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Abstract

We present a combination of the Mixed-Echelon-Hermite transfor-
mation and the Double-Bounded Reduction for systems of linear mixed
arithmetic that preserve satisfiability and can be computed in polyno-
mial time. Together, the two transformations turn any system of linear
mixed constraints into a bounded system, i.e., a system for which ter-
mination can be achieved easily. Existing approaches for linear mixed
arithmetic, e.g., branch-and-bound and cuts from proofs, only explore
a finite search space after application of our two transformations. In-
stead of generating a priori bounds for the variables, e.g., as sug-
gested by Papadimitriou, unbounded variables are eliminated through
the two transformations. The transformations orient themselves on
the structure of an input system instead of computing a priori (over-
Japproximations out of the available constants. Experiments provide
further evidence to the efficiency of the transformations in practice.
We also present a polynomial method for converting certificates of
(un)satisfiability from the transformed to the original system.

1 Introduction

Efficient linear arithmetic decision procedures are important for various in-
dependent research lines, e.g., optimization, system modeling, and verifica-
tion. We are interested in feasibility of linear arithmetic problems in the
context of the combination of theories, as they occur, e.g., in SMT solving
or theorem proving.



The SMT and theorem proving communities have presented several in-
teresting and efficient approaches for pure linear rational arithmetic [18] as
well as linear integer arithmetic [5, 8, 16, 20]. SMT research also starts to
extend into linear mixed arithmetic [12, 18] because some applications re-
quire both rational and integer variables, e.g., planning/scheduling problems
and verification of timed automata and hybrid systems.

We are interest in decision procedures for mixed arithmetic because of
a possible combination with superposition [1, 4, 19]. In the superposition
context, arithmetic constraints are part of the first-order clauses. The prob-
lems are typically unbounded due to transformations that turn the input
formula into a superposition specific input format. Since these problems are
unbounded, the search space becomes infinite, which is the case where termi-
nation becomes difficult for most linear arithmetic approaches. Unbounded
problems appear also in other areas of automated reasoning. Either because
of bad encodings, necessary but complicating transformations, e.g., slack-
ing (see Section 5), or the sheer complexity of the verification goal. Hence,
efficient techniques for handling unbounded problems are necessary for a
generally reliable combined procedure.

It is theoretically very easy to achieve termination for linear integer and
mixed arithmetic because of so called a priori bounds. For example, the
a priori bounds presented by Papadimitriou [22] guarantee that a problem
has a mixed solution if and only if the problem extended by the bounds
lz;] < 2n(ma)?*™*! for every variable z; has a mixed solution. In these a
priori bounds, n is the number of variables, m the number of inequalities,
and a the largest absolute value of any integer coefficient or constant in the
problem. By extending a problem with those a priori bounds, we reduce
the search space for a branch-and-bound solver (and many other mixed
arithmetic decision procedures) to a finite search space. So branch-and-
bound is guaranteed to terminate.

However, these bounds are so large that the resulting search space cannot
be explored in reasonable time for many practical problems. One reason for
the impracticability of a priori bounds is that they only take parameter sizes
into account and not actually the structure of each problem. A priori bounds
are not integrated in any state-of-the-art SMT solvers [3, 13, 14, 15, 17| since
they are no help in practice. As far as we know, none of the state-of-the-art
SMT solvers use any method that guarantees termination for linear integer
or mixed arithmetic.

In this paper, we present satisfiability preserving transformations that
reduce unbounded problems into bounded problems. On these bounded
problems, most linear mixed decision procedures become terminating, which



we show on the example of branch-and-bound. Our reduction works by elim-
inating unbounded variables. First, we use the Double-Bounded reduction
(Section 4) to eliminate all unbounded inequalities from our constraint sys-
tem. Then we use the Mixed-Echelon-Hermite transformation (Section 3)
to shift the variables of our system to ones that are either bounded or do
not appear in the new inequalities and are, therefore, eliminated. With
Corollary 2 & Lemma 13 we explain how to efficiently convert certificates
of (un)satisfiability between the transformed and the original system. Our
method is efficient because it is fully guided by the structure of the problem.
This is confirmed by experiments (Section 5). We also show how to efficiently
determine when a problem is unbounded (Lemma 10). This prevents our
solver from applying our transformations on bounded problems.

An extended version of this paper is available on arXiv [7]. It contains
an appendix, where we explain how to implement the presented procedures
in an incrementally efficient way. This is relevant for the implementation of
an efficient SMT theory solver. The extended version also contains several
new examples as well as additional implementation tricks.

