R. W. Rosenthal, A class of games possessing pure-strategy Nash equilibria, Int. J. of Game Theory, vol.2, issue.1, pp.65-67, 1973.

M. Beckman, C. B. Mcguire, and C. B. Winsten, Studies in the Economics of Transportation, 1956.

D. Monderer and L. Shapley, Potential games, Games and economic behavior, vol.14, pp.124-143, 1996.

A. Orda, R. Rom, and N. Shimkin, Competitive routing in multi-user communication networks, IEEE/ACM Trans. on Networking, vol.1, issue.5, pp.510-521, 1993.

R. G. Gallager, A minimum delay routing algorithm using distributed computation, IEEE Transactions on Communications, vol.25, issue.1, pp.73-85, 1977.

J. Wardrop, Some theoretical aspects of road traffic research. Part ii, Proc. of the Institute of Civil Engineers, vol.1, pp.325-378, 1954.

T. Roughgarden, Selfish Routing and the Price of Anarchy, 2005.

S. Durand and B. Gaujal, Complexity and optimality of the best response algorithm in random potential games, Symposium on Algorithmic Game Theory (SAGT) 2016, pp.40-51, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01404643

M. Voorneveld, Best-response potential games, Economics letters, vol.66, issue.3, pp.289-295, 2000.

A. Fabrikant, C. Papadimitriou, and K. Talwar, The complexity of pure Nash equilibria, Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC '04, pp.604-612, 2004.

B. Imre, S. Vempala, and A. Vetta, Nash equilibria in random games, Random Structures and Algorithms, vol.31, issue.4, pp.391-405, 2007.

S. Durand and B. Gaujal, Complexity and optimality of the best response algorithm in random potential games, Inria, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01404643

S. Durand, B. Gaujal, and F. Garin, Distributed best response algorithms for random potential games, 2018.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, , 2009.

D. Aldous and J. A. , Reversible Markov chains and random walks on graphs, 2002.