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Abstract

For the digital signal processing (DSP) part of mixed-signal systems, fixed-point arith-
metic is favoured due to its high efficiency in terms of implementation cost, namely energy
consumption, area, and latency. Fixed-point arithmetic provides low-cost operators at the
expense of an unavoidable error between the ideal precision values and the finite precision
ones. With a careful data word-length optimisation process, the designer can safely profit
from the inherent trade-off between implementation cost and computation accuracy. In
this chapter, we describe in detail the different stages comprising the fixed-point con-
version process (i.e., dynamic range evaluation, word-length optimisation, and accuracy
evaluation) and propose practical solutions to address each stage.

1 Introduction

In the quest for lower power consumption and higher performance, mixed-signal applications
progressively rely on digital signal processing. Designers are undertaking a paradigm shift
from high performance analog circuits to digitally assisted analog circuits. Compared with
the analog circuits, digital circuits are smaller, faster, more power efficient, and more flexible.
Thus, the new trend is to build simple analog blocks followed by an increasingly complex
digital post-processor that applies corrections to the output. Yet, the cost benefits of digital
signal processing are not for free and can only be attained through an elaborated design
methodology able to restrain the finite precision effects derived from limited bit-widths.

Digital systems are invariably subject to non-idealities derived from their finite precision
arithmetic. A digital operator (e.g., an adder or a multiplier) imposes a limited number of bits
(i.e., word-length) upon its inputs and outputs. As a result, the values produced by such an
operator suffer from (small) deviations with respect to the values produced by its equivalent
(infinite precision) mathematical operation (e.g., the addition or the multiplication). The
more the bits allocated the smaller the deviation (or quantisation error) but also the larger,
the slower and the more energy hungry the operator.

Specification

Bit-true specification

Implementation

Algorithmic approximations

Algebraic approximations

Static data formatting

Bit-true optimizations

Algorithmic refinement

Operands encoded 
on fixed bit-widths

operators replaced by
implementable ones

Ideal mathematical 
operators and infinite
precision operands

Algorithm with ideal 

Figure 1: Design flow proposed to enable approximations in Digital Signal Processing imple-
mentations.
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When carefully designed, digital signal processing implementations can generally tolerate
the approximations imposed by short bit-width operators without a practical degradation of
their algorithmic performance (e.g., filter stop band attenuation or cutoff frequency). Ac-
cordingly, Figure 1 presents a design flow conceived to minimise implementation cost by
exploiting the inherent robustness to approximations of digital signal processing applications.
We particularly detail the design steps involved in the refining of the original ideal precision
specification into a bit-true specification. Firstly, a skillful designer will reduce the algorithmic
complexity in the algorithmic refinement step. For example, the Discrete Fourier Transform
(DFT) matrix can be factorised into products of sparse factors (i.e., Fast Fourier Transform),
which reduces the complexity from O(n2) to O(n log n). Additionally, the algorithmic refine-
ment step can make use of approximations to further reduce the algorithmic complexity. For
example, the Maximum Likelihood (ML) detector can be approximated by a near-ML detec-
tor [1]. Once the algorithm structure is determined, the subsequent algebraic transformation
and static data formatting steps are responsible of refining operators and signals, respectively.
An algebraic approximation can for instance reduce a reciprocal square root operator to a
scaled linear function [1]. Finally, the static data formatting step is responsible of encoding
every signal in a fixed bit-width. The latter step correspond to the last approximation and re-
sults in a bit-true specification, from which all succeeding optimisation transformations (e.g.,
loop transformations, resource binding, scheduling, etc.) are bounded to be exact.

The static data formatting step of Figure 1 is equivalent to the so-called word-length
optimisation process and is the main subject of this chapter. We particularly focus on fixed-
point arithmetic (instead of floating point arithmetic) as it generally leads to the most efficient
DSP implementations. Yet, fixed-point arithmetic puts all the burden of restraining finite
word-length (or quantisation) effects on the designer. Accordingly, in the reminder of this
chapter we describe in detail the different stages comprising the fixed-point conversion process
(i.e., dynamic range evaluation, word-length optimisation, and accuracy evaluation) and we
expose the different techniques available for each stage.

2 Fixed-point arithmetic

2.1 Fixed-point representation

Fixed-point representation is a way to encode real numbers with a virtual binary-point (BP)
located between two bit locations as shown in Figure 2. A fixed-point number is made-up of
an integer part (left to the BP) and a fractional part (right to BP). The term m designates
the integer part word-length (IWL) and corresponds to the number of bits for the integer part
when this term is positive. This IWL includes the sign bit for signed numbers. The term n
designates the fractional part word-length (FWL) and corresponds to the number of bits for
the fractional part when this term is positive. The fixed-point value xfxpt is computed from
the following relation

xfxpt = −2m−1 +
m−2∑
i=−n

bi2
i (1)

Numbers in the dynamic range [−2m−1, 2m−1 − 2−n] can be represented in this fixed-point
format with a precision of q = 2−n. The term q corresponds to the quantisation step and is
equal to the weight of the least significant bit b−n. The Q-format notation can be used to
specify fixed-point numbers. For a fixed-point number having an IWL and FWL equal to m
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and n, respectively, the notation Qm.n is used for signed numbers and uQm.n for unsigned
numbers. The total number of bits w is equal to m+ n. In fixed-point arithmetic, m and n
are fixed and lead to an implicit scaling factor equal to 2−n which does not change during
the processing. The fixed-point value xfxpt of the data x can be computed from the integer
value xint of the data x such as xfxpt = xint.2

−n

Integer	part Fractional	part	

20 2�1 2�n�2m�1

bm�2 bm�3S

2�2

b�nb0b1 b�1 b�2

2m�2

m n

21

Figure 2: Fixed-point specification

2.2 Format propagation

In this section the rules governing the propagation of the fixed-point formats through oper-
ations are described for the different arithmetic operations. Let us consider an operation �
having x and y as input operands and z as output operand. Let Qmx.nx , Qmy .ny and Qmz .nz

be the Q-format of the operand x, y and z, respectively.

Addition - subtraction The addition or the subtraction of two fixed-point numbers x and
y can lead to an overflow if the operation result is not in the dynamic range of x and y. In
this case one more bit must be used to represent the integer part. Thus, dynamic range of the
output result must be taken into account. A common IWL, mc, must be defined to represent
the input and the output

mc = max(mx,my,mz) (2)

where mz is computed from the dynamic range of the variable z. This IWL allows aligning
the binary-point of the two input operands before computing the addition or the subtraction.
The fixed-point format of the operation output is as follow{

mz = mc

nz = max(nx, ny)
(3)

Multiplication In contrast to the addition or the subtraction, there is no risk of overflow
for the multiplication if the format of the output respects the following conditions. Thus, the
fixed-point format of the output z = x × y is obtained from the input x and y fixed-point
format with the following expression{

mz = mx +my

nz = nx + ny
(4)

The multiplication leads to an increase of the number of bits to represent the operation
output. The total number of bits wz is equal to wx + wy = mx + nx +my + ny.
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Division For the division operation z = x/y, the value 0, must be excluded of the divisor
y interval [y, y] leading to the interval [y,−2−ny ] ∪ [2−ny , y] if we consider the case that y is
strictly negative and y is strictly positive. The IWL of the division output must be able to
represent the largest value of the division result. This one is obtained by dividing the largest
dividend by the smallest divisor. The largest possible dividend is −2mx−1 while the smallest
divisor is 2−ny .

The FWL of the division output must be able to represent the smallest absolute value
of the division result. This one is obtained by dividing the smallest dividend by the largest
divisor. The smallest dividend is 2−nx while the largest divisor is −2my−1.

Thus, the fixed-point format of the output z = x/y is obtained from the input x and y
fixed-point format with the following expression{

mz = mx + ny
nz = nx +my

. (5)

Like for the multiplication, the total number of bits wz is equal to wx+wy = mx+nx+my+ny.

2.3 Quantisation process and rounding modes

In DSP applications, a sequence of arithmetic operations leads to an increase of data word-
length when multiplication and division operations are involved. To maintain data word-
lengths in reasonable range, the number of bits must be reduced. In fixed-point arithmetic,
the least significant bits are discarded. Let x′, be a fixed-point variable with a word-length
of wx′ bits. The quantisation process Q() leads to the variable x, depicted in Figure 2, and
having a word-length w = wx′ − d. Let Sx be the set containing all the values which can be
represented in the format after quantisation.

