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Abstract

In this paper, we propose a sex-structured entomological model that serves as a
basis for design of control strategies relying on releases of sterile male mosquitoes
(Aedes spp) and aiming at elimination of the wild vector population in some
target locality. We consider different types of releases (constant and periodic
impulsive), providing sufficient conditions to reach elimination. However, the
main part of the paper is focused on the study of the periodic impulsive con-
trol in different situations. When the size of wild mosquito population cannot
be assessed in real time, we propose the so-called open-loop control strategy
that relies on periodic impulsive releases of sterile males with constant release
size. Under this control mode, global convergence towards the mosquito-free
equilibrium is proved on the grounds of sufficient condition that relates the size
and frequency of releases. If periodic assessments (either synchronized with the
releases or more sparse) of the wild population size are available in real time,
we propose the so-called closed-loop control strategy, under which the release
size is adjusted in accordance with the wild population size estimate. Finally,
we propose a mixed control strategy that combines open-loop and closed-loop
strategies. This control mode renders the best result, in terms of overall time
needed to reach elimination and the number of releases to be effectively carried
out during the whole release campaign, while requiring for a reasonable amount
of released sterile insects.
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1. Introduction

Since decades, the control of vector-borne diseases has been a major issue
in Southern countries. It recently became a major issue in Northern countries
too. Indeed, the rapid expansion of air travel networks connecting regions of
endemic vector-borne diseases to Northern countries, and the rapid invasion5

and establishment of mosquitoes population, like Aedes albopictus, in Northern
hemisphere have amplified the risk of Zika, Dengue, or Chikungunya epidemics1.

For decades, chemical control was the main tool to control or eradicate
mosquitoes. Taken into account resistance development and the impact of in-
secticides on the biodiversity, other alternatives have been developed, such as10

biological control tools, like the Sterile Insect Technique (SIT).
Sterile Insect Technique (SIT) is a promising control method that has been

first studied by E. Knipling and collaborators and first experimented successfully
in the early 1950’s by eradicating screw-worm population in Florida. Since then,
SIT has been applied on different pest and disease vectors (see [1] for an overall15

presentation of SIT and its applications).
The classical SIT relies on massive releases of males sterilized by ionizing

radiations. However, another technique, called the Wolbachia technique, is un-
der consideration. Wolbachia [2] is a symbiotic bacterium that infects many
Arthropods, including some mosquito species in nature. These bacteria have20

many particular properties, including one that is very useful for vector control:
the cytoplasmic incompatibility (CI) property [3, 4]. CI can be used for two
different control strategies:

• Incompatible Insect Technique (IIT): males infected with CI-inducing Wol-
bachia produce altered sperms that cannot successfully fertilize uninfected25

eggs. This can result in a progressive reduction of the target population.
Thus, IIT can be seen as equivalent to classical SIT.

• Population Replacement (PR): in this case, males and females, infected
with CI-inducing Wolbachia, are released in a susceptible (uninfected) pop-
ulation, such that Wolbachia-infected females will produce more offspring30
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than uninfected females. Because Wolbachia is maternally inherited, this
will result in a population replacement by Wolbachia-infected mosquitoes
(such replacements or invasions have been observed in natural popula-
tion, see [5] for the example of Californian Culex pipiens). Recent studies
have shown that PR may be very interesting with Aedes aegypti, shorten-35

ing their lifespan (see for instance [6]), or more interesting, cutting down
their competence for dengue virus transmission [7]. However, it is also
acknowledged that Wolbachia infection can have fitness costs, so that the
introgression of Wolbachia into the field can fail [6].

Based on these biological properties, classical SIT and IIT (see [8, 9, 10, 11, 12,40

13] and references therein) or population replacement (see [14, 15, 16, 17, 18, 19,
20, 6, 21] and references therein) have been modeled and studied theoretically in
a large number of papers, in order to derive results to explain the success or fail-
ure of these strategies using discrete, continuous or hybrid modeling approaches,
temporal and spatio-temporal models. More recently, the theory of monotone45

dynamical systems [22] has been applied efficiently to study SIT [23, 13] or
population replacement [24, 25, 26] systems.