2 Preliminaries

While the difference between matrices, vectors, and their components is
always clear in context, we generally use upper case letters for matrices (e.g.,
A), lower case letters for vectors (e.g., x), and lower case letters with an index
iorj (e.g., b;, xj) as components of the associated vector at position i or j,

respectively. The only exceptions are the row vectors al-T = (aj1,. .., ap) of
a matrix A = (ay,...,amn)?, which already contain an index 4 that indicates

the row’s position inside A. We also abbreviate the n-dimensional origin
(0,...,0)T as 0. Moreover, we denote by piv(A4,) the row index of the
pivot of a column j, i.e., the smallest row index 7 with a non-zero entry a;;
or m + j if there are no non-zero entries in column j.

A system of constraints Az < b is just a set of non-strict inequalities’
{aTx < by,...,alz < by} and the rational solutions of this system are
exactly those points z € Q" that satisfy all inequalities in this set. The
row coefficients are given by A = (a1, ...,a,)T € Q™*", the variables are
given by z = (v1,...,2,)", and the inequality bounds are given by b =
(bi,...,bm)T € Q™. Moreover, we assume that any constant rows a; = 0"

L All techniques discussed in this paper can be extended to strict inequalities with the
help of §-rationals [18]. We will omit the strict inequalities and focus only on non-strict
inequalities due to lack of space.



were eliminated from our system during an implicit preprocessing step. This
is a trivial task and eliminates some unnecessarily complicated corner cases.

In this paper, we consider mixed constraint systems, i.e., variables are
assigned a type: either rational or integer. Due to convenience, we assume
that the first n; variables (z1,...,z,,) are rational and the remaining ns
variables (41, ..., 2y) are integer, where n = nj +ng. A mized solution is
a point x € (Q™ x Z"?) that satisfy all inequalities in Az < b and we denote
by M(Ax <b) = {z € (Q" x Z"2) : Az < b} the set of mized solutions to
the system of inequalities Ax < b. We sometimes need to relax the variables
to be completely rational. Therefore, we denote by Q(Azxz <b) = {zx € Q" :
Az < b} the set of rational solutions to the system of inequalities Az < b.

Since Az < b and A’z < V' are just sets, we can write their combination
as (Az < b)U (A'z < V). A special system of inequalities is a system of
equations Dz = ¢, which is equivalent to the combined system of inequalities
(Dz < ¢)U (—Dz < —c). We say that a constraint system implies an
inequality h'x < g, where h € Q" h # 0", and g € Q, if K"z < g holds
for all z € Q(Az < b). In the same manner, a constraint system implies an
equality hT'z = g, where h € Q", h # 0", and ¢ € Q, if KTz = g holds for all
x € Q(Az <b). A constraint implied by Az < b is explicit if it does appear
in Ax < b. Otherwise, it is called implicit.

Most deductions on linear inequalities are based on Farkas’ Lemma:

Lemma 1 (Farkas’ Lemma [6]). Q(Ax < b) = 0 iff there exists a y € Q™
with y > 0™ and yT A = 0" so that y*'b < 0, i.e., there exists a non-negative
linear combination of inequalities in Ax < b that results in an inequality
yT Az < yT'b that is constant and unsatisfiable. If such a y exists, then we
call it a certificate of unsatisfiability.

We also frequently use the following lemma, which is just a reformulation
of Farkas’ Lemma:

Lemma 2 (Linear Implication Lemma). Let Q(Axz < b) # 0, h € Q™\ {0"},
and g € Q. Then, Ax < b implies hT'x < g iff there exists a y € Q™ with
y > 0™ and yTA = hT so that y'b < g, i.e., there exists a non-negative
linear combination of inequalities in Ax < b that results in the inequality
Rz < g.

As we mentioned in the introduction, this paper describes equisatisfiable
transformations for constraint systems. We transform the systems in such a
way that most linear mixed decision procedures become terminating and still



retain their general efficiency. We even show this on the example of branch-
and-bound. Although we do not have the time to discuss all facets of branch-
and-bound [23], we still want to give a short summary of the algorithm.
Branch-and-bound is a recursive algorithm that computes mixed solutions
for constraint systems. In each call of the algorithm, it first computes a
rational solution s to a constraint system Az < b%. If there are none, then
we know that Az < b has no mixed solution. We are also done in the
case that s is a mixed solution. Otherwise, we select one of the integer
variables x; assigned to a fractional value s; ¢ Z and call branch-and-bound
recursively on (Az <b)U (z; > [s;]) and (Az < b) U (z; < [s;]). If none of
the recursive calls returns a mixed solution, then Az < b also does not have
a mixed solution. Likewise, if one of them returns a mixed solution s, then
it also is a mixed solution to Az < b.

Branch-and-bound alone is already complete on bounded constraint sys-
tems, i.e., systems where all directions are bounded:

Definition 1 (Bounded Direction). A direction/vector h € Q™ \ {0"} is
bounded in the constraint system Ax < b if there exist l,u € Q such that
Ax < b implies hT'z < w and —hTxz < —1. Otherwise, it is called unbounded.