Truncation In the case of truncation, the data x is always rounded towards the lower value
available in the set Sx:

x = bx · q−1c · q = kq ∀x ∈ [k · q; (k + 1)q[ (6)

with b·c, the floor function defined as bxc = max (n ∈ Z|n ≤ x) and q = 2−n the quantisation
step. The value x after quantisation is always lower or equal to the value x before quantisation.
Thus, the truncation adds a bias on the quantised signal and the output quantisation error
will have a non zero mean. Truncation rounding is widely used because of its cheapest
implementation. The d LSB of x′ are discarded and no supplementary operation is required.

Conventional rounding To improve the precision after the quantisation, the rounding
quantisation mode can be used. The latter significantly decreases the bias associated with
the truncation. This quantisation mode rounds the value x to the nearest value available in
the set Sx:

x =

⌊(
x+

1

2
q

)
· q−1

⌋
· q =

{
kq ∀x ∈ [k · q; (k + 1

2)q[
(k + 1)q ∀x ∈ [(k + 1

2)q; (k + 1)q]
(7)

The midpoint q1/2 = (k + 1
2)q between kq and (k + 1)q is always rounded up to the higher

value (k + 1)q. Thus, the distribution of the quantisation error is not exactly symmetrical
and a small bias is still present.
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The conventional rounding can be directly implemented from (7). The value 2−n−1 is
added to x′ and then the result is truncated on w bits. In the technique presented in [2], the
conventional rounding is obtained by the addition of x′ and the value b−n−1.2

−n and then the
result is truncated on w bits. This implementation requires an adder of w bits.

Convergent rounding To reduce the small bias associated with the conventional rounding,
the convergent rounding can be used. To obtain a symmetrical quantisation error, the specific
value q1/2 must be rounded-up to (k+1)q and rounded-down to kq with the same probability.
The probabilities that a particular bit is 0 or 1 are assumed to be identical and thus the
rounding direction can depend on the bit b−n value.

x =


kq ∀ x ∈ [k.q; (k + 1

2)q[
(k + 1)q ∀ x ∈](k + 1

2)q; (k + 1)q]
kq ∀ x = q1/2 and b−n = 0

(k + 1)q ∀ x = q1/2 and b−n = 1

(8)

The specific value q1/2 has to be detected to modify the computation in this case. For this
specific value, the addition of the data x with the value 2−n−1 has to be done only if the bit
b−n is equal to one.

The alternative to this conditional addition is to add the value b−n−1.2
−n in every case.

Then, for the specific value q1/2, the least significant bit b−n of the data x is forced to 0 to
obtain an even value. This last operation does not modify the result when b−n is equal to
1 and discard the previous addition operation if b−n is equal to 0. The convergent rounding
requires a supplementary addition operation and an operation (DTC) to detect the value
2−n−1 and then to force bit b−n to zero.

2.4 Overflow modes

In DSP applications, numerous processing kernels involve summations requiring to accumulate
intermediate results. Consequently, the dynamic range of the accumulation variable grows
and can exceed the bounds of the values that can be represented leading to overflows. When
an overflow occur, if no supplementary hardware is used, the wrap-around overflow mode is
considered. For the wrap-around overflow mode, the value xwa of variable x coded with m
bits for the IWL is equal to

xwa =
(
(x+ 2m−1) mod 2m

)
− 2m−1 (9)

with mod the modulo operation. To avoid overflow, the fixed-point conversion process de-
scribed in the rest of this chapter must be followed conscientiously. Especially, the dynamic
range of the different variables must be carefully evaluated for sizing the IWL. For variables
having a long tail for its probability density function, the IWL can be large and thus leading
to an over-estimation for numerous values. In this case, saturation arithmetic can be used
to reduce the IWL. Let consider a variable x coded with m bits for the IWL. In saturation
arithmetic, when the value x is lower than −2m−1 the value x is set to −2m−1. When the
value x is higher than −2m−1 the value x is set to −2m−1 − 2−n.
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3 Architecture support for fixed-point

Different targets can be considered to implement DSP systems. These targets provides differ-
ent trade-offs in terms of flexibility, performance, and energy consumption. Moreover, these
targets exhibits different characteristics in terms of word-length granularity supported by the
processing resources as depicted in Figure 3. By using custom operators, ASIC and FPGA
provide fine-grained word-length operators as detailed in Section 3.1. By using existing hard-
wired operators in FPGA (DSP blocks) or in processors only mid-grained and coarse-grained
word-length operators are available as detailed in Sections 3.2.

Soft-SWP 

ASIC FPGA CGRA ASIP 
DSP 

GPP 
µC 

Programmability  
level  

Operator Multi-precision  
Operator Custom operator 

Transistor/gate, LUT,

Hard-SWP 
Operator 

Standard 
Operator 

Dedicated,,
Resources, Op

era
tor
,

Instruc7on,,,,,,,,,,,,

Word-length  
granularity Fine grained Mid-grained Coarse grained 

Instruc7on,,,,,,,,,,,,

Reconfigurable architecture  Processor Dedicated architecture 

Architecture 

Figure 3: Word-length granularity for the different targets to implement DSP systems.

3.1 Fine-grained word-length operators

Hardware implementation of signal processing applications allows achieving high performance
by specialising the architecture to the application. In ASIC, the architecture can be optimised
up to the transistor level. In FPGA, the interconnection between specialised arithmetic blocks
(DSP), Look-Up Tables (LUT) and registers can be configured to achieve more complex
structures. Consequently, in these architectures custom operators can be considered. The
operator word-length can be specialised and adjusted bit by bit and thus fine-grained word-
length operators can be obtained.

To illustrate the interest of using fine-grained word-length operators, the energy obtained
for adders and multipliers using LUTs for a Virtex-5 device is reported in Fig. 4. The energy
is given for input word-lengths from 4 to 40-bits for the adder and from 4 to 48 bits for the
multiplier. The energy is measured using the technique developed in [3]. Only the dynamic
energy consumption (related to the activity in the circuit) is considered. These results clearly
show the impact of word-length (wl) on the energy cost metric. For adders, the energy
varies linearly from 1pJ to 12pJ with bit-width from 4 to 40 bits. Multiplier energy varies
quadratically according to bit-width when the multiplier is implemented using only LUTs.
These results show the interest of adjusting the data word-length bit by bit to minimise the
energy consumption.
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Figure 4: Energy consumption adders (left) and LUT based multipliers (right) with variable
wl for Virtex-5.

3.2 Mid and coarse-grained word-length operators

Processors based on specialised architecture can lead to efficient implementation of DSP
applications. In this context, processor architectures have been proposed [4], [5], [6], [7],
which give up the generality of traditional general purpose processors to become far more
application specific. Such processors close the gap with ASICs to 2 − 4×, reporting energy
efficiency in the order of 1000 MOPS/mW in 40nm CMOS standard cell technology.

This type of processor architectures generally relies on fixed-point arithmetic as it con-
sumes significantly less energy and cycles than floating point arithmetic for most applications.
The typical presence of multiple word-length signals in the target applications is clearly ben-
eficial for ASIC implementations, which can reduce area, delay and power consumption by
customising the hardware to the application needs. Instead, the benefit that a programmable
processor implementation, which includes a fixed bit-width (native word-length) datapath,
can achieve from multiple word-length signals seems rather limited and less interesting. The
CoolFlux [8] processor from NXP is an example of data-path bit-width customisation. This
includes a non-standard 24-bit datapath optimised for the typical bit-widths of audio appli-
cations.

3.2.1 Multi-precision operations

To increase the precision compared to the native word-length, multi-precision operations
can be considered. The multi-precision operation is decomposed in a set of operations han-
dling native word-length data. In FPGA, for efficient implementation of DSP applications,
hardwired multipliers and adders (DSP blocks) are provided. By combining these elements,
multi-precision operators can be obtained. Fig. 5 shows the energy obtained for multipliers
using DSP blocks for a Virtex-6 device. Using DSP blocks, the energy exhibits a stair effect
according to bit-width, which is due to the structure of DSPs constituted of 9-bit elementary
operators. When an operation with native word-length operand requires one instruction in
a processor, the multi-precision operation requires several instructions. The energy and the
latency of multi-precision operations is significantly higher than for operations with native
word-length data.
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Figure 5: Energy consumption of Virtex-6 multipliers using DSP blocks with variable wl.