In this paper, we derive and study a dynamical system to model the re-
lease and elimination process for SIT/IIT. We analyze and compare constant
continuous/periodic impulsive releases and derive conditions relating the sizes50

and frequency of the releases that are sufficient to ensure successful elimination.
Such conditions enable the design of SIT-control strategies with constant or
variable number of sterile males to be released that drive the wild population of
mosquitoes towards elimination. Among all the previous strategies, we are also
able to derive the best strategy, meaning the one that needs to release the least55

amount of sterile males to reach elimination. This can be of utmost importance
for field applications.

The outline of the paper is as follows. In Section 2, we first develop and
briefly study a simple entomological model that describes the natural evolution
of mosquitoes. Then, in Section 3, we introduce a constant continuous SIT-60

control and determine the size of constant releases that ensures global elimina-
tion of wild mosquitoes in the target locality. In Section 4, periodic impulsive
SIT-control with constant impulse amplitude is considered, and a sufficient con-
dition relating the size and frequency of periodic releases is derived to ensure
global convergence towards the mosquito-free equilibrium. This condition en-65

ables the design of open-loop (or feedforward) strategies that ensure mosquito
elimination in finite time and without assessing the size of wild mosquito pop-
ulation. Alternatively, Section 5 is focused on the design of closed-loop (or
feedback) SIT-control strategies, which are achievable when periodic measure-
ments (either synchronized with releases or more sparse) of the wild population70

size are available in real time. Notice that such estimates may be obtained in
practice e.g. by use of Mark-Release-Recapture (MRR) technique [27]. In such
situation, the release amplitude is computed on the basis of these measurements.
Thorough analysis of the feedback SIT-control implementation mode leads to
another sufficient condition to reach mosquito elimination. This condition re-75
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lates not only the size and frequency of periodic releases but also the frequency
of sparse measurements. Finally, in Section 6 we propose a mixed control strat-
egy for periodic impulsive SIT-control. The latter is essentially based on the
use of the smallest of the release values proposed by the previous open-loop and
closed-loop strategies. It turns out that this control mode renders the best result80

from multiple perspectives: in terms of overall time needed to reach elimina-
tion and of peak-value of the input control, but also in terms of total amount of
released sterile insects and of number of releases to be effectively carried out dur-
ing a whole SIT-control campaign. The paper ends with numerical simulations
highlighting the key features and outcomes of periodic impulsive SIT-control85

strategies (Section 7) followed by discussion and conclusions.

2. A sex-structured entomological model

We consider the following 2-dimensional system to model the dynamics of
mosquito populations. It involves two state variables, the number of males M
and the number of females F .90 {

Ṁ = rρFe−β(M+F ) − µMM,

Ḟ = (1− r)ρFe−β(M+F ) − µFF.
(1a)

(1b)

All the parameters are positive, and listed in Table 1. The model assumes
that all females are equally able to mate. It includes direct and/or indirect com-
petition effect at different stages (larvae, pupae, adults), through the parameter
β. The latter may be seen as the ratio, σ

K , between σ, a quantity characterizing
the transition between larvae and adults under density dependence and larval
competition, and a carrying capacity K, typically proportional to the breeding
sites capacity. The primary sex ratio in offspring is denoted by r ∈ (0, 1), and ρ
represents the mean number of eggs that a single female can deposit in average
per day. Last, µM and µF represent, respectively, the mean death rate of male
and female adult mosquitoes. As a rule, it is observed that in general the male
mortality is larger, and we assume throughout the paper that:

µM ≥ µF . (2)

Parameter Description Unit
r Primary sex ratio −−
ρ Mean number of eggs deposited per female per day day−1

