R. M. Kirby, S. J. Sherwin, and B. Cockburn, To CG or to HDG: A comparative study, J of Sci Comp, vol.51, 2012.

I. Herrera, Trefftz method: a general theory, IIMAS Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, pp.562-580, 2000.

O. C. Zienkiewicz, Trefftz type approximation and the generalized finite element method-history and developement, Comp Ass Mech and Eng Sci, vol.4, pp.305-316, 1997.

J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin methods. Algorithms, analysis, and applications, Texts in Applied Mathematics, vol.54, pp.1-370, 2007.

A. C. Hidmarsh, Solution of block-tridiagonal systems of linear algebraic equations, 1977.

O. Cassenat and B. Després, Application of an ultra-weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation, SIAM J Numer Anal, vol.35, pp.255-299, 1998.

E. Trefftz, Ein Gegenstuck zum Ritzschen Verfahren, Proc 2nd Int Cong Appl Mech Zurich, pp.131-137, 1926.

D. N. Arnold, F. Brezzi, B. Cockburn, and D. Marini, Unified analysis of Discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal, vol.39, issue.5, pp.1749-1779, 2002.

I. Babuska and M. Zlámal, Nonconforming elements in the finite element method with penalty, SIAM Journal on Numerical Analysis, vol.10, issue.5, pp.863-875, 1973.

F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J Comp Phys, vol.131, pp.267-279, 1997.

F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, Proceeding of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, pp.99-108, 1997.

F. Brezzi and L. D. Marini, Virtual element and Discontinuous Galerkin methods in recent developments in Discontinuous Galerkin finite element methods for partial differential equations. Springer the IMA Volumes in, Math and its Appl, vol.157, pp.209-221, 2014.

C. E. Baumann and J. T. Oden, A discontinuous hp finite element method for convectiondiffusion problems, Comput Methods Appl Mech Eng, vol.175, pp.311-341, 1999.

P. and L. Tallec, Modélisation et calcul des milieux continus, 2008.

J. Diaz, Approches analytiques et numériques deprobì emes de transmission et propagation d'ondes en régime transitoire. Application au couplage fluide-structure et aux méthodes de couches parfaitement adaptées, 2005.

E. Bossy, Evaluation ultrasonore de l'os cortical par transimission axiale: modélisation et expérimentation in vitro et in vivo, 2003.

H. Barucq, R. Djelloui, and E. Estecahandy, Efficient DG-like formulation equipped with curved boundary edges for solving elasto-acoustic scattering problems, International Journal for Numerical Methods in Engineering, vol.98, pp.747-780, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00931852

J. Jirousek, Basis for development of large finite elements locally satisfying all fields equations, Comp Meth Appl Mech Eng, vol.14, pp.65-92, 1978.

N. Leon and J. Jirousek, A powerful finite element for plate bending, Comp Meth Appl Mech Eng, vol.12, pp.77-96, 1977.

T. Huttunen, P. Monk, and J. P. Kaipo, Computational aspects of the ultra-weak variational formulation, J Comput Phys, vol.182, pp.27-46, 2002.

K. Aki and P. G. Richards, Quantitative seismology, 2002.

A. Maciag and J. Wauer, Solution of the two-dimensional wave equation by using wave polynomials, J Eng Math, vol.51, pp.339-350, 2006.

S. Petersen, C. Farhat, and R. Tezaur, A space-time Discontinuous Galerkin method for the solution of the wave equation in the time domain, Internat J Numer Methods Engrg, vol.79, pp.275-295, 2009.

F. Kretzschmar, S. M. Schnepp, I. Tsukerman, and T. Weiland, Discontinuous Galerkin methods with Trefftz approximation, J Comp Appl Math, vol.270, pp.211-222, 2014.

D. Wang, R. Tezaur, and C. Farhat, A hybrid discontinuous in space and time Galerkin method for wave propagation problems, Int J Numer Methods Engrg, vol.99, pp.263-289, 2014.

H. Egger, F. Kretzschmar, S. M. Schnepp, and T. Weiland, A space-time Discontinuous Galerkin Trefftz method for the time dependent Maxwell's equations, SIAM J Sci Comput, vol.37, issue.5, pp.689-711, 2015.

F. Kretzschmar, A. Moiola, and I. Perugia, A priori error analysis of spacetime Trefftz discontinuous Galerkin methods for wave problems, IMA Journal of Numerical Analysis, vol.36, issue.4, pp.1599-1635, 2016.

L. Banjai, E. Georgoulis, and O. Lijoka, A trefftz polynomial space-time discontinuous galerkin method for the second order wave equation, SIAM Journal on Numerical Analysis, vol.55, issue.1, pp.63-86, 2017.

A. Moiola and I. Perugia, A space-time Trefftz discontinous Galerkin method for the acoustic wave equation in first order formulation, 2017.

C. Farhat, I. Harari, and U. Hetmaniuk, A Discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, Comput Methods Appl Mech Eng, vol.192, pp.1389-1419, 2003.

R. Tezaur and C. Farhat, Three-dimensional Discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems, Int J Numer Methods Eng, vol.66, pp.796-815, 2006.

G. Gabard, Discontinuous Galerkin methods and plane waves for time-harmonic problems, J Comput Phys, vol.255, pp.1961-1984, 2007.

R. Hiptmair, A. Moiola, and I. Perugia, Plane wave Discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J Numer Anal, vol.49, pp.264-284, 2011.

A. Moiola, R. Hiptmair, and I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions, Z Angew Math Phys, vol.62, issue.5, pp.809-837, 2011.

R. Hiptmair, A. Moiola, and I. Perugia, Error Analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations, Math Comp, vol.82, pp.247-268, 2013.

Z. Badics, Trefftz-discontinuous Galerkin and finite element multi-solver technique for modeling time-harmonic EM problems with high-conductivity regions, IEEE Transactions on Magnetics, vol.50, issue.2, pp.401-404, 2014.

P. Antonietti and I. Mazzierei, A high-order Discontinuous Galerkin approximation to ordinary differential equations with applications to elastodynamics, IMA J of Num Anal, vol.162, 2016.

C. Baldassari, H. Barucq, H. Calandra, B. Denel, and J. Diaz, Performance analysis of a high-order Discontinuous Galerkin method application to the reverse time migration, Communications in Computational Physics, vol.11, issue.2, pp.660-673, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00643334

H. Barucq, J. Diaz, R. Djellouli, and E. Estecahandy, High-order Discontinuous Galerkin approximations for elasto-acoustic scattering problems, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01184107

L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, A high-order discontinuous Galerkin method for wave propagation through coupled elasticacoustic media, Comp Phys, vol.229, pp.9373-9396, 2010.

J. Diaz, Gar6more2D (Analytical Solutions of Wave Propagation Problems in Stratified Media

H. Barucq, H. Calandra, J. Diaz, and E. Shishenina, Space-Time Trefftz-Discontinuous Galerkin Approximation for Elasto-Acoustics Research Report Inria RR-9104, 2017.

C. W. Misner, Efficient algorithms for layer assignment problems, Gravitation in a collapsing Universe, vol.5, pp.63-83, 1973.