3.2.2 Exploitation of sub-word parallelism with SIMD

Alternatively, sub-word parallelism can be exploited to increase processing efficiency at the
expense of a reduction of the data word-length compared to the native one. Data-parallel
datapaths enable processors to execute a single instruction on multiple independent sets
of data (sub-words) in parallel, producing multiple independent results. Considering the
deterministic behaviour of the applications under consideration, a software-controlled data
memory enables the optimisation of the data layout considering at design time the particular
word-lengths.

Thereby, the cost in energy and time associated with the instruction (instruction fetching,
operand load, execution and result storage) is shared by all the sub-words. Importantly, the
cost per instruction does not increase when operating over a higher number of sub-words [9].
Thus, sub-word parallel processors can for example execute two operations per instructions
operating on signals with N/2 bits, where N corresponds to the processor’s datapath bit-
width. The same processor can execute four operations per instructions operating if the
signals can be reduced to N/4 bits with the corresponding cost reduction per operation. This
technique is also known as Single Instruction, Multiple Data (SIMD) and makes execution
time and energy consumption dependent on the signal bit-widths. Notice that in order to
take advantage of the SIMD the application under execution needs to exhibit enough data-
parallelism to fill most of the available sub-words. Hardware SIMD and software SIMD are
two different SIMD flavours.

Hard-SIMD Hardware SIMD (Hard-SIMD) is used by many commercial low power and
high performance processors. Hard-SIMD requires special hardware support in order to keep
the independence across sub-words. For instance, the carry propagation path of a Hard-
SIMD adder is either interrupted or propagated in the sub-word boundary depending on a
configuration bit. Therefore, every sub-word combination requires a different instruction to
generate the corresponding control signals. To keep this overhead low, Hard-SIMD processors
typically support a limited number of different sub-words of the same length (e.g. TI C64
DSP supports 1x32-bit, 2x16-bit or 4x8-bit sub-words in a 32-bit datapath [10]). Obviously,
the limited number of different sub-words forces the ceiling of the signal to the next available
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sub-word. This can lead to unused bits, e.g., a 9b signal rounded up to 16b, and therefore a
substantial loss in efficiency.

The tendency in processor architectures is to widen datapath bit-width in order to achieve
a higher performance. For example the ADRES processor includes a 64b SIMD datapath
with support for 4x16-bit operations [11], the NXP EVP includes 256-bit SIMD datapath
with support for 16x16-bit operations [12] the AnySP includes a 1024-bit SIMD datapath
with support for 64x16b operations[5]. With NEON, a 128-bit SIMD co-processor can be
integrated in Arm architecture to provide up to 16 operations on 8b data. Furthermore,
Arm has recently introduced the Scalable Vector Extension (SVE) in its 64-bit Armv8-A
architectures enabling implementation choices for vector lengths that scale from 128 to 2048
bits.

Word-length optimisation techniques to drive data-type selection for Hard-SIMD processor
architecture have been published. A reduction in cycle count by factor of 2 to 3.5 compare to
single word-length alternative is reported by Menard et al. [13] for a set of important kernels
in the wireless application domain. Also, reductions up to a factor of 3 in energy consumption
are reported by Novo et al. [14] in the execution of the digital baseband processing of a WLAN
receiver.

Soft-SIMD Software SIMD (Soft-SIMD) is another flavor of data-parallel processing which
does not require operators with specific hardware support to keep sub-word independence
[15, 16]. Instead, maintaining sub-words bounds is now the responsibility of the designer,
e.g. by inserting guards bits between sub-words to avoid bit rippling across them. Such an
approach enables high flexibility in the vector configuration, enabling sub-words of arbitrary
length to be operated together as a single word (e.g. a 32-bit datapath can now include 1x12-
bit and 2x10-bit sub-words). Hence, the Soft-SIMD can better exploit fine-grained signal
word-length information (theoretically down to the bit level) with more versatile sub-word
combinations.

However, standard Soft-SIMD suffers from two major drawbacks. On the first hand, only
positive numbers can be operated. Guard bits need to be equal for all the sub-words, but
due to the nature of 2’s complement representation, 0’s are required as guard bits for positive
numbers and 1’s for negative ones. This can be solved by adding an offset to the computed
data. This offset needs to be revised at different parts of the processing in order to maintain
positive values while optimally utilising the range allocated in the word-length. On the other
hand, multiplications require a prohibitive amount of guard bits. The need for many guard
bits is related to the word-length growth experienced in a multiplication and has been the main
showstopper of such a technique. Fortunately, this is not the case for constant multiplications
which can be decomposes in sequences of Shift-Add operations. An extensive description of
the Soft-SIMD technique is presented by Novo et al. [4]. The latter work implements a video
surveillance application on a programmable processor enhanced with Soft-SIMD achieving a
very high energy efficiency, which is estimated to be only 2× lower than that of an equivalent
ASIC implementation.

4 Fixed-Point Conversion Process

The fixed-point conversion process aims at selecting the set of word-lengths leading to the
cheapest implementation while bounding the accuracy degradation to a level that is tolerable
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Figure 6: Basic components of the proposed fixed-point conversion process.

by the application in hand. The latter can formally be defined as the following optimisation
problem:

minimise
w

C(w)

subject to ε(w) ≤ εmax,
(10)

where w is a vector containing the word-lengths of every signal, C(·) is an implementation
cost function that propagates variations in word-lengths to design objectives such as area or
energy consumption, ε(·) computes the degradation in precision caused by a particular w,
and εmax represents the maximum precision loss tolerable by the application.

From a methodological perspective, the word-length optimisation process can be ap-
proached in two consecutive steps: (1) Integer Word-Length (IWL) selection and (2) Frac-
tional Word-Length (FWL) selection. The IWL selection step defines the left hand limit –
or Most-Significant Bit (MSB) – and the position of the binary point. The subsequent FWL
selection step fixes the right hand limit – or Least-Significant Bit (LSB) – of each word-length.
Figure 6 shows the basic components of the fixed-point conversion process. Typically, the IWL
selection step is designed to avoid overflow errors altogether and consists of the following two
subsequent steps:

• The dynamic range evaluation step analyses each signal with the objective of setting an
upper bound on its magnitude growth.

• The scaling factor selection step inserts scaling operations to obtain a valid fixed-point
specification. For instance, scaling operations are inserted to align binary point for
addition of two fixed-point numbers.

The FWL selection step is usually the main responsible for accuracy loss and can be
further divided into the following four interacting components:

• The World-Length (WL) optimisation engine basically consists of an algorithm that
iteratively converges to the best word-length assignment. It has been shown that the
constraint space is non-convex in nature and the optimisation problem is NP-hard [17].
Accordingly, existing practical approaches are of a heuristic nature [18, 19, 20].

• A precise cost evaluation of each word-length assignment hypothesis leads to impracti-
cal optimisation times as the aforementioned heuristic optimisation algorithms involve
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many cost and accuracy evaluations. Instead, a practical word-length optimisation pro-
cess uses fast abstract cost models, such as the hardware cost library introduced by
Sung et al. [21] or the fast models proposed by Clarke et al. [22] to estimate the power
consumed in arithmetic components and routing wires.

• The accuracy constraint selection block is responsible of reducing the abstract sentence
“the maximum precision loss tolerable by the application” into a metric that can be
measured by the accuracy evaluation block. Practical examples have been proposed for
audio [23] or wireless applications [1].

• The accuracy evaluation block evaluates the accuracy degradation metric ε for a given
word-length w. Existing approaches for accuracy evaluation can be divided into simulation-
based and analytical methods. Simulation-based methods are suitable for any type of
application but are generally very slow. Alternatively, analytical accuracy evaluation
methods can be significantly faster but often restrict the domain of application (e.g.,
only linear time-invariant systems [18]). There are also hybrid methods [24] that aim
at combining the benefits of each method.

The remaining of the chapter will cover in greater detail the IWL selection step in Sec-
tion 5 and the FWL selection step in Section 6. The latter particularly focusses on the WL
optimisation engine (Section 6.1) and accuracy evaluation step (Section 6.2).

5 Integer-Part Word-Length Selection

The first stage of the fixed-point conversion process aims at determining the number of bits for
the integer part of each signal in the considered system. The goal is to minimise the number
of bits while protecting against overflows which degrade significantly the application quality.
Firstly, the dynamic range of each signal is evaluated. The different types of techniques
available to estimate the dynamic range are presented in Section 5.1. Secondly, the IWL is
determined from the dynamic range and the fixed-point format propagation rules. Scaling
operations are inserted to adapt fixed-point formats. This process is described in Section 5.2.