µM , µF Mean death rates for males & females per day day−1

β Characteristic of the competition effect per individual −−

Table 1: Parameters of the sex-structured entomological model (1)
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Existence and uniqueness of the solutions of the Cauchy problem for dynam-
ical system (1) follow from standard theorems, ensuring continuous differentia-
bility of the latter with respect to time. System (1) is dissipative: there exists
a bounded positively invariant set D with the property that, for any bounded
set in E ⊂ R2

+, there exists t∗ = t(D, E) such that
(
M(0), F (0)

)
∈ E implies(

M(t), F (t)
)
∈ D for all t > t∗. The set D is called an absorbing set. In our

case, it may be taken, e.g., as:

D = {(M,F ) : 0 ≤M ≤ C, 0 ≤ F ≤ C} (3)

for some C > 0.

Remark 1. Population models of the form Ṅ = B(N)N −µN for several birth
rate functions, including B(N) = e−βN , have been studied in [28]. Maturation
delay can also be included [28].

Obviously E∗0 = (0, 0) is a trivial equilibrium of system (1), called the
mosquito-free equilibrium. Being the state to which one desires to drag the
system by adequate releases of sterile insects, it will play a central role in the
sequel. Denote for future use

NF :=
(1− r)ρ
µF

, NM :=
rρ

µM
. (4)

These positive constants represent basic offspring numbers related to the wild95

female and male populations, respectively. The first of them governs the number
of equilibria, as stated by the following result, whose proof presents no difficulty
and is left to the reader.

Theorem 1 (Equilibria of the entomological model).

• If NF≤1, then system (1) possesses E∗0 as unique equilibrium.100

• If NF > 1, then system (1) also possesses a unique positive equilibrium
E∗ := (M∗, F ∗), namely

F ∗ =
NF

NF +NM
1

β
lnNF , M∗ =

NM
NF +NM

1

β
lnNF .

Notice that the total population at the nonzero equilibrium is given by

M∗ + F ∗ =
1

β
lnNF . It depends upon the basic offspring number and the

competition parameter β. As an example, mechanical control through reduc-
tion of the breeding sites induces an increase of β and consequently a decrease of
the population at equilibrium. Analogously, altering biological parameters may105

modify the basic offspring number, and therefore the size of the population.
The stability of the equilibria is addressed by the following result.

Theorem 2 (Stability properties of the entomological model).
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• If NF≤1, then the (unique) equilibrium E∗0 is Globally Asymptotically Sta-
ble (GAS) for system (1).110

• If NF > 1, then E∗0 is unstable for system (1), and E∗ is GAS in D \
{(M, 0),M ∈ R+}.

Figure 1 shows the convergence of all trajectories to the positive equilibrium
in the viable case, when NF > 1 (the pertinent case for the applications we have
in mind).115

0 M
*

0

F
*

Figure 1: Phase portrait of model (1) when NF > 1. The positive equilibrium appears at the
intersection of the two curves on which Ḟ (in red) and Ṁ (in blue) vanish.

Proof of Theorem 2.
• Assume first NF < 1. Rewriting equation (1b) as follows:

Ḟ =
(

(1− r)ρe−β(M+F ) − µF
)
F ≤

(
(1− r)ρ− µF

)
F

one deduces that Ḟ < −εF for some positive ε. The state variable F being
nonnegative, it then converges to 0. Using now equation (1a), we deduce that
M converges to 0 too, and the GAS of E∗0 follows.
• Assume NF = 1. From equation (1b), F = 0 iff Ḟ = 0, otherwise F > 0.

We also derive

Ḟ ≤ µF
(
NF e−βF − 1

)
F ≤ µF

(
e−βF − 1

)
F. (5)

Let 0 < δ. As long as F ≥ δ, then Ḟ < −µF
(
1 − e−βδ

)
F and F is (strictly)120

decreasing. When F < δ, using an asymptotic expansion of the right-hand side
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of (5), we obtain that Ḟ ≤ −µFβF 2 +O(F 3), such that 0 is LAS within [0, δ).
Altogether, we infer that F converges to 0 and so does M . Thus E∗0 is GAS
when NF = 1.
• Assume now that NF > 1. Let us compute the Jacobian matrix related to

entomological system (1), page 4:

J(M,F ) =

 −βrρFe−β(M+F ) − µM rρ(1− βF )e−β(M+F )

−β(1− r)ρFe−β(M+F ) (1− r)ρ(1− βF )e−β(M+F ) − µF

 .

so that

J(E∗0 ) =

(
−µM rρ

0 (1− r)ρ− µF

)
,

from which we deduce that E∗0 is unstable, as NF > 1.125

For the positive equilibrium E∗, using the fact that e−β(M
∗+F∗) =

1

NF
, we

have:

J
(
E∗
)

=


−βrρ
NF

F ∗ − µM
rρ

NF
(
1− βF ∗

)
−β(1− r)ρ

NF
F ∗ −β(1− r)ρ

NF
F ∗

 .

Obviously trace
{
J(E∗)

}
< 0 and

det J
(
E∗
)

=
β

NF
(1− r)ρF ∗

(
µM +

rρ

NF

)
> 0

so that E∗ is LAS when NF > 1.
Using Dulac criterion [29], we now show that system (1) has no closed orbits

wholly contained in the attracting set D defined in (3). Indeed, setting

ψ1(F ) :=
1

F
, f1(M,F ) := rρFe−β(M+F ) − µMM,

g1(M,F ) := (1− r)ρFe−β(M+F ) − µFF,

let us study the sign of the function

D1(M,F ) :=
∂

∂M

(
ψ1(F )f1(M,F )

)
+

∂

∂F

(
ψ1(F )g1(M,F )

)
.

We have
∂

∂M

(
ψ1(F )f1(M,F )

)
= −βrρe−β(M+F ) − µM

F
,

∂

∂F

(
ψ1(F )g1(M,F )

)
= −β(1− r)ρe−β(M+F ),

and thus
D1(M,F ) = −βρe−β(M+F ) − µM

F
< 0
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for all (M,F ) ∈ D such that F > 0. Therefore, Dulac criterion [29] applies,
demonstrating that system (1) possesses no nonconstant periodic solutions.
Thus, using the fact that E∗ is LAS, by the Poincaré-Bendixson theorem, all
trajectories in D \ {(M, 0) : M ≥ 0} converge towards E∗.130

Convergence towards E∗0 clearly occurs in absence of females, i.e. when
F (0) = 0. (Notice that for this reason, the point E∗0 cannot be repulsive.)
Consider on the contrary a trajectory such that F (0) > 0. As Ḟ ≥ −µFF , this
induces that F (t) ≥ 0 for any t ≥ 0. We will show that convergence to E∗0 is
impossible, so convergence towards E∗ occurs. First of all, one deduces from
(1) and the continuity of F that

M(t) = e−µM tM(0) + rρ

t∫
0

e−µM (t−s)F (s)e−β(M(s)+F (s)) ds > 0

for any t > 0. The ratio
F

M
is therefore well defined and remains positive along

this trajectory. It is moreover continuously differentiable, and

d

dt

(
F

M

)
=

F

M

(
µM − µF + ρe−β(M+F )

(
1− r − r F

M

))
> (µM − µF )

F

M

if
F

M
≤ 1− r

r
. From (2), it is deduced immediately that there exists for this

trajectory a real number T ≥ 0, such that

∀ t ≥ T, F

M
>

1− r
r

.

Then it holds for any t ≥ T that

Ḟ =
(

(1− r)ρe−β(M+F ) − µF
)
F ≥

(
(1− r)ρe−

β
1−rF − µF

)
F .

The right-hand side of the previous formula is a continuous function of F which
is positive on (0, 1−rβ lnNF ) and negative on ( 1−r

β lnNF ,+∞). As F (t) > 0 for

any t ≥ 0 (see above), one deduces that

lim inf
t→+∞

F ≥ 1− r
β

lnNF > 0. (6)

As the compact set D is absorbing, the trajectory is ultimately uniformly
bounded. We deduce from this and the uniform bound (6), the existence of
certain T ′ ≥ T (whose precise value depends upon the considered trajectory)
and δ > 0, such that

∀ t ≥ T ′, Fe−βF ≥ δ > 0.