Definition 2 (Bounded System). A constraint system Az < b is bounded
if all directions h € Q™\{0"} are bounded. Otherwise, it is called unbounded.

For bounded systems, branch-and-bound is one of the most popular and
efficient algorithms. It may, however, diverge if the system has unbounded
directions. Even so, not all unbounded systems are equally difficult. For
instance, a system where all directions are unbounded has always a mixed
solution:

Lemma 3 (Absolutely Unbounded [10]). If all directions are unbounded
in a constraint system Ax < b, then the constraint system has an integer
solution.

In a previous article, we described two cube tests that detect and solve
constraint systems with infinite lattice width (another name for absolutely
unbounded systems) in polynomial time [10]. The case of absolutely un-
bounded systems is, therefore, trivial and branch-and-bound can be easily
extended so it also becomes complete for absolutely unbounded systems.

2 A rational solution can be computed in polynomial time [23].



The actual difficult case is when some directions are bounded and others
unbounded. We call these systems partially unbounded. Here, branch-and-
bound and most other algorithms diverge or become inefficient in practice.
The transformations, which we present, are designed to efficiently handle
this subclass of problems.

3 Mixed-Echelon-Hermite Transformation

Our overall goal is to present an equisatisfiable transformation that turns
any constraint system into a system that is bounded, i.e., a system on which
branch-and-bound and many other arithmetic decision procedures termi-
nate. In this section, we only present such a transformation for a subset
of constraint systems, which we call double-bounded constraint systems. We
then show in the next section that each constraint system can be reduced to
an equisatisfiable double-bounded system. We also show how to efficiently
transform a mixed solution from the double-bounded reduction to a mixed
solution for the original system.

Definition 3 (Double-Bounded Constraint System). A constraint system
Dz < u is double-bounded if Dz < u implies Dx > 1 for I € Q™. For
such a double-bounded system, we call the bounds u the upper bounds of
Dz and the bounds | the lower bounds of Dx. Moreover, we typically write
I < Dz < u instead of Dz < u although the lower bounds [ are only implicit.

Note that only the inequalities in a double-bounded constraint system
are guaranteed to be bounded. Variables might still be unbounded. For
instance, in the constraint system 1 < 3z1 — 3z9 < 2 both inequalities are
bounded but the variables 1 and xo are not. Moreover, the above constraint
system is also an example where branch-and-bound diverges. This means
that even bounding all inequalities does not yet guarantee termination. So
for our purposes, a double-bounded constraint system is still too complex.

This changes, however, if we also require that the coefficient matrix D
of our constraint system is a lower triangular matrix with gaps:

Definition 4 (Lower Triangular Matrix with Gaps). A matriz A € Q"*"
is lower triangular with gaps if it holds for each column j that piv(A,j) > m
or that piv(A,j) < piv(A, k) for all columns k with j < k < n, i.e., column
j either has only zero entries or all pivoting entries right of 7 have a higher
row indez.

A matrix is lower triangular if and only if the row indices of its pivots
are strictly increasing, i.e., piv(A4,1) < ... < piv(4,n). If we also allow



it to have gaps, only the row indices of pivots with non-zero columns have
to be strictly increasing. Now we get termination for free because of our
restrictions:

Lemma 4 (Lower Triangular Double-Bounded Systems). Let D € Q™*"
be a lower triangular matriz with gaps and |l < Dx < u be a double-bounded
constraint system. Then each variable x; is either bounded, i.e., | < Dx < u
implies that l; <z; < u; or its column in D has only zero entries.

Proof. Proof by induction. Assume that the above property already holds
for all variables xj with k < j. Let p = piv(D, j). If p > m, then the column
j of D is zero and we are done. If p < m, then the pivoting entry d,; of
column j is non-zero. Because of Definition 4 and our induction hypothesis,
this also means that each column k with k£ < j has either a zero entry
in row p or the variable x; is bounded by our induction hypothesis, i.e.,
| < Dz < wimplies I}, < xj, < uj,. Since Definition 4 also implies that row p
has only zero entries to the right of d,;, the row p has only one unbounded
variable with a non-zero entry, viz., ;. This means we can transform the row
l, < dgm‘ < u, into the following two inequalities: [, — Zi;ll dppry, < dpjx;
and u, — Zi;ll dpry > dpjrj, where the variables xj on the left sides are
either bounded or dp, = 0. Hence, we can derive an upper and lower bound
for z; via bound propagation/refinement [21]. O

Corollary 1 (BnB-LTDB-Termination). Branch-and-bound terminates on
every double-bounded system | < Dx < u where D 1is lower triangular with
gaps.

Our next goal is to efficiently transform every double-bounded system
Il < Dx < u into an equisatisfiable system that also has a lower triangular
coefficient matrix with gaps. We start by defining a class of transforma-
tions that do not only preserve mixed equisatisfiability, but are also very
expressive.