5.1 Dynamic range evaluation

The determination of the number of bits for the integer part requires to evaluate the signal
dynamic range. Figure 7 presents a classification of the existing techniques used to evaluate
the dynamic range.

Critical systems do not tolerate high computational errors. Any overflow occurrence may
lead to a system failure or a serious quality degradation. For example, in 1996, the first
launch of the Ariane 5 rocket ended in explosion due to software failure. This failure was
caused by the overflow of the variable representing the rocket acceleration. Thus, for critical
systems, the integer part word-length has to cover the entire range of possible values. In this
case, the bounds should be determined by techniques that guarantee the absence of overflow
occurrence and allowing to certify the signal dynamic range. Techniques based on interval
arithmetic or affine arithmetic satisfy this constraints, but at the expense of an overestimation
of the bounds. These techniques are presented in Section 5.1.1. Statistical approaches that
determine bounds from a set of simulation results can reduce the overestimation, but can not
ensure the absence of overflow occurrence. These techniques are presented in Section 5.1.2.
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Figure 7: Classification of existing techniques to evaluate dynamic range.

Overflows occur when the number of bits of the integer part is not sufficient. Overflow
occurrence degrades the result quality at the system output. However, the hardware im-
plementation cost is unnecessarily increased if the number of bits exceeds the needs. Many
systems are tolerant to overflows if the probability of overflow occurrence is low enough. In
this case, determining the number of bits of the integer part is a trade-off between the im-
plementation cost and the output system quality degradation. This is translated into an
optimisation problem where the integer word-length of each variable of the system is reduced
while maintaining an overflow probability lower than the accepted probability [25]. The chal-
lenge is to estimate the probability density function (PDF) of the data in order to be able
to compute the overflow probability. Approaches presented in 5.1.3 can be considered to
estimate the PDF. Stochastic approaches model the variable PDF by propagating data PDF
model from the inputs to the system output.

5.1.1 Interval-based methods

Different methods handling intervals have been proposed in the literature to provide certified
bounds of the dynamic range of the signals. The aim is to determine the interval of the output
by propagating the input interval towards the output. Propagation rules are defined for each
type of operation.

IA-based techniques Interval Arithmetic (IA) [26] was probably one of the initial tech-
niques to provide bounds on the uncertainties of complex systems. In IA, a variable x is
replaced by its interval Ix = [x, x]. Let us consider operation � having x and y as input
operands and z as output operand. The interval of the two input operands x and y are
respectively [x, x] and [y, y]. The interval [z, z] of the output z is obtained with the following
expressions for arithmetic operations
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z = x+ y [z, z] = [x+ y, x+ y]

z = x− y [z, z] = [x− y, x− y]

z = x ∗ y [z, z] = [min(xy, xy, xy, xy), max(xy, xy, xy, xy)]

z = x/y [z, z] = [x, x].[1/y, 1/y] with 0 6∈ [y, y]

(11)

The main advantage of IA is that it is able to easily provide certified bounds of all the
possible results of a given function. On the other hand, it suffers from three different types of
problems [27]: the dependency problem, the cancellation problem, and the wrapping effect.
The dependency problem expresses that IA computations overestimate the output range of
a given function whenever it depends on one or more of its variables through two or more
different paths. The cancellation problem occurs when the width of the intervals is not
canceled in the inverse functions. In particular, this situation occurs in the subtraction
operations (i.e., according to the IA computation rules, Ix − Ix = 0 for a given non-empty
interval Ix), what can be seen as a particular case of the dependency problem, but its effect is
clearly identified. The wrapping effect occurs because the intervals are not able to accurately
represent regions of space whose boundaries are not parallel to the coordinate axes.

One of the earliest works that suggested the application of interval-based techniques to
perform finite WL analysis of DSP systems was the finite WL evaluation tool Fridge [28, 29].
This tool performed the so-called worst case estimation, making use of designer annotations to
compute the maximum and minimum bounds of the values of the signals. In the computations,
they perform the operations using Interval Arithmetic (IA) without specifically referring to
it.

Several C++ libraries for IA analysis have been proposed like Profil/BIAS [30], MPFI [31]
and BOOST Interval Arithmetic Library [32]. The use of IA has been explicitly suggested
in [33] to provide bounds on the allowable range of values of the resources of the datapath
of a given circuit. However, in most cases IA provides oversised bounds [34, 35, 36]. As a
result, it only provides useful results in systems without feedback loops, or in combination
with techniques to reduce overestimation [28, 37].

One of the most intuitive ways to reduce the overestimation provoked by IA is to split the
input intervals in sets of smaller sub-intervals covering the same ranges. In the literature, this
method has been called Multi-Interval Arithmetic (MIA) [38, 39, 40]. Formally, the ranges
of the input signals are represented as unions of P intervals (MIAP ), allowing automatic
monitoring of the growth of the integer and fractional parts of the variables. MIA was
initially suggested to perform fast evaluation of the signal ranges of DSP systems in [38], but
it has also been shown that it only provides useful results in acyclic data-flow graphs [34].
The mathematical justification of some of its properties can be found in [39], and the analysis
of MIA as a means to perform fast computation of the bounds of the finite WL effects has
been given in [34, 38, 40]

AA-based computations Affine Arithmetic (AA) and its extensions have emerged as
a popular technique to efficiently compute the bounds of the uncertainties in many types
of applications. AA is able to accurately model and propagate several uncertainties through
linear systems using simple computation rules. Modified AA (MAA) performs a more accurate
propagation of the uncertainties in non-linear systems, at the expense of an exponential
increase in the number of elements that need to be computed. Furthermore, the basic elements
in MAA do not form an orthonormal basis, so MAA needs to be combined with Polynomial
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Chaos Expansion (PCE) techniques to provide accurate and precise results.

Affine Arithmetic In AA [41, 42, 43], each element or affine form consists of a central
value plus a series of noise terms. Each noise term is composed of an uncertainty source
identifier (the noise symbol) and a constant coefficient associated to it. The mathematical
expression is:

fAA(ε) = x̂ = xc + x0ε0 + x1ε1 + x2ε2 + ...+ xnεn (12)

where x̂ represents the affine form, xc is the central point, and εi and xi are the i-th noise
symbol and its associated coefficient. Operations are classified in affine and non-affine opera-
tions. Affine operations (addition and constant multiplication) are computed without error,
but non-affine operations need to include at least one additional noise term to provide the
bounds of the results. The main advantage of AA is that it keeps track of the noise symbols
and cancels all the first-order uncertainties. In non-linear systems AA obtains quadratic con-
vergence, but the increment of the number of noise terms in nonlinear operations makes the
computations less accurate and time-consuming. A detailed analysis of the implementation
of AA and a description of the most relevant computation algorithms is given in [43].

In the DSP literature, AA was originally proposed to provide bounds of the mantissas of
the floating-point descriptions [44]. They also computed the ranges of the signals in fixed-point
realisations but only reported accurate results in LTI systems without feedback loops [34, 36].
AA has been commonly used to provide bounds on linear and non-linear systems without
feedback loops (linear transforms [45, 46, 47], polynomial evaluations [45, 47], B-splines [45],
etc.). However, the bounds provided by AA are only equal to the exact ranges of the results
in linear sequences of operations, and some oversizing is introduced otherwise [43, 34]. When
this oversizing is not accumulated in the loops of the realisation under study, the difference
between the signal ranges and the bounds of the AA-based simulation is small. However, if
the oversizing is accumulated in the loops, the bounds of the AA-based simulation do not
provide useful results [48]. This characteristic is particularly important in systems where the
amount of feedback of the loops is large (for example, in quantised IIR filters whose poles are
close to the unit circle [48, 46]).

Modified AA Modified AA (MAA) [49, 50] is an extension of AA that includes the
terms of order higher than one in the affine forms. In this technique the affine forms are poly-
nomials in which the independent variables represent uncertainties in the reference interval
[−1, 1]. Its mathematical expression is:

fMAA(ε̂x) =

m∑
i=0

diε
i
x (13)

This expression is an extension of AA in which all the high order terms are taken into account.
In the original works, MAA is used for polynomial evaluation and algebraic curve plotting in
2D [49, 50]. However, since the monomials of MAA do not form an orthonormal basis, this
approach can lead to inaccuracies in the propagation of the affine forms [51].

