A. Bermudez and M. E. Vazquez-cendon, Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, vol.235, issue.8, pp.1049-1071, 1994.

M. E. Hubbard and P. Garcia-navarro, Flux di?erence splitting and the balancing of source terms and flux gradients, J. Comput. Phys, vol.165, pp.89-125, 2000.

E. F. Toro and P. G. Navarro, Godunov-type methods for free surface shallow water flows: a review, J.Hydraul.Res, vol.45, p.746, 2007.

G. Russo, Central schemes for balance laws, Hyperbolic Problems: Theory, Numerics, Applications, vol.141, pp.821-829, 2001.

A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system, ESAIM: M2AN, vol.36, pp.397-425, 2002.

A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system, Commun. Math. Sci, vol.5, pp.133-160, 2007.

B. D. Rogers, A. Borthwick, and P. Taylor, Mathemathical balancing of flux gradient and source terms prior to using roe's approximate riemann solver, J.Comput.Phys, vol.192, pp.422-451, 2003.

Q. Liang and A. G. Borthwick, Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography, Comput. Fluids, vol.38, pp.221-234, 2009.

Q. Liang and F. Marche, Numerical resolution of well-balanced shallow water equations with complex source terms, Adv. Water Resour, vol.32, pp.873-884, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00799080

P. Brufau and P. Garcia-navarro, Unsteady free surface flow simulation over complex topography with a multidimensional upwind technique, J. Comput. Phys, vol.186, issue.2, pp.503-526, 2003.

M. Ricchiuto, R. Abgrall, and H. Deconinck, Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes, J. Comput. Phys, vol.222, pp.287-331, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00402580

M. Ricchiuto and A. Bollerman, Stabilized residual distribution for shallow water simulations, J.Comput.Phys, vol.228, pp.1071-111, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00538892

M. Ricchiuto, On the c-property and generalized c-property of residual distribution for the shallow water equations, Journal of Scientific Computing, vol.48, pp.304-318, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00538844

M. Ricchiuto, An explicit residual based approach for shallow water flows, J.Comput.Phys, vol.80, pp.306-344, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01087940

F. Alauzet, P. Frey, P. L. George, and B. Mohammadi, 3d transient fixed point mesh adaptation for time dependent problems. application to cfd simulations, J. Comp. Phys, vol.222, pp.592-623, 2007.

D. Isola, A. Guardone, and G. Quaranta, Arbitrary lagrangian eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping, J. Comp. Phys, vol.230, pp.7706-7722, 2011.

H. Tang and T. Tang, Adaptive mesh methods for one and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal, vol.41, issue.2, pp.487-515, 2003.

C. J. Budd, W. Huang, and R. D. Russell, Adaptivity with moving grids, pp.1-131, 2009.

J. F. Thompson and N. P. Weatherill, Fundamental concepts and approaches, Hanbook of Grid Generation, 1999.

A. M. Winslow, Numerical solution of the quasi-linear poisson equation, J. Comput. Phys, vol.1, pp.149-172, 1967.

H. D. Ceniceros and T. Y. Hou, An ecient dynamically adaptive mesh for potentially singular solutions, J. Comput. Phys, vol.172, pp.609-639, 2008.

C. J. Budd, M. J. Cullen, and E. J. Walsh, Monge-ampere based moving mesh methods for numerical weather prediction, with applications to the eady problem, 2012.

W. Huang, Anisotropic mesh adaptation and movement, Workshop on Adaptive Method, Theory and Application, 2005.

J. U. Brackbill and J. S. Saltzman, Adaptive zoning for singular problems in two dimensions, J. Comput. Phys, vol.46, p.342, 1982.

X. Xu, G. Ni, and S. Jiang, A high-order moving mesh kinetic scheme based on weno reconstruction for compressible flows on unstructured meshes, J. Comp. Phys, vol.57, pp.278-299, 2013.

Z. J. Wang and H. Yang, Unsteady flow simulation using a zonal multigrid approach with moving boundaries, pp.94-0057, 1994.

M. Lesoinne and C. Farhat, Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations, Comput. Method Appl. M, vol.134, issue.1-2, pp.71-90, 1996.

F. Zhou, G. Chen, Y. Huang, J. Z. Yang, and H. Feng, An adaptive moving finite volume scheme for modelling flood inundation over dry and complex topography, Water Resour. Res, vol.49, pp.1914-1928, 2013.

F. Zhou, G. Chen, S. Noelle, and H. C. Guo, A well-balanced stable grp scheme for shallow water equations for adaptive unstructured triangular meshes, Int J Numer Meth Fl, vol.73, pp.266-283, 2013.

J. Donea, Arbitrary lagrangian eulerian finite element methods. In Computational Methods for Transient Analysis, chapter 10, 1983.

I. K. Nikolos and A. I. Delis, An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography, Comput.Methods Appl.Mech.Engrg, vol.198, pp.3723-3750, 2009.

E. Audusse, F. Bouchut, M. Bristeau, R. Klein, and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction or shallow water flows, SIAM J. Sci. Comput, vol.25, issue.6, pp.2050-2065, 2004.