Definition 5 (Mixed Column Transformation Matrix [12]). Given a mized
constraint system. A matriz V € Q™" is a mixed column transformation
matrix if it is invertible and consists of an invertible matriz V(g) € Q™*™,
a unimodular matriz Vizy € Z"**", and a matriz Vipr) € Q™*"™ such that

Qn2xn1 V(Z)

The inverse of a mixed column transformation matrix V is also a mixed
column transformation matrix and can be used to undo the transformation

V.



Lemma 5 (Mixed Column Transformation Inversion [12]). Given a mized
constraint system. Let V € Q™™ be a mized column transformation matriz.
Then V=L is also a mized column transformation matric.

This means that each mixed column transformation matrix defines a
bijection from (Q™ x Z"2) to (Q™ x Z™?). Hence, they guarantee mixed
equisatisfiability:

Lemma 6 (Mixed Column Transformation Equisatisfiability [12]). Let Az <
b be a mized constraint system. Let V. € Q™™ be a mized column transfor-
mation matriz. Then every solution y € M((AV)y < b)) can be converted
into a solution Vy =x € M(Ax <b) and vice versa.

Moreover, the mixed column transformation matrix V also establishes a
direct relationship between the linear combinations of the original constraint
system and the transformed one:

Lemma 7 (Mixed Column Transformation Implications). Let Az <b be a
constraint system. Let V € Q™™ be a mized column transformation matrix.
Let Az < b imply hTx < g. Then AVz < b implies KTV z < g.

Proof. By Lemma 2, Az < b implies hTx < ¢ iff there exists a non-negative
linear combination y € Q" such that y > 0, y7A = AT and y7b < g.
Multiplying y” A = hT with V results in y7 AV = ATV and thus y is also
the non-negative linear combination of inequalities AV z < b that results in
WMvz < g. O

Corollary 2 (Mixed Column Transformation Certificates). Let Az < b be a
constraint system. Let V € Q™™ be a mized column transformation matriz.
Then y is a certificate of unsatisfiability for Ax < b iff it is one for AVz <b.

Now we only need a mixed column transformation matrix V for every
coefficient matrix A such that H = AV is lower triangular with gaps. One
such matrix V is the one that transforms A into Mized-Echelon-Hermite
normal form:

Definition 6 (Mixed-Echelon-Hermite Normal Form [12]). A matriz H €
Qm*™ 4s in Mixed-Echelon-Hermite normal form if

E Orx(nlfr) Qrxn2
H = < E O(m—r)x(nl—r) H' > ’

where E is an v X v identity matriz (with v < ni), E' € QM=7")*" and

H' € Qm=")%"2 s o matriz in hermite normal form, i.e., a lower triangular

matriz without gaps, where each entry h;iv(H’,j)k in the row piv(H',j) is

!/

non-negative and smaller than hpiU(H’ j)j).

8



The following proof for the existence of the Mixed-Echelon-Hermite nor-
mal form is constructive and presents the Mixed-Echelon-Hermite transfor-
mation.

Lemma 8 (Mixed-Echelon-Hermite Transformation). Let A € Q™*™ be a
matriz, where the upper left r X ny submatriz has the same rank r as the
complete left m x ni submatriz. Then there exists a mized transformation
matriz V€ Q™" such that H = AV is in Mixed-Echelon-Hermite normal
form.

Proof. Proof from [12] with slight modifications so it also works for singular
matrices. We subdivide A into
A < A Axg )
A9 Az

such that A1 € Q"™ , Ao € Q"*™2, Ay € QM "™ and Ay € QM "*"2,
Then we bring A;; with an invertible matrix V37 € Q™™ into reduced
echelon column form Hyp = (F OTX("FT)) = A11 Vi1, where E is an r X r
identity matrix. We get V11 and Hi; by using Bareiss algorithm instead of
the better known Gaussian elimination as it is polynomial in time [2].> Note
that the last ny —r columns of Hoy = (H), O(W_T)X("I_T)) = A9 V171 are also
zero because all rows in Ag; are linear dependent of Aj; (due to the rank).
Next we notice that

Ay — AnVin < Arz > =Ap—(FE 0”("1_”) < o A1z ) = (rxn2

0(n1—7‘)><n2 ni1—Tr)Xn2
so we can reduce the upper right submatrix Ajo to zero by adding multiples

of the ny columns with rational variables to the ng columns with integer
variables. However, this also transforms the lower right submatrix Aso into

Hjy = A — Ay Vi ( O(”lég“” ) .
Finally, we transform this new submatrix HJ, into hermite normal form
Hjy via the algorithm of Kannan and Bachem (or a similar polynomial time
algorithm).? This algorithm also returns a unimodular matrix Vay € Z"2%"2
such that Hoy = HéQVQQ. To summarize: our total mixed transformation
matrix is

Ar rxn
V= ‘/11 *Vll : ( O(nl—r)XnQ ) : VY22 and H = AV = < gll 0}; 2 > ]
On2xn1 V22 21 22
O

3We do actually use less efficient, Gaussian-elimination-based transformations in our
own implementation [7]. The reason is that these transformations are incrementally ef-
ficient. Our experiments show that the transformation cost still remains negligible in
practice.



