Discriminant chronicle mining

Abstract : Sequential pattern mining attempts to extract frequent behaviors from a sequential dataset. When sequences are labeled, it is interesting to extract behaviors that characterize each sequence class. This task is called discriminant pattern mining. In this paper, we introduce discriminant chronicle mining. Conceptually, a chronicle is a temporal graph whose vertices are events and whose edges represent numerical temporal constraints between these events. We propose DCM, an algorithm that mines discriminant chronicles. It is based on rule learning methods that extract the temporal constraints. Computational performances and discriminant power of extracted chronicles are evaluated on synthetic and real data. Finally, we apply this algorithm to the case study consisting in analyzing care pathways of epileptic patients.
Type de document :
Chapitre d'ouvrage
Advances in Knowledge Discovery and Management (Vol. 8), pp.1-30, In press
Liste complète des métadonnées

https://hal.inria.fr/hal-01940146
Contributeur : Thomas Guyet <>
Soumis le : vendredi 30 novembre 2018 - 09:24:24
Dernière modification le : mercredi 5 décembre 2018 - 01:03:06

Fichier

AKDM_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01940146, version 1

Citation

Yann Dauxais, David Gross-Amblard, Thomas Guyet, André Happe. Discriminant chronicle mining. Advances in Knowledge Discovery and Management (Vol. 8), pp.1-30, In press. 〈hal-01940146〉

Partager

Métriques

Consultations de la notice

49

Téléchargements de fichiers

74