L. Arpaia, M. Ricchiuto, and R. Abgrall, An ale formulation for explicit runge-kutta residual distribution, J. Sci. Comput, vol.190, issue.34, pp.1467-1482, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00863154

D. Isola, An Interpolation Free Two-Dimensional Conservative ALE scheme over Adaptive Unstructured Grids for Rotorcraf Aerodynamics

A. I. Delis, I. K. Nikolos, and M. Kazolea, Performance and comparison of cell-centered and node-centered unstructured finite volume discretizations for shallow water free surface flows, Archives of Computational Methods in Engineering, vol.18, issue.1, pp.57-118, 2011.

R. J. Leveque, High-resolution methods, Finite Volume Methods for Hyperbolic problems, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01342271

P. Brufau, M. E. Vazquez-cendon, and P. Garcia-navarro, A numerical model for the flooding and drying of irregular domains, Int. J. Numer. Meth. Fluids, vol.39, pp.247-275, 2002.

P. Brufau, P. Garcia-navarro, and M. E. Vazquez-cendon, Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography, Int. J. Numer. Meth. Fluids, vol.45, pp.1047-1082, 2004.

A. I. Delis, M. Kazolea, and N. A. Kampanis, A robust high-resolution finite volume scheme for the simulation of long waves over complex domains, Int. J. Numer. Meth. Fluids, vol.56, pp.419-452, 2008.

M. Ricchiuto and R. Abgrall, Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case, J. Comput. Phys, vol.229, issue.16, pp.5653-5691, 2010.
DOI : 10.1016/j.jcp.2010.04.002

URL : https://hal.archives-ouvertes.fr/inria-00406958

T. J. Hughes and A. Brook, Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comp. Meth. Appl. Mech. Engrg, vol.32, pp.199-259, 1982.

T. J. Hughes, G. Scovazzi, and T. Tezduyar, Stabilized methods for compressible flows, J. Sci. Comp, vol.43, pp.343-368, 2010.
DOI : 10.1007/s10915-008-9233-5

R. , Essentially non oscillatory residual distribution schemes for hyperbolic problems, J. Comput. Phys, vol.214, issue.2, pp.773-808, 2006.

M. J. Baines and M. E. Hubbard, Multidimensional upwinding for grid adaptation. Numerical Methods for Wave Propagation, pp.33-54, 1998.
DOI : 10.1007/978-94-015-9137-9_2

G. Chen, H. Tang, and P. Zhang, Second-order accurate godunov scheme for multicomponent flows on moving triangular meshes, J. Sci. Comput, vol.34, pp.64-86, 2008.
DOI : 10.1007/s10915-007-9162-8

R. Li, T. Tang, and P. Zhang, A moving mesh finite element algorithm for signular problems in two and three space dimensions
DOI : 10.1006/jcph.2002.7002

J. A. Mackenzie and W. R. Mekwi, On the use of moving mesh methods to solve pdes, Adaptive Computations: Theory and Algorithms, pp.242-278, 2007.

M. Seaid, Non-oscillatory relaxation methods for the shallow water equations in one and two space dimensions, Int. J. for Numerical Methods in Fluids, vol.46, pp.457-484, 2004.

M. J. Briggs, C. E. Synolakis, G. S. Harkins, and D. R. Green, Laboratory experiments of tsunami runup on a circular island. Pure Appl. Geophys, vol.144, pp.569-593, 1995.

P. L. Liu, H. Yeh, and C. Synolakis, Advanced Numerical Models for Simulating Tsunami Waves and Runup, vol.10, 2008.
DOI : 10.1142/6226

N. Center and . Research, Tsunami runup onto a complex three-dimensional beach

P. Lynett, D. Swigler, S. Sangyoung, D. Bryant, and S. Socolofsky, Experimental study of a solitary wave evolution over a 3d shallow shelf, Proc. 32th Conf. Coast. Engng, p.813, 2010.

V. Roeber and K. F. Cheung, Boussinesq-type model for energetic breaking waves in fringing reef environments, Coast. Eng, vol.70, pp.1-20, 2012.
DOI : 10.1016/j.coastaleng.2012.06.001

M. Kazolea, A. I. Delis, and C. E. Synolakis, Numerical treatment of wave-breaking on unstructured finite volume approximations for extended boussinesq-type equations, J.Comput.Phys, vol.271, pp.281-305, 2014.
DOI : 10.1016/j.jcp.2014.01.030

A. G. Filippini, M. Kazolea, and M. Ricchiuto, A flexible genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up, J.Comput.Phys, vol.310, pp.381-417, 2016.
DOI : 10.1016/j.jcp.2016.01.027

K. Stein, T. E. Tezduyar, and R. Benney, Automatic mesh update with the solid-extension mesh moving technique, Comput. Method Appl. M, vol.193, pp.2019-2032, 2004.
DOI : 10.1016/j.cma.2003.12.046

R. Abgrall, C. Dobrzynski, and A. Froehly, A method for computing curved meshes via the linear elasticity analogy, application to fluid dynamics problems, Int. J. Numeric. Meth. Fl, vol.76, issue.4, pp.246-266, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01045103