It is not possible to transform every matrix A € Q™" into Mixed-
Echelon-Hermite normal form. We have to restrict ourselves to matrices,
where the upper left r x ny submatrix has the same rank r as the complete
left m x n1 submatrix. However, this is very easy to accomplish for a system
of linear mixed arithmetic constraints [ < Az < w. The reason is that the
order of inequalities does not change the set of satisfiable solutions. Hence,
we can swap the inequalities and, thereby, the rows of A until its upper
left » x ny; submatrix has the desired form. This also means that there
are usually multiple possible inequality orderings that each have their own
Mixed-Echelon-Hermite normal form H.

To conclude this section: whenever we have a double-bounded constraint
system | < Dz < u, we can transform it (after some row swapping) into an
equisatisfiable system | < Hy < u where H = DV is in Mixed-Echelon-
Hermite normal form and Vy = x. Since H is also a lower triangular matrix
with gaps, branch-and-bound terminates on | < Hy < wu with a mixed
solution ¢ or it will return unsatisfiable (Corollary 1). Moreover, we can
convert any mixed solution ¢ for | < Hy < wu into a mixed solution s for
I < Dx < u by setting s := Vt. Hence, we have a complete algorithm for
double-bounded constraint systems.

4 Double-Bounded Reduction

In the previous Section, we have shown how to solve a double-bounded
constraint system. Now we show how to reduce any constraint system A’z <
b’ to an equisatisfiable double-bounded system [ < Dz < u. Moreover, we
explain how to take any solution of [ < Dz < u and turn it into a solution
for Az < V.

As the first step of our reduction, we reformulate the constraint system
into a so called split system:

Definition 7 (Split System). (Az < b) U (I < Dx < u) is a split system
if: (i) all directions are unbounded in Az < b; (ii) all row vectors a; from A
are also unbounded in (Ax < b) U (I < Dz < u). Moreover, we call Ax <b
the unbounded part and | < Dz < u the bounded part of the split system.

A split system consists of an unbounded part Az < b that is guaranteed
to have (infinitely many) integer solutions (see Lemma 3) and a double-
bounded part [ < Dx < w. Any constraint system can be brought into
the above form. We just have to move all unbounded inequalities into the
unbounded part and all bounded inequalities into the bounded part.

10



Lemma 9 (Split Equivalence). Let A’z < b be a constraint system with
A" e Qm*™. Then there exists an equivalent split system (Ax < b) U (I <
Dz < u) where: (i) A € Q™*" and D € Q™" so that m; + ma = m;
(ii) all rows dI' of D and al of A appear as rows in A’; and (iii) Dz < u
implies | < Dzx.

Proof. For (i), (ii), and the equivalence, it is enough to move all bounded
inequalities CL;.T:U <V, of A’z <V into Dz < w and all unbounded inequalities
into Az < b. For (iii), we assume for a contradiction that Dx < u does not
imply I; < d’'z but (Dz < u)U(Az < b) does. By Lemma 2, this means that
there exists a y € Q™2 with y > 0™2 and a z € Q™ with z > 0™ so that
yI'D+2TA = —dl-T and yTu + 27b < —1;. We also know that there exists a
zr > 0 because Dz < u alone does not imply [; < diTm. We use this fact to

reformulate y? D+2T A = —d! into —az = i [yTD +dl + Z;n:ll itk zja;r ,

and use the bounds of the inequalities in Dz < u and Az < b to derive a

T,.. T 1 T m T .
lower bound for aj z: —a;z < " {y U+ u; + Zj;L#k zjbj] . Hence, a; is

bounded in A’x < ¥ and we have our contradiction. O

The above Lemma also shows that the bounded part of a constraint
system is self-contained, i.e., a constraint system implies that a direction
is bounded if and only if its bounded part does. The actual difficulty of
reformulating a system into a split system is not the transformation per se,
but finding out which inequalities are bounded or not. There are many ways
to detect whether an inequality is bounded by a constraint system. Most
work even in polynomial time. For instance, solving the linear rational
optimization problem “minimize aiTx such that Az < b’ returns —oo if a;
is unbounded, oo if Az < b has no rational solution, and the optimal lower
bound [; for a;frx otherwise. However, it still requires us to solve m linear
optimization problems.

A, in our opinion, more efficient alternative is based on our previously
presented algorithm for finding equality bases [9]. This is due to the following
relationship between bounded directions and equalities:

Lemma 10 (Bounds and Equalities). Let Q(Ax < b) # 0. Then h is
bounded in Ax < b iff Az < 0™ implies that hT 2 = 0.