Now, we have for any t ≥ T ′

Ṁ ≥ rρδe−βM − µMM,
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which is strictly positive in a neighborhood of M = 0. The trajectory un-
der study therefore stays at a positive distance from the point E∗0 , and, being
convergent, has to converge to the other equilibrium, namely E∗. This shows
that any trajectory departing with F (0) > 0 converges towards E∗, and finally
concludes the proof of Theorem 2.135

3. Elimination with constant releases of sterile insects

We now extend system (1), in order to incorporate continuous, constant
releases driven by an equation for MS , the number of sterile males:

Ṁ = rρ
FM

M + γMS
e−β(M+F ) − µMM,

Ḟ = (1− r)ρ FM

M + γMS
e−β(M+F ) − µFF,

ṀS = Λ− µSMS .

(7a)

(7b)

(7c)

The positive constants µS and γ represent, respectively, the mortality rate
of sterile insects, and their relative reproductive efficiency or fitness (compared
to the wild males), which is usually smaller than 1. The nonnegative quantity Λ
is the number of sterile insects released at the beginning of each release period140

(so that it is a “number of released mosquitoes per time unit”). It is taken
constant over time in the present section. The other parameters are the same
as for model (1), see Table 1.

The mortality of the sterile males is usually larger than that of wild males,
so in complement to (2), we also have:

µS ≥ µM . (8)

Assuming t large enough, we may suppose MS(t) at its equilibrium value

M∗S :=
Λ

µS
in (7c), and the previous system then reduces to


Ṁ = rρ

FM

M + γM∗S
e−β(M+F ) − µMM,

Ḟ = (1− r)ρ FM

M + γM∗S
e−β(M+F ) − µFF.

(9a)

(9b)

System (9) is dissipative too, with all trajectories converging towards the same
set D introduced in (3). It admits the same mosquito-free equilibrium E∗0 .145

We are interested here in the issues of existence and stability of positive
equilibria. Driven by the application in view, we assume that the mosquito
population is viable (that is NF > 1, see Theorem 1), and focus on conditions
sufficient for its elimination.
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3.1. Existence of positive equilibria150

The mosquito-free equilibrium E∗0 is always an equilibrium of system (9).
The following result is concerned with possible supplementary equilibria.

Theorem 3 (Existence of positive equilibria for the SIT entomological model
with constant releases). Assume NF > 1. Then

• there exists Λcrit > 0 such that system (7) admits two positive distinct155

equilibria if 0 < Λ < Λcrit, one positive equilibrium if Λ = Λcrit, and no
positive equilibrium if Λ > Λcrit;

• the value of Λcrit is uniquely determined by the formula

Λcrit := 2
µS
βγ

φcrit(NF )

1 + NF
NM

, (10)

where φ = φcrit(NF ) is the unique positive solution to the equation

1 + φ

(
1 +

√
1 +

2

φ

)
= NF exp

− 2

1 +

√
1 +

2

φ

 . (11)

Theorem 3 provides a characterization of the constant release rate above
which no positive equilibrium may appear. We prove in the next section (Section
3.2) that in such a situation, convergence towards the mosquito-free equilibrium160

E∗0 occurs, which ensures elimination of the wild population.

Proof of Theorem 3.
Clearly, nullity of M at equilibrium is equivalent to nullity of F . In order to
find possible nonzero equilibria, let (M∗, F ∗) with M∗ > 0, F ∗ > 0 be one of
them. The populations at equilibrium have to fulfill:

rρ
F ∗

M∗ + γM∗S
e−β(M

∗+F∗) = µM , (1− r)ρ M∗

M∗ + γM∗S
e−β(M

∗+F∗) = µF .

