - - - 10 1e5 9.2 - - - - 10 1e4 9.2 - - - - 10 1e5
20 50 3 3.4 0.8 - 0.8 7.8 9 1e5 3.4 - - - - 10 2e4 3.4 0.3 - 0.3 3.4 9 3e5 3.4 - - - - 10 2e4
20 50 5 7.1 5.2 - 5.2 11.4 1 4e5 7.1 0.2 0.4 0.6 4.2 6 2e5 7.1 4.2 - 4.2 10.2 3 3e6 7.1 - - - 0.2 9 3e6
30 30 3 4.4 2.8 0.3 2.8 13.3 6 2e4 4.4 0.7 0.4 0.8 4.8 8 2e4 4.4 2.2 0.3 2.2 9.7 6 2e5 4.4 0.3 0.3 0.3 2.8 9 1e5
30 50 3 0.2 0.2 - 0.2 1.6 9 4e3 0.2 - - - - 10 2e2 0.2 - - - - 10 1e4 0.2 - - - - 10 2e2
30 50 5 3.8 3.8 0.6 3.8 7.4 1 5e4 3.8 1.5 0.7 1.6 4.6 4 8e4 3.8 3.5 0.6 3.5 7.4 2 5e5 3.8 0.6 0.7 0.7 3.4 7 7e5
30 50 7 5.7 5.7 4.2 6.2 18.5 0 6e4 5.7 4.7 7.3 8.3 20 0 1e5 5.7 5.7 3.7 5.7 16.1 0 6e5 5.7 3.7 6.2 6.2 16.8 0 1e6
50 10 5 6.8 2.3 1.1 2.4 7.3 5 1e4 6.8 3 1.7 3.7 12.2 2 2e4 6.8 1.3 1 1.3 5.3 7 6e4 6.8 2.1 1.6 2.7 12.2 6 1e5
50 10 7 8.6 3.4 2.2 3.4 10.5 5 9e3 8.6 4.5 2.9 5.2 14 3 1e4 8.6 2.2 2.2 2.2 9 6 8e4 8.6 3.2 2.3 3.3 11 4 1e5
50 20 3 3 2.7 0.8 2.7 6.6 0 8e3 3 1.6 1.5 2.3 6.6 2 2e4 3 2.5 0.8 2.5 6.6 2 6e4 3 0.9 1 1.1 3.4 4 2e5
50 20 7 12.1 12.1 14.3 14.7 26.6 0 9e3 12.1 12.1 21 21.3 30.8 0 1e4 12.1 12.1 11.9 12.2 21.3 0 9e4 12.1 11.8 18.1 18.1 30.3 0 9e4
70 10 3 7.5 6.7 7.9 9.1 19.5 1 1e3 7.5 6.4 9.1 10 19.3 1 8e2 7.5 6.6 6 7.1 19.3 1 1e4 7.5 5.5 7.1 7.1 18.8 2 7e3
70 10 7 15.2 14.6 20.1 20.4 32.7 0 1e3 15.2 14.6 23 23.3 33.2 0 1e3 15.2 14.5 14.4 14.5 26.9 0 1e4 15.2 14.5 21.2 21.3 33.2 0 1e4
70 20 3 1.1 1.1 0.9 1.3 3.8 0 5e2 1.1 0.9 8.3 8.5 28.4 2 2e3 1.1 1 0.7 1 2.6 1 5e3 1.1 0.7 6.3 6.3 28.4 4 3e4
70 20 5 4.6 4.6 5.2 5.3 13.8 0 6e2 4.6 4.6 7.7 7.8 24.3 0 5e3 4.6 4.6 4.6 4.6 10.7 0 7e3 4.6 4.6 6.5 6.5 24.3 0 5e4

F km2
p 0.5h F km2

z 0.5h F km2
p 5h F km2

z 5h

Table 5
BMSTP results comparison for the best formulations.

|V | d |C| objLobjU gUL t objL objU gUL t objLobjU gUL t

20 30 7 541 597 9.38 - 541 541 - 101.6 541 556 2.7 -
20 50 3 190 190 - 0 190 190 - 0 190 190 - 0
20 50 5 395 467 15.42 - 407 467 12.85 - 407 414 1.69 -
30 30 3 413 425 2.82 - 413 413 - 947.1 413 413 - 150.1
30 50 3 1830 1862 1.72 - 1830 1830 - 19.7 1830 1830 - 9.9
30 50 5 1254 1320 5 - 1320 1320 - 31.3 1188 1320 10 -
30 50 7 497 524 5.15 - 506 524 3.44 - 506 506 - 1511.9
50 10 5 1470 1588 7.43 - 1470 1528.6 3.83 - 1470 1470 - 3686.1
50 10 7 732 828 11.59 - 734 769.2 4.58 - 734 778.6 5.73 -
50 20 3 2239 2301 2.69 - 2239 2301 2.69 - 2239 2239 - 2068.3
50 20 7 582 760 23.42 - 683 799 14.52 - 641 795 19.37 -
70 10 3 4599 4694 2.02 - 4641 4641 - 6409.9 4641 4641 - 5878.6
70 10 7 1604 2002 19.88 - 1787 2023 11.67 - 1646 2023 18.64 -
70 20 3 759 763 0.52 - 763 763 - 245.6 763 763 - 388.6
70 20 5 934 1173 20.38 - 1086 1173 7.42 - 1019 1173 13.13 -
70 30 5 1167 1227 4.89 - 1227 1227 - 500.7 1083 1227 11.74 -

Fmor 5h F km2
p 5h F km2

z 5h
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