Proof. By Definition 1, h is bounded in Az < b means that there exists
I,u € Q such that Az < b implies hTz < u and —hTz < —I. By Lemma 2,
this is equivalent to: there exist [,u € Q, y,z € Q™ with y,z > 0™, and
yT'A=hT = —2T A so that y'b < u and 27b < —I. Symmetrically, Az < 0
implies that hT2 = 0 is equivalent to: there exist a y, z € Q™ with y,z > 0™

11



and yTA = hT = —2T A so that y70™ < 0 and 270™ < 0. Since u and [ only
have to exists, we can trivially choose them as u := y’b and [ := —27b. This
means that yTb < u, 2Th < —I, yTOm < 0, and 2To™ < 0 are all trivially
satisfied by any pair of linear combinations y, z € Q™ with y, z > 0™ such
that yTA = hT = —2T A. Hence, the two definitions are equivalent and our
lemma holds. O

It is easy and efficient to compute an equality basis for Ax < 0™ and to
determine with it the inequalities in Az < b that are bounded [9]. The only
disadvantage towards the optimization approach is that we do not derive an
optimal lower bound [ for the inequalities. This is no problem because only
the existence of lower bounds is relevant and not the actual bound values.

In a split system (Az < b)U(l < Dz < u), the unbounded part is actually
inconsequential to the rational/mixed satisfiability of the system. It may
reduce the number of rational/mixed solutions, but it never removes them
all. Hence, (Az < b) U (I < Dz < u) is equisatisfiable to just I < Dz < u.
We first show this equisatisfiability for the rational case:

Lemma 11 (Rational Extension). Let (Az < b)U (I < Dz < u) be a split
system. Let s € Q" be a rational solution to the bounded part | < Dx < u
such that Ds = g, where g € Q™2. Then (Ax < b)U(Dz = g) has a solution

s'.

Proof. Assume for a contradiction that (Ax < b) U (Dz = g) has no solu-
tion. By Lemma 1, this means that there exist a y € Q™ with y > (0™
and z,2 € Q™ with z,2/ > 0™ such that y" A + 27D — 2/TD = ("
and y'b+ 27g — 2Tg < 0. Since Dx = g is satisfiable by itself, there
must exist a y; > 0. Now we use this fact to reformulate the equation
yTA+2"D — 2D = 0" into
—af = yi [(Z;'nzllj;éi Z/ja;‘p) +2"'D - Z'TD] ;
from which we deduce a lower bound for alz in (Az <b)U (I < Dz < u):
—alz < i KZ;@U# yjbj> + 2Ty — z’Tl} )
Therefore, a; is bounded in (Az < b) U (I < Dz < u), which is a contradic-
tion. O

Note that the bounded part | < Dz < wu of a split system can still
have unbounded directions (not inequalities). Some of these unbounded
directions in [ < Dx < u are the orthogonal directions to the row vectors
di, i.e., vectors v; € Z" such that d}v; = 0 for all i € {1,...,ma}. This
also means that the existence of one mixed solution s € (Q™ x Z"?) and one
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unbounded direction proves the existence of infinitely many mixed solutions.
We just need to follow the orthogonal directions, i.e., for all A € Z, s’ =
A-vj + s is also a mixed solution because df's’ = X\ - dlv; +dls = d!s.
In the next two steps, we prove that Ax < b cannot cut off all of these
orthogonal solutions because it is completely unbounded. The first step
proves that Az < b remains absolutely unbounded even if we settle on one
set of orthogonal solutions, i.e., enforce Dx = Ds for some solution s.

Lemma 12 (Persistence of Unboundedness). Let (Ax < b) U (I < Dz < u)
be a split system. Let s € Q™ be a rational solution for ! < Dx < u such that
Ds =g (with g € Q™2). Then all row vectors a; from A are still unbounded
in (Az < b)U (Dx = g).

Proof. By Lemma 11, (Az < b) U (Dx = g) has at least a rational solution
s*. Moreover, (Az < 0) U (Dz = 0) does not imply al x = 0 because of
Lemma 10 and the assumption that the row vectors a; from A are unbounded
in (Az < b)U (Il < Dz < u). In reverse, (Ax < b) U (Dz = g) having a
real solution, (Az < 0) U (Dz = 0) does not imply a! z = 0, and Lemma 10
prove together that the row vectors a; from A are also unbounded in (Az <

b) U (Dz = g). O

The next step proves how to extend the mixed solution from the bounded
part to the complete system with the help of the Mixed-FEchelon-Hermite
normal form and the absolute unboundedness of Az < b.

Lemma 13 (Mixed Extension). Let (Az < b) U (I < Dz < u) be a split
system. Let s € (Q™ x Z") be a mized solution for | < Dx < u. Then
(Az <b)U (I < Dx < u) has a mized solution s'.