In particular, we have, for NF ,NM defined in (4),

M∗

M∗ + γM∗S
e−β(M

∗+F∗) =
1

NF
,

F ∗

M∗ + γM∗S
e−β(M

∗+F∗) =
1

NM
, (12)

which implies the relation:
F ∗

M∗
=
NF
NM

.

Injecting this value in the first equation of (12), the number of males M∗ at
equilibrium has to fulfil the equation

M∗

M∗ + γM∗S
e
−β
(
1+
NF
NM

)
M∗

=
1

NF

10



or again

1 +
γM∗S
M∗

= NF e
−β
(
1+
NF
NM

)
M∗

. (13)

The study of equation (13) is done through the following result, whose proof is
given in Appendix.

Lemma 1. Let NF > 1, then equation (11) admits a unique positive root,
denoted φcrit. Moreover, for any a, c positive, the equation

f(x) := 1 +
a

x
−NF e−cx = 0 (14)

admits two positive distinct roots if 0 < ac < 2φcrit; one positive root if ac =165

2φcrit; no positive root otherwise.

Using Lemma 1 with the two positive constants

a := γM∗S = γ
Λ

µS
, c := β

(
1 +
NF
NM

)
,

one deduces that equation (13) admits exactly one positive root when the root

of (11) is equal to φcrit = ac
2 = 1

2βγ
(

1 + NF
NM

) Λcrit

µS
, which implies (10) and

thus achieves the proof of Theorem 3.

3.2. Asymptotic stability of the equilibria170

Assume NF > 1. We first study the asymptotic stability of the mosquito-
free equilibrium E∗0 in the case where it is the unique equilibrium, that is when
Λ > Λcrit.

Theorem 4 (Stability of the mosquito-free equilibrium of the SIT entomological
model with constant releases). If system (7) admits no positive equilibrium (that175

is, if Λ > Λcrit), then the mosquito-free equilibrium E∗0 is globally exponentially
stable.

Proof of Theorem 4. The Jacobian matrix J(M,F ) of the reduced system (9)
is defined by its four coefficients

J21 :=
(1− r)ρF
M + γM∗S

e−β(M+F )

(
1− βM − M

M + γM∗S

)
, J11 :=

r

1− r
J21 − µM ,

J12 :=
rρM

M + γM∗S
e−β(M+F )(1− βF ), J22 :=

1− r
r

J12 − µF .

Its value at the mosquito-free equilibrium E∗0 is just diag{−µM ;−µF }, which
guarantees local asymptotic stability at this point.
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We use again Dulac criterion to show that system (9) has no closed orbits
wholly contained in the set D. We set

ψ2(M,F ) :=
M + γM∗S
MF

,

f2(M,F ) := rρ
FM

M + γM∗S
e−β(M+F ) − µMM,

g2(M,F ) := (1− r)ρ FM

M + γM∗S
e−β(M+F ) − µFF,

and then study the sign of the function

D2(M,F ) :=
∂

∂M

(
ψ2(M,F )f2(M,F )

)
+

∂

∂F

(
ψ2(M,F )g2(M,F )

)
.

As
∂

∂M

(
ψ2(M,F )f2(M,F )

)
= −βrρe−β(M+F ) − µM

F
,

∂

∂F

(
ψ2(M,F )g2(M,F )

)
= −β(1− r)ρe−β(M+F ),

one has
D2(M,F ) = −βρe−β(M+F ) − µM

F
< 0,

for all (M,F ) ∈ D such that F > 0. Thus, by the Poincaré-Bendixson theorem,180

since E∗0 is the only asymptotically stable equilibrium, all trajectories in D
approach the equilibrium E∗0 . This concludes the proof of Theorem 4.