Combined application of MAA and PCE The combined application of MAA and
Polynomial Chaos Expansion (PCE) accurately propagates the uncertainties through the non-
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linear descriptions of the systems. For the MAA-based PCE description, its mathematical
expression is as follows:

fPCE(ε̂x) =

∞∑
i=0

αiψi(εx) (14)

where αi are the coefficients of the expansion, and ψi(εx) are the orthonormal polynomials
of εx [52, 51]. Due to the formulation of the PCE, the optimal selection of the polynomial
basis depends on the type of random variables being evaluated [52]. The Hermite PCE is best
suited to evaluate gaussian random variables, which is the most common type of uncertainty
in the input signals [53], and the Legendre PCEs is best suited to propagate uniform random
variables [54]. The disadvantage of this approach is that number of polynomials required
to form the basis of the PCE significantly increases with the dimension and order of the
expansion. For this reason, in practice the number of terms of the expansion is limited to
small numbers (e.g., order 3 and dimension 4).

Combined application of MAA and ME-gPC The Multi-Element generalized Poly-
nomial Chaos (ME-gPC) technique is aimed at providing more accurate results than PCE,
particularly in systems with discontinuities, at the expense of additional computations. ME-
gPC proposes the decomposition of the N -dimensional random input space B = [−1, 1]n in
a set of non-overlapping sub-spaces Bk =

∏n
i=1[a

k
i , b

k
i ). In order to maintain the orthogo-

nality properties of Legendre Chaos, the new random variables ψk
i of each sub-space must

be re-scaled to [−1, 1]n. In ME-gPC, the coefficients of the expansion, αk
i , are obtained by

solving a linear system in each sub-space. This is done by choosing m+ 1 uniform grid points
in [−1, 1]d and comparing them with their corresponding values in the original space. The
mathematical expression of the MAA-based ME-gPC is as follows:

fME−gPC(ε̂kx) =
∞∑
i=0

αk
i ψi(ε

k
x) (15)

With the coefficients obtained using this method, PCE can be locally applied to the different
elements. Later, the global statistical moments can be reconstructed by combining all the
partial results. While the partitioning described here can be statically performed before
the analysis begins, the authors in [55] propose a dynamic adaptive criterion to do it more
efficiently. Instead of splitting the domains of all the random variables in the sub-space, only
the most sensitive ones are selected for the partition. Once the spaces and random variables
to split have been chosen, the partitioning is performed and the process is repeated until no
new elements are generated.

5.1.2 Statistical methods

Statistical methods for dynamic range evaluation are based on performing a number of simula-
tions that compute the relevant statistics of the signals of interest. The number of simulations
is not as large as in the evaluation of the fractional part, but the techniques and tools in-
dicated in Section 1.6.2.1 can also be applied here, or in combination with the techniques
presented below. In this case the simulations are applied over the unquantised description of
the realisation. The objective is to obtain the statistics of the range of each signal, and then
the number of bits required to represent the integer values in each case (integer WLs).
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Among the techniques based on probabilistic simulation, the most relevant are: (1) the
Monte-Carlo (MC) method, (2) Latin Hypercube Sampling (LHS), (3) Importance Sampling
(IS) and its variants, and (4) Statistical Intervals. Each of them is briefly described below.

The Monte-Carlo method The MC method is based on randomly generating a set of test
vectors according to the PDFs of the inputs, processing them through the system realisation,
and storing the results for further analysis [56, 57, 58, 59, 60, 37, 61]. This analysis includes
the computation of the statistical parameters of the relevant signals (mean, variance, higher
order statistics, and even the PDF in some cases [60, 62]), and the selection of the required
integer WLs of each signal. The MC method has the advantage of being safe and conceptually
simple, which has contributed to become one of the most popular methods for dynamic range
evaluation. However, this method requires a very large number of simulations and tends to
be very slow, especially when high-precision results are required or when the number of input
signals is high.

One of the implicit theorems in the MC method is the Central Limit Theorem, which
states that the sum of N independent and equally distributed variables tends to generate a
normal distribution when N tends to infinity [59]. On the other hand, the confidence interval
is defined as the range of values whose probability of containing the mean is above a certain
threshold [63, 64]. The approximation

n ≈ 10

Pe
(16)

provides the number of samples n required to ensure that the estimated value µ is contained
within the interval [0.5, 2]·µ with an error probability Pe of 97%. Consequently, this value pro-
vides the minimum number of simulations needed to obtain reliable results with a predefined
error probability [57, 59].

The main advantage of this approach is that all types of realisations are supported. The
simulations can be done with system-level design tools such as SPW [65], SystemStudio [66],
Matlab-Simulink [67], Ptolemy [68], etc.

Latin Hypercube Sampling LHS is a variant of the MC method based on dividing the
PDFs of the input signals into equiprobable parts, and combining the samples associated to
each part according to their respective correlations [69, 70]. The selection of samples within
each part is done randomly, as in the MC method. There are works that evaluate the behavior
of this method with respect to MC. However, they conclude that the accuracy of the results
is almost similar (for a given number of samples), but the processing speed is approximately
12 times lower [59].

Importance Sampling. Extensions and variants The IS method consists on modifying
the PDFs of the input signals by means of weight functions to enhance the parts of the prob-
ability function that have greater impact on the results. These transformations significantly
reduce the variance of the estimator to be computed [57, 71, 72]. The new PDF is generated
by scaling or moving the original PDF in a controlled manner, and generating the results
through MC simulations. Afterwards, the results are corrected according to the displace-
ments made from the initial transformation. This method achieves considerable reductions
in the variance of the estimator (up to 103% or 108%, depending on the application). This
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means that the number of simulations needed to obtain the reliability of the MC method is
significantly reduced. The main drawback of this technique is that, assuming certain prede-
fined initial conditions are met, the precision is very dependent on the system under analysis
(especially on the amount of memory and the non-linearities). In addition, the selection of
the regions to be displaced and how to make these movements is a very complex issue that
”requires further study” [71].

The most relevant extensions of IS for systems with memory are regenerative simulation,
and simulation based on events and conditioning [58, 73]. The main variants to improve the
accuracy of the simulations are: Large Deviation Theory (LDT) [58, 74, 75], Selection of
Sub-optimal Distributions [76, 77, 74, 78], Adaptive IS [78], Extreme-Value Theory [79, 80]
and Quasi-Analytical Theory [57].

Statistical Interval-based Computations As detailed in the Section 1.5.1.1, Interval
Computations have been widely used in evaluating the dynamic range of the signals. Due to
their improved computional speed, some authors have proposed the incorporation of statistical
values to the intervals [81, 82, 83, 52]. Using this representation, interval [a, b] represents a
uniform distribution in the range of that interval with an associated probability p = 1/(b−a).

Statistical Interval-based Computations is divided in three tasks: representation of the
input statistics using intervals, propagation of the interval parameters, and computation of
the output statistics. To provide good results, each of them must be accurately performed,
avoiding the introduction of oversizing in any of them. A detailed description of these tasks,
with the expressions to perform the required computations, can be found in [83]

Since Interval Arithmetic provides conservative bounds of the results, the PDFs computed
using Statistical IA are not accurate: The probabilities of the tails of the distributions are
greater than the reference ones, and the central values have smaller probabilities than their
respective counterparts. Instead, extensions of IA provide much more accurate results. In this
sense, if all the interval computations are accurately performed (i.e., without any oversizing),
the computed statistical parameters correspond to the exact results. As a rule of thumb, the
more accurately the computations are performed, the more accurate PDFs are provided.

Affine Arithmetic has shown to provide exact results in LTI systems [83, 52], and good
first-order approximations for quasi-LTI systems without feedback loops [82]. In the general
case, the combination of Modified AA with PCE or ME-gPC techniques [52, 84] provides the
most accurate results.

5.1.3 Stochastic methods

Although the most common practice today for dynamic range estimation is still profiling
(also referred as simulation), this approach requires exceeding long computation times, and
in many cases limited confidence on the accuracy is obtained.

Stochastic methods (also referred as analytical) have emerged and aim at reducing these
two limitations. While many advances have been made here, most existing work either makes
an ”inadequate treatment” of the signal correlations [53], or requires very long computation
times.