Proof. Let g = Ds. Without loss of generality we assume that the upper left
r X nq submatrix of D has the same rank r as the complete left mq x ny sub-
matrix of D. (Otherwise, we just reorder the rows accordingly.) Therefore,
there exists a mixed column transformation matrix V' such that H = DV is
in mixed-echelon-hermite normal form (see Lemma 8). By Lemma 6, there
exists a mixed vector t € (Q™ x Z"2?) such that s = V¢ and ¢ is a mixed-
solution to I < Hy < w as well as Hy = g. Let U be the set of indices with 0
columns in H and B the column indices with bounded variables. Then the
equation system (Hy = g) fixes each variable y; with j € B to the value t;
because H is lower triangular with gaps. Hence, ((AV)y < b)U (Hy = g) is
equivalent to
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V14 V14
AN jeu : Y| Sb—A Y s : A (1)

Unj Unj
Due to Lemma 12 and 7, all directions are unbounded in (1). This means
(1) has an integer solution (Lemma 3) assigning each variable y; with j € U
to a t; € Z. (Can be computed via the unit cube test [11]). We extend this
solution to all variables y by setting t; :=t; for j € B and we have a mixed
solution t' € (Q™ x Z™) for ((AV)y <b)U (I < Hy < u). Hence, we have
via Lemma 6 a mixed solution s’ € (Q" x Z"2) for (Az < b)U (Il < Dx < u)
with s’ = V'

N O

Corollary 3 (Double-Bounded Reduction). The split system (Ax < b)U(I
Dz < u) is mized equisatisfiable to (I < Dz < u).

5 Experiments

We integrated the Double-Bounded reduction and the Mixed-Echelon-Hermite
transformation into our own theory solver SPASS-IQ v0.2* and ran it on
four families of newly constructed benchmarks?. Once with the transfor-
mations turned on (SPASS-1Q)) and once with the transformations turned
off (SPASS-1Q-Off). If SPASS-IQ encounters a system Az < b that is not
explicitly bounded, i.e., where not all variables have an explicit upper and
lower bound, then it computes an equality basis for Az < 0™. This basis
is used to determine whether the system is implicitly bounded, absolutely
unbounded or partially bounded, as well as which of the inequalities are
bounded. Our solver only applies our two transformations if the problem
is partially unbounded. The resulting equisatisfiable but bounded problem
is then solved via branch-and-bound. The other two cases, absolutely un-
bounded and implicitly bounded, are solved respectively via the unit cube
test [11] and branch-and-bound on the original system. Our solver also con-
verts any mixed solutions from the transformed system into mixed solutions
for the original system following the proof of Lemma 13. Rational conflicts
are converted between the two systems by using Corollary 2.

We tried to restrict our benchmarks to partially unbounded problems
since we only apply our transformations on those problems. We even found
some partially unbounded problems in the SMT-LIB benchmarks for QF _LIA
(quantifier free linear arithmetic). However, there are not many such bench-

4 Available on http://www.spass-prover.org/spass-iq
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Figure 1: horizontal axis: # of solved instances; vertical axis: time (seconds)

marks: only one in CAV-2009, five in cut_lemmas, and three in slacks. So
we created in addition four new benchmark families:

SlackedQFLIA: are linear integer benchmarks based on the SMT-LIB
classes CAV-2009 [16], cut_-lemmas [20], and dillig [16]. We simply took all
of the unsatisfiable benchmarks and replaced in them all variables x with
z4 —x_ where x4 and x_ are two new variables such that x4,x_ > 0. This
transformation, called slacking, is equisatisfiable and the slacked version
of the dillig-benchmarks, called slacked [21], is already in the SMT-LIB.
Slacking turns any unsatisfiable problem into a partially unbounded one.
Hence, all problems in Slacked@QFLIA are partially unbounded. Slacking is
commonly used to integrate absolute values into linear systems or for solvers

that require non-negative variables [23].
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Instances of RandomUnbd
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Figure 2: horizontal axis: # of solved instances; vertical axis: time (seconds)

RandomUnbd: are linear integer benchmarks that are all partially un-
bounded and satisfiable with 10, 25, 50, 75, and 100 variables. All problems
are randomly created via a sagemath script?.

FlippedQFLIA and FlippedRandomUnbd: are linear mixed benchmarks
that are all partially unbounded. They are based on Slacked@QFLIA and
RandomUnbd. We constructed them by first copying ten versions of the
integer benchmarks and then randomly flipping the type of some of the
variables to rational (probability of 20%). Some of the flipped instances of

SlackedQQFLIA became satisfiable.
We compared our solver with some of the state-of-the-art SMT solvers

currently available for linear mixed arithmetic: cvec4-1.5 [3], mathsat5-5.1 [14],
SMTInterpol 2.1-335-g4c543a5 [13], yices2.5.4 [17], and 253-4.6.0 [15]. Most

16



of these solvers employ a branch-and-bound approach with an underlying
dual simplex solver [18], which is also the basis for our own solver. As
far as we are aware, none of them employ any techniques that guarantee
termination.