On the other hand, when Λ < Λcrit is not large enough and system (9)
admits two distinct positive equilibria E∗1 < E∗2 , one may show by studying the
spectrum of the Jacobian matrices that E∗0 = (0, 0) and E∗2 = (M∗2 , F

∗
2 ) are185

locally asymptotically stable. It is likely that this case presents bistability and
that E∗1 = (M∗1 , F

∗
1 ) is unstable, with the basin of attraction of E∗0 containing

the interval [0, E∗1 ) := {(M,F ) ∈ R2
+ : 0 ≤ M < M∗1 , 0 ≤ F < F ∗1 }, and the

basin of attraction of E∗2 containing the interval (E∗2 ,∞) := {(M,F ) ∈ R2
+ :

M > M∗2 , F > F ∗2 }. This is at least what is suggested by the vector field190

illustrating this situation presented in Figure 2. It is worth noting that when
Λ→ Λcrit from below, we have E∗1 → E∗2 and the two positive equilibria merge
and vanish.
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M2
*

0

F
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F1
*

F2
*

Figure 2: Trajectories of system (9) related to each equilibria: bi-stable case. The two positive
equilibria E∗

1 , E
∗
2 (green points) are located at the intersection of the two curves where Ḟ (in

red) and Ṁ (in blue) vanish. The isolated black points denote the initial equilibria E∗
0 =

(0, 0), E∗ = (M∗, F ∗) of the system (1), present when no control is applied.

4. Elimination with periodic impulsive releases of sterile insects

We now consider periodic impulsive releases Λ(t), modeled by the following
variant of system (7):

Ṁ = rρ
FM

M + γMS
e−β(M+F ) − µMM,

Ḟ = (1− r)ρ FM

M + γMS
e−β(M+F ) − µFF,

ṀS = −µSMS for any t ∈
⋃
n∈N

(
nτ, (n+ 1)τ

)
,

MS(nτ+) = τΛn +MS(nτ−), n = 1, 2, 3, . . .

(15a)

(15b)

(15c)

(15d)

where MS(nτ±) denote the right and left limits of the function MS(t) at time
nτ . In other terms, system (15) evolves according to (15a), (15b), (15c) on the
union of open intervals (nτ, (n+ 1)τ); while MS is submitted to jumps at each
point nτ , accounting for the released sterile males. We choose in this section
Λn constant, and drop consequently the subindex n. For such release schedule,
it is clear that the function MS converges when t → +∞ towards the periodic
solution

Mper
S (t) =

τΛe−µS(t−b tτ cτ)

1− e−µSτ
. (16)

13



We therefore introduce now the following periodic system:
Ṁ = rρ

FM

M + γMper
S (t)

e−β(M+F ) − µMM,

Ḟ = (1− r)ρ FM

M + γMper
S (t)

e−β(M+F ) − µFF.

(17a)

(17b)

Existence and uniqueness of continuously differentiable solutions of system (17)
on the interval [0,+∞) may be shown by standard arguments, as well as the
forward invariance of the positive orthant. Notice that the mosquito-free equilib-
rium E∗0 previously introduced is still an equilibrium of (17). We are interested
here in studying the conditions under which E∗0 is globally asymptotically sta-
ble. For future use, we note that the mean value of 1/Mper

S corresponding to
(16) verifies:〈

1

Mper
S

〉
:=

1

τ

∫ τ

0

1

Mper
S (t)

dt =
1− e−µSτ

τ2Λ

∫ τ

0

eµStdt =
2
(

cosh (µSτ)− 1
)

µSτ2Λ
.

(18)

Theorem 5 (Sufficient condition for elimination by periodic impulses). For any
given τ > 0, assume that Λ is chosen such that

Λ ≥ Λcritper

:=
cosh (µSτ)− 1

µSτ2
1

eβγ
min

{
2NM , 2NF ,max{r, 1− r}max

{
NM
r
,
NF

1− r

}}
.(19)

Then every solution of system (17) converges globally exponentially to the mosquito-195

free equilibrium E∗0 .

Notice that in (19) and in the sequel, e = e1. The previous result provides
a simple sufficient condition for stabilization of the mosquito-free equilibrium,
through an adequate choice of the amplitude of the releases, Λ, for given period
τ .200

Remark 2. When r = 1−r and NF > NM (which is the case of the application
we are interested in), the expression of Λcritper simplifies as follows:

Λcritper =
2
(

cosh (µSτ)− 1
)

µSτ2
NF
eβγ

.