In the general case, accurately managing abrupt non-linearities requires capturing the
high order correlations of the signals, which in turn demands processing a very large number
of parameters. Hence, the adaptation of the evaluation method to the system characteristics
is essential to perform efficient computations.
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While the use of impulse-response evaluation techniques for LTI system or quasi-LTI
systems is the most efficient option [85, 54, 86], the best approach for the evaluation of the
dynamic ranges in non-linear systems is the application of PCE and ME-gPC techniques.
PCE captures the non-linearities in polynomial systems [53, 52, 51], and ME-gPC provides
better results with discontinuities are present in the realisation [51, 84].

The most recent approaches on this area select the most relevant parameters (i.e., they
keep track of these elements up to a given number of terms) to obtain the results as fast as
possible in the minimum computation time [87, 84].

5.2 IWL determination and insertion of scaling operations

The IWL is determined by propagating the IWL thought the operations from the inputs to
the outputs with the help of the dynamic range evaluation results. This propagation process
uses the format propagation rules provided in Section 2.2.

To illustrate this stage, let us consider the sequence of operations depicted in Figure 8.
The data d is the output of the operation Oj and the input of operation Ok. Let ms, md and
mi be respectively the IWL for the operation Oj output, the data d and the operation Ok

input.

d
o i OkOj

Figure 8: Example of a sequence of operations: data d is the output of the operation Oj and
the input of operation Ok.

The IWL of the signed data d is computed from its dynamic range [x, x] with the following
expression

mx = max (blog2(| x |)c+ 2, dlog2(| x |)e+ 1) . (17)

The IWL mo is computed from the propagation of the IWL of the operation Oj inputs with
the help of the rules provided in Section 2.2. A scaling operation is inserted at the operation
Oj output if so = md −moj is strictly negative. In this case, a left shift of so bits is required
to modify the IWL. It means that the IWL of the operation Oj was too important compared
to the data dynamic range of d and the so most significant bits of x are a copy of the sign bit
and can be discarded.

For multiplication and division, the IWL mi is equal to md and no scaling operation is
required at the operation Oj input. For addition and subtraction, a common IWL mc for the
input and the output must be determined and mi = mc. A scaling operation is inserted at
the operation Ok input if si = moi−md is strictly positive. In this case, a right shift of si bits
is required to modify the IWL of the data d. It means that supplementary bits are required
for the addition or subtraction Oj to avoid overflow.

6 Fractional-Part Word-Length Determination

The ultimate goal of fixed-point refinement is to enable the implementation of systems based
on mathematical computations while bounding the implementation cost to a reasonable fig-
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ure. Ideally, the designer seeks the minimisation of the cost given a maximum allowed overall
degradation. The minimisation of the cost is provided through finding a suitable set of word-
lengths that comply with the accuracy constraints while minimising the cost. A description
and comparison of the most popular optimisation techniques can be found in 6.1. The tech-
niques used to check the accuracy of the system along the optimisation process are described
in 6.2

6.1 Word-length optimisation

As already stated in Section 4, the word-length optimisation process is defined as

minimise
w

C(w)

subject to ε(w) ≤ εmax,
(18)

The problem is to find w, a vector containing the word-lengths of every signal, that minimises
a cost function C(w), complying with a maximum error degradation εmax. The function ε(w)
computes the quality degradation due to reduced precision caused by a particular w. The
problem depicted in Eq. 18 aim at optimising, for each signal, the fractional part word-length
(FWL) ni = wi −mi with mi the IWL obtained from the process presented in Section 5.

Depending on the thoroughness of the optimisation process, the implementation cost can
be considerably reduced. The fast, but far from optimal, uniform word-length approach has
been progressively replaced by the cost-effective multiple word-length approach [88, 18, 89, 90].

In this section we present several techniques to perform the fine-grain optimisation re-
quired to obtain multiple word-lengths implementations, focusing on finding the FWL for
each signal. These classic techniques cannot be applied directly to industrial-size designs
having a great number of variables to optimise. Hierarchical approaches [91, 92] have been
proposed to decompose the global optimisation problem into several optimisation problems
with a reasonable number of variables to optimise.

6.1.1 Optimisation algorithms

This subsection focuses on automatic optimisation procedures that enable to obtain a set
of word-lengths that minimises cost, finding the value of the FWL ni for each signal. The
optimisation methods presented here have been divided into different categories, sorted from
higher to smaller computational complexity. A comparison between the different techniques
can be found at the end of the section.

Optimal approaches A straight approach to optimisation is that of complete search where
all the word-length combinations within a wide space are assessed and the solution that
minimises cost is selected [21, 61, 93]. The search requires the computation of lower and
upper bounds for all word-lengths to constrain the search space. It is important to bear in
mind that there is a chance, small though it may be, that the global minimum is not found
within these bounds, since the quantisation error at the outputs of a quantised system is
non-monotonic and non-linear with respect to the word-lengths [18].

In [18] a Mixed Integer Linear Programming (MILP) of the quantisation problem is for-
mulated for LTI algorithms. MILP requires expressing the optimisation problem by means of
equations and inequalities that are fed to a solver. The quality degradation used is as the the

21



variance of the quantisation noise, derived with an analytical accuracy evaluation technique
that considers a discrete noise model and signal branching (see Section 6.2). The final formu-
lation leads to an explosion of variables and constraints for medium/large size algorithms with
solving times around several days. This work was extended to consider high-level synthesis
in [94].

Optimisation in the continuous domain There are also approaches where the optimal
techniques are applied to solve the quantisation problem assuming real word-lengths. The
obtained solution is then refined looking for a feasible realisation with integer word-lengths.
Optimality is not guaranteed, but the authors show a reduction in optimisation time.

The idea was first proposed in [95] and three simplifications were performed: i) the word-
lengths are real numbers; ii) cost is a linear combination of the word-lengths; and, iii) the
quantisation noise of a signal only depends on its final word-length. The optimisation is then
based on an approximate solution to the problem using the Lagrangian multipliers that results
in a linear expression of the cost that is a function of the word-length and the so-called noise
gains. The noise gains relate the word-lengths with error.

In [96] the error estimation is performed by means of interval arithmetic and the worst-case
error contribution of each signal to the outputs is computed (as in [88]). Also, the objective
function is linear, since they use the summation of word-lengths as an implementation com-
plexity measure. Thus, the optimisation problem can be solved by Linear Programming,
reducing the computation time.

In [97] a nonlinear iterative algorithm is presented. This algorithm is applied to find
the real word-lengths that minimise area. The area cost is estimated using a quadratic
function for multipliers and a linear function for adders. The convergence of the optimisation
method is analysed and bounds on the word-lengths are given. The error estimation is based
on analytical techniques, using the Signal-to-Quantisation-Noise Ratio (SQNR) to steer the
optimisation (see Section 6.2.2).

A quadratic objective function is addressed in [22] by means of sequential quadratic pro-
gramming. The main additions of this work in comparison to the other continuous-domain
approaches are that it considers the discrete noise model from [98] and also the noise corre-
lation in signal forks.

Stochastic optimisation Stochastic optimisation is based in heuristics that refine the
word-lengths in a random but controlled fashion. An efficient stochastic algorithm is simulated
annealing (SA), which is based in changing the values of the problem variables by means of
the so-called movements. Each time a movement is performed, the resulting cost as well as
the output error of the current solution are computed. If the noise constraint is met, then,
if the cost is smaller than the current minimum one, the movement is accepted, otherwise,
it is accepted with a certain probability. This probability decays with time (by means of a
decreasing temperature). [99] presented a SA procedure where the movements are based in
the use of a Markov-chain. Also, in [100] a similar approach is presented and some comparison
results with the heuristics in [101, 18] are provided.

Constrained search Constrained search algorithms perform a thorough but not complete
design space exploration. In [102], the exhaustive search is presented and it starts with the
computation of the minimum word-length solution. First, each signal is set to the minimum
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word-length that complies with the error constraint while the rest has infinite precision, and
then, all signals are assigned simultaneously their minimum word-lengths. The next phase is
to increase word-lengths until the error constraint is met. This is performed by distributing
b bits – starting with b = 1 – among several signals are tested. If the current value of b does
not result in complying with the error constraint, B is increased.There is a chance of getting
stuck in a local minimum.

[101] proposes a branch and bound technique. The algorithm starts with a suitable uniform
solution and it starts decreasing the word-lengths until reaching a minimum word-length
bound. First it assesses the error produced by reducing one unit each current word-length
individually. The word-length sets that do not comply with the maximum error are discarded,
while for the rest, the resulting cost is recorded. Then, the one-unit reduction is applied to
each remaining word-length set. Thus, a tree of solutions is created dynamically and the
solution that produced the minimum cost is selected. Again, the solution could be a local
minimum.