SMTInterpol extends branch-and-bound via the cuts from proofs ap-
proach, which uses the Mixed-Echelon-Hermite transformation to find more
versatile branches and cuts [12]. Although the procedure is not complete, the
similarities to our own approach make an interesting comparison. Actually,
the Double-Bounded reduction alone would be sufficient to make SMTIn-
terpol terminating since it already builds branches via a Mixed-Echelon-
Hermite transformation.

We also compared our solver with the ctril-ergo solver [5] although it is
restricted to pure integer arithmetic. Ctrl-ergo is complete over linear integer
arithmetic and uses the most similar approach to our transformations that
we found in the literature. It dynamically eliminates one linear independent
bounded direction at a time via transformation. The disadvantages of the
dynamic approach are that it is very restrictive and does not leave enough
freedom to change strategies or to add complementing techniques. Moreover,
ctrl-ergo uses this transformation approach for all problems and not only the
partially unbounded ones, which sometimes leads to a massive overhead on
bounded problems.

For the experiments, we used a Debian Linux cluster and allotted to each
problem and solver combination 2 cores of an Intel Xeon E5620 (2.4 GHz)
processor, 4 GB RAM, and 40 minutes. The only solver benefiting from
multiple cores is SMTInterpol. The plots in Figures 1 and 2 depict the results
of the different solvers. In the legends of the plots, the numbers behind the
solver names are the number of solved instances. For FlippedQFLIA, there
are two numbers to indicate the number of satisfiable/unsatisfiable instances
solved. This is only necessary for FlippedQFLIA because it is the only tested
benchmark family with satisfiable and unsatisfiable instances. (We verified
that the results match if two solvers solved the same problem.)

Although our solver could not solve all problems (due to time and mem-
ory limits) it was still able to solve more problems than the other solvers. It
was also faster on most instances than the other solvers. In some of the un-
satisfiable, partially unbounded benchmarks ctrl-ergo is better than SPASS-
1Q. This is due to its conflict focused, dynamic approach. For the same rea-
son, ctrl-ergo is slower on the satisfiable, partially unbounded benchmarks.
Only SPASS-1IQ, ctrl-ergo, and yices solved all of the ten original SMT-LIB
benchmarks that are partially unbounded, though the complete methods
were still a lot faster (SPASS-IQ took 23s, ctrl-ergo took 42s, and yices
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took 1273s). On one of these benchmarks, 20-14.slacks.smt2 from slacks, all
other solvers seem to diverge. Another interesting result of our experiments
is that relaxing some integer variables to rational variables seems to make
the problems harder instead of easier. We expected this for our transforma-
tions because the resulting systems become more complex and less sparse,
but it is also true for the other solvers. The reason might be that bound
refinement, a technique used in most branch-and-bound implementations, is
less effective on mixed problems.

The time SPASS-IQ needs to detect the bounded inequalities and to
apply our transformations is negligible. This is even true for the implicitly
bounded problems we tested. As mentioned before, we do not have to apply
our transformations to terminate on bounded problems. This is also the only
advantage we gain from detecting that a problem is implicitly bounded.
Since there is no noticeable difference in the run time, we do not further
elaborate the results on bounded problems, e.g. with graphs.

An actual disadvantage of our approach is that the Mixed-Echelon-
Hermite transformation increases the density of the coefficient matrix as
well as the absolute size of the coefficients. Both are important factors for
the efficiency of the underlying simplex solver. Moreover, SPASS-1Q reaches
more often the memory limit than the time limit because it needs a (too)
large number of branches and bound refinements before terminating.

6 Conclusion

We have presented the Mixed-Echelon-Hermite transformation (Lemma 8)
and the Double-Bounded reduction (Lemma 9 & Corollary 3). We have
shown that both transformations together turn any constraint system into an
equisatisfiable system that is also bounded (Lemma 4). This is sufficient to
make branch-and-bound, and many other linear mixed decision procedures,
complete and terminating. We have also shown how to convert certificates
of (un)satisfiability efficiently between the transformed and original systems
(Corollary 2 & Lemma 13). Moreover, experimental results on partially
unbounded benchmarks show that our approach is also efficient in practice.

Our approach can be nicely combined with the extensive branch-and-
bound framework and its many extensions, where other complete techniques
cannot be used in a modular way [5, 8]. For future research, we plan to test
our transformations in combination with other algorithms, e.g., cuts from
proofs, or as a dynamic version similar to the approach used by ctrl-ergo [5].
We also want to test whether our transformations are useful preprocessing
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steps for select constraint system classes that are bounded.
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