Local search [101] proposes a gradient descent optimisation coined local search, that we
referred to as Max-1cost. The algorithm starts with a valid uniform solution, decreasing the
word-lengths until reaching a minimum word-length bound. Each word-length is reduced one
bit temporarily and the cost is computed. Then, the signal that produced the maximum cost
reduction is then reduced permanently and the word-length reduction process starts again.
[61] uses error to steer the optimisation instead of cost.

The Max-1cost idea is extended in [18] where the word-lengths are reduced individually
until the maximum error constraint is violated. The signal that produced the maximum
cost reduction is decreased one bit permanently. Being less dependent on local information,
the chances of falling in a local minimum are reduced. We referred to this approach as the
Max-1+cost .

In [61, 103], a gradient ascent algorithm (Min+1 ) starts with the minimum word-length
solution and then it tests all possibilities of increasing signals 1 bit. After all signals have been
covered the signal that produced the maximum error decrement is chosen and its word-length
is increased one unit.

The Min+b [19] extend the Min+1 so that a budget of b bits (b = [1, 2, . . . bmax]) is
distributed among the signal word-lengths.

[104] elaborates on an idea sketched in [105], presenting the complexity and distortion
search, that we referred to as Max-1err+cost. The Max-1 algorithms is applied but the decision
of the candidate to be reduced is based on the minimum gradient of αc · cost + αd · error,
with αc + αd = 1. The authors claim that the optimisation time is reduced in comparison to
considering only cost or only error gradients.

The evolutive procedure of [61] starts with all signals with floating-point format. Then, a
signal is selected and the minimum word-length that complies with the requirements is found.
The signal is permanently assigned the minimum word-length plus one unit. Then another
signal is chosen and the same procedure is applied. The method stops when all signals are
quantised. The method is extended in [19] with an final extra phase that applies Max-1cost
to the solution obtained.

The Max-1all [21] starts with the minimum word-length solution and it increases all signal
word-lengths one bit until the specifications are met.

The preplanned search of [103] requires an initial phase to compute the sensitivity of each
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signal word-length. The sensitivity information enables to preplan the search steps, starting
with the minimum word-length solution and increasing the signal with higher sensitivity for
the current word-length set. The procedure stops when the error is below the permitted value.

The hybrid procedure of [19] first applies Min+1 and it feeds the obtained solution to the
Max-1err. Another method that combines two optimisation techniques is the heuristic of [19]
that first applies constrained search and then Max-1cost.

The algorithm proposed in [106] is based on Greedy Randomised Adaptive Search Proce-
dure (GRASP) and combines local search and stochastic optimisation. This algorithm is a
multi-start process consisting of two phases: construction phase and local search phase. In
the construction phase, a randomised search algorithm is used to find a sub-optimal solution
and then, from this solution, a local search (tabu search) is applied to refine the solution.
The random aspects allow avoiding local minimums.

6.1.2 Comparison of optimisation techniques

It is not an easy task to quantitatively compare the performance of the different techniques
proposed, as they usually include different setups and no common benchmark suites have yet
been accepted by the research community. Still, in this section we will try to summarise the
main conclusions drawn in papers such as [61, 19, 93], etc.

The approaches Min+b[19], Min+1 [101], evolutive[61], hybrid [19], heuristic[19], simulated
annealing [99], Max-1err[19], branch and boud [101], and preplanned [103] are compared in [19].
The average number of bits of all the signals and the number of optimisation iterations are
used as comparison metric. All methods are able to reach the optimal solution if the number
of operations of the benchmark is small. Also, for many cases, the methods that do not
impose the minimum word-length bound obtain better results. As expected, the algorithms
requiring longer computation times were evolutive, SA, exhaustive and branch and bound.
The combination of two optimisation methods such as hybrid and heuristic produced the
best minimisation. The exhaustive method does not perform well because of the lower bound
limitation. SA does not lead to optimum results since the number of iterations was limited
(see [100] to see some examples of the actual performance of SA). The approach preplanned is
the fastest for the benchmarks tested. It must be stressed that the set of benchmarks used is
limited, mainly formed by small-size examples, and that using as a metric the average number
of bits does not directly relate to cost.

The approaches complete search [21, 61, 93], exhaustive search [102], Min+1 [61, 103]
(called sequential search), preplanned search[103], Max-1cost [101], Max-1err [61], evolutive
search [61], Min+1 [103, 61], branch and bound [101] and Max-1err+cost [104] are tested and
compared in [93] for a optimisation with 5 variables. First, the results yield that the complete
search requires a number of iterations 4 to 5 order of magnitudes bigger than the rest of
options. Again, preplanned emerges as the fastest approach although the results are not quasi-
optimal and they are highly dependent on the input vectors used for simulation. After that,
the paper compares the effect of using error or cost to guide the optimisation, applying Max-
1cost, Max-1err, Min+1 and Max-1costerr to small-size benchmarks. To summarise, the use of cost
gradients seems to produces better final costs, the use of error gradients seems to accelerate
the optimisation process and, finally, the use of both (Max-1costerr ) leads to optimisation times
as reduced as Max-1err and always provides always the best costs.

A comparison of SA, Max-1cost and Max-1enherr can be found in [100]. Regarding compu-
tation time the fastest algorithm is Max-1cost. Max-1enhcost takes times one order of magnitude
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bigger, while SA times are 2-3 order of magnitude bigger. In terms of cost minimisation, the
average reduction of Max-1enherr vs. Max-1err is around 5%, while there are a few cases where
Max-1err performs better. Comparing SA and Max-1err, the latter always performs better
and the average cost reduction is around 10% for the benchmarks tested.

Finally, it is interesting to mention works where industrial-size design are addressed in
practical time. The key to do so is to use hierarchical methods, where the quantisation
problem is subdivided in several independent problems. In [91] quantisation goes as follows.
First, the systems is divided in top-level entities – which basically are the main processing
blocks (i.e. FFT, channel equaliser, etc.). Then, the top-level signals – the inputs and
outputs of top-level entities – are quantised complying with the error constraint and following
a cost estimation reduction criteria. Finally, each top-level entity is quantised independently
given the error constraints imposed by the quantisation of the top-level signals. The method
provides a practical solution to the complexity explosion of word-length optimisation. Also,
in [92], a mixed analytical and simulation hierarchical approach is presented where significant
design time reductions are reported.

6.2 Accuracy evaluation

Fixed-point arithmetic leads to unavoidable error between the finite precision values and the
infinite precision ones. Such errors, due to signal quantisation, degrades the quality of the
application output. Thus, the data word-lengths can be reduced until the effect due to signal
quantisation on the application quality metric are tolerable. The challenge is to propose
technique to evaluate efficiently the effect due to signal quantisation. In the word-length
optimisation process, the fixed-point accuracy is evaluated numerous times to select the best
word-length combination. In the rest of this section, the techniques available to analyse the
effect of signal quantisation are described. In LTI systems, the Coefficient Quantisation (CQ)
has an impact on the system frequency response. The CQ process performs a measurement
of the degradation of the system response with respect to the quantisation of the coefficients
of the realisation. In the analysis of the quantisation effects, these parameters are commonly
the first ones to be determined, since they indicate the most convenient structure to perform
the system operation.

The CQ has traditionally been evaluated using the so-called Coefficient Sensitivity (CS)
[107, 108]. Although this parameter was originally defined for LTI systems, since its operation
is fully described by H(z), its current use has been extended to non-linear systems.

6.2.1 Simulation-based approaches

The quantisation error can be obtained by extracting the difference between the outputs of
simulation when the system has a very large precision and when there is quantisation (bit-
true fixed-point simulation). Double-precision floating-point simulation is usually considered
to be the reference given that the associated error is definitely much smaller than the error
associated to fixed-point computation. Different error metrics can be computed from the
quantisation error obtained from this simulation. The main advantage of simulation-based
approaches is that every kind of application can be supported. Fixed-point simulation can be
performed using tools such as [65, 66, 67, 68].

Different C++ classes to emulate the fixed-point mechanisms have been proposed, such
as sc fixed (SystemC ) [109], or gFix [110]. Providers of high-level synthesis tools have
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developed their own fixed-point data-types : ac fixed (Algorithm C Data Types) [111] and
ap fixed (Xilinx Data Types). Indeed, for hardware design, the availability of fixed-point
data-types is crucial to specialise the data-path with arbitrary word-length and to provide bit-
accurate simulation. The C++ class attributes define the fixed-point parameters associated to
the data. Bit-true operations are performed by overloading the different arithmetic operators.
During the execution of a fixed-point operation, the data range is analysed and the overflow
mode is applied if required. Then, the data is cast with the appropriate quantisation mode.
Thus, for a single fixed-point operation, several processing steps are required to obtain a bit
true simulation.

To illustrate emulation of fixed-point mechanisms, the SystemC fixed-point data types are
considered. The parameters associated with each fixed-point data types are the data word-
length (WL), the integer part word-length (IWL), the quantisation mode (QM), the overflow
mode (OM) and the number of saturation bits (N). Seven quantisation modes are provided:
two for the truncation and five for the rounding. Four overflow mode are provided: one for
the wrap-around and three for the saturation. Signed and unsigned data types are available.
Normal and fast data types are available. By limiting the precision to 53-bits for the fast
data-types, the execution time of fixed-point operation can be significantly reduced. Static
or dynamic attribute initialisation are available. The fixed data types are template classes
for which the parameters are set via variable declaration. The parameter values are static
and known at compile-time allowing software optimisation to reduce execution time. The fix
data types are regular C++ classes for which the parameters are set via their constructors
or via parameters context. The parameters are dynamic and can be modified at run time.
These three types of alternative lead to eight different data types: sc fixed, sc ufixed,
sc fixed fast, sc ufixed fast, sc fix, sc ufix, sc fix fast, sc ufix fast.

However, these techniques suffer from a major drawback which is the long simulation
time [112]. This becomes a limitation when these methods are used in the data word-length
optimisation process where multiple simulations are needed. The simulations are made on
floating-point machines and the extra-code used to emulate fixed-point mechanisms increases
the execution time between one to two orders of magnitude compared to traditional simula-
tions with native floating-point data types [29, 113]. Besides, to obtain an accurate estimation
of the statistical parameters of the quantisation error, a great number of samples must be
taken for the simulation. This large number of samples combined with the fixed-point mech-
anism emulation lead to very long simulation time.

6.2.2 Analytical approaches

Metrics to evaluate quantisation error accuracy In the case of analytical approaches,
a mathematical expression of a metric is determined. Determining an expression of the
application quality metric for every kind of application is generally an issue. Thus, the
application quality degradations are not analysed directly in the fixed-point conversion process
and an intermediate metric which measures the fixed-point accuracy must be used. Different
metrics can be used. This accuracy can be evaluated through the bounds of the quantisation
errors [114, 115], the number of significant bits [116], or the power of the quantisation noise
[117, 118, 119]. The shape of the power spectral density (PSD) of the quantisation noise is
used as metric in [120] or in [121] for the case of digital filters.

For the metric that computes the quantisation error bounds, the maximum deviation
between the exact value and the finite precision value is determined. This metric is used for
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critical systems when it is necessary to numerically validate the final quality and to ensure
that the error will not surpass a maximum deviation. In this case, the maximal error is
determined in the worst-case. Similar techniques as those used to determine data dynamic
range can be used to determine the quantisation error bounds.

For signal processing applications, the average behaviour of the quantisation error is more
adequate to analyse the effect of quantisation error. The error is modelled as a noise, and
the second order moment is computed. The noise power metric analyses the dispersion of the
finite precision values around the exact value. The noise power metric is adequate when a
limited and slight degradation of the application quality due to fixed-point arithmetic can be
tolerated. In this case, the system design is based on a trade-off between application quality
and implementation cost.

The aim of analytical approaches is to determine a mathematical expression of the fixed-
point error metric. The error metric function depends on the word-length of the different data
inside the application. The main advantage of these approaches is the short time required
for the evaluation of the accuracy metric for a given set of word-lengths. The time required
to generate this analytical function can be more or less important but this process is done
only once, before the optimisation process. Then, each evaluation of the accuracy metric for
a given WL sets corresponds to the computation of a mathematical expression. The main
drawback of these analytical approaches is that they do not support all kinds of systems.

Round-Off Noise Power Existing approaches to compute the analytical expression of the
quantisation noise power are based on perturbation theory, which models finite precision val-
ues as the addition of the infinite precision values and a small perturbation. A quantisation
error signal bi is generated when some bits are eliminated during a fixed-point format conver-
sion (quantisation). This error is assimilated to an additive noise which propagates inside the
system. This noise source contributes to the output quantisation noise by through the gain
αi. The aim is to define the output noise by power expression according to the noise source
bi parameters and the gains αi between the output and a noise source.

The next paragraphs focus on the model used for the quantisation process, which comprises
three phases: (i) noise generation, (ii) noise propagation, and (iii) noise aggregation.

Noise generation. In finite precision arithmetic, signal quantisation leads to an unavoid-
able error. A commonly used model for the signal quantisation has been proposed in [122].
The quantisation of signal x is modelled by the sum of this signal and a random variable
b (quantisation noise). This additive noise b is a uniformly distributed white noise that is
uncorrelated with signal x and any other quantisation noise present in the system (due to
the quantisation of other signals). This model is valid when the dynamic range of signal x
is sufficiently greater than the quantum step size and the signal bandwidth is large enough.
This model has been extended to include the computation noise in a system resulting from
some bit elimination during a fixed-point format conversion [98, 123, 124].

Noise propagation. Each noise source bi propagates to the system output and con-
tributes to the noise by at the output. The propagation noise model is based on the assump-
tion that the quantisation noise is sufficiently small compared to the signal. Thus, the finite
precision values can be modeled by using the addition of the infinite precision values and
a small perturbation. A first-order Taylor approximation [125, 126] is used to linearise the
operation behavior around the infinite precision values. This approach allows obtaining a
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time-varying linear expression of the output noise according to the input noise [127]. In [83]
and [119], affine arithmetic is used to model the propagation of the quantisation noise inside
the system. These models, based on the perturbation theory, are only valid for smooth opera-
tions. An operation is considered to be smooth if the output is a continuous and differentiable
function of its inputs.

Noise aggregation. Finally, the output noise by is the sum of all the noise source
contributions. The second order moment of by can be expressed as a weighted sum of the
statistical parameters of the noise source:

E(b2y) =

Ne∑
i=1

Kiσ
2
bi

+

Ne∑
i=1

Ne∑
j=1

Lijµbiµbj (19)

where µbi and σ2bi are respectively the mean and the variance of noise source bi, and Ne is
the total number of error sources. These terms depend on the fixed-point formats and are
determined during the evaluation of the accuracy analytical expression. The terms Ki and
Lij are constant and depend on the computation graph between bi and the output. Thus,
these terms are computed only once for the evaluation of the accuracy analytical expression.
These constant terms can be considered as the gain between the noise source and the output.

These gains can be determined from the impulse response [85] for Linear Time-Invariant
systems, or the pseudo impulse response [24] for other smooth systems. In [83, 119], AA is used
to keep track of the propagation of every single noise contribution along the datapath, and
from this information the coefficients Ki and Li are extracted. Different hybrid techniques
[118, 125, 97] that combine simulations and analytical expressions have been proposed to
compute the coefficients Ki and Lij from a set of simulations.

These approaches allow the evaluation of the RON power and are very fast compared
to simulation-based approaches. The limit of the proposed methods have been identified.
Analytical approaches based on perturbation theory are valid for systems made-up of only
smooth operations. For un-smooth operations, hybrid techniques [128] combining simulations
and analytical results can used.

7 Conclusion

The efficient implementation of embedded Digital Signal Processing systems requires to test
different approximations to explore the trade-off between the implementation cost and the
application quality. Data representation in embedded systems is a key aspect to reduce the
implementation cost. Fixed-point arithmetic provides low cost and low power mathematical
processing capabilities. This low implementation cost is at the expense of a long, tedious and
error prone fixed-point conversion process.

In this chapter the two main steps of the fixed-point conversion process are described.
The first step corresponding to the integer word-length selection aims at determining the
minimal number of bits for the integer part ensuring no overflow. This step is based on
the analysis of the dynamic range of each data to evaluate the magnitude upper bound. The
second step corresponding to fractional word-length selection aims at determining the minimal
number of bits for the fractional part ensuring a sufficient computation accuracy. This step
is formulated as an optimization process where the implementation cost is minimised such
as the computation accuracy is higher than a minimal constraint. The variables of this

28



optimisation process are the different data word-length. For these two steps, the different
existing techniques have been described.
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