The function τ 7→ 2 cosh (µSτ)− 1

µSτ2
is increasing and tends towards µS when

τ → 0. Making τ → 0+, we derive the following sufficient condition for stabi-
lization:

Λcritper ≥
µSNF
eβγ

,

to be compared to Λcrit = 2
µS
βγ

φcrit(NF )

1+
NF
NM

(see Theorem 3).
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Proof of Theorem 5. First rewrite (17) as

Ṁ =

(
rρ

F

M + γMper
S

e−β(M+F ) − µM
)
M,

Ḟ =

(
(1− r)ρ M

M + γMper
S

e−β(M+F ) − µF
)
F,

(20a)

(20b)

in order to emphasize the factorization of M and F .

• 1. Notice that, for any M,F ≥ 0 and any t ≥ 0,

M

M + γMper
S

e−β(M+F ) ≤ M

M + γMper
S

e−βM ≤ α

M + γMper
S

≤ α

γMper
S

,

(21)

where we write for simplicity

α := max
{
xe−βx : x ≥ 0

}
=

1

eβ
. (22)

Integrating (20b) between nτ and t > nτ leads to

F
(
t
)
≤ e

∫ t

nτ

(
(1− r)ρ M

M + γMper
S

e−β(M+F ) − µF
)
ds
F (nτ)

≤ e

∫ t

nτ

(
(1− r)ρα

γ

1

Mper
S (s)

− µF
)
ds
F (nτ).

Thus, taking t = (n+ 1)τ , for any n ∈ N, we deduce that

F
(
(n+ 1)τ

)
≤ e

(
(1−r)ρ

α

γ

〈
1

Mper
S

〉
−µF

)
τ

F (nτ).

Therefore, the sequence
{
F (nτ)

}
n∈N decreases towards 0, provided that

(1− r)ρα
γ

〈
1

Mper
S

〉
< µF ,

that is 〈
1

Mper
S

〉
<
γ

α

µF
(1− r)ρ

= eβγ
1

NF
, (23)

This is sufficient to ensure that F converges towards 0, and this induces the
same behavior for M : condition (23) implies that E∗0 is GAS.205

• 2. The same argument may be conducted from (20a) rather than (20b), leading
to:

F

M + γMper
S

e−β(M+F ) ≤ F

M + γMper
S

e−βF ≤ α

M + γMper
S

≤ α

γMper
S

(24)
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Global asymptotic stability is thereby guaranteed if〈
1

Mper
S

〉
<
γ

α

µM
rρ

= eβγ
1

NM
. (25)

• 3. Define the positive definite function

V(M,F ) :=
1

2
(M2 + F 2) (26)

and write its derivative along the trajectories of (17) as

V̇ = MṀ + FḞ = −µMM2 − µFF 2 + ρ
FM(rM + (1− r)F )

M + γMper
S

e−β(M+F ). (27)

On the one hand, we have

−µMM2 − µFF 2 ≤ −min{µM , µF }(M2 + F 2) = −2 min{µM , µF }V.

On the other hand,

FM(rM + (1− r)F )

M + γMper
S

e−β(M+F ) ≤ max{r, 1− r}FM(M + F )

M + γMper
S

e−β(M+F )

≤ max{r, 1− r}α FM

M + γMper
S

≤ max{r, 1− r}α 1

M + γMper
S

V

≤ max{r, 1− r}α 1

γMper
S

V.

Coming back to (27), we deduce that

V̇ ≤
(

max{r, 1− r}α 1

γMper
S

− 2 min{µM , µF }
)
V.

One may conclude that E∗0 is GAS provided that

max{r, 1− r}ρα
γ

〈
1

Mper
S

〉
< 2 min{µM , µF },

that is,〈
1

Mper
S

〉
< 2

γ

α

min{µM , µF }
max{r, 1− r}ρ

= 2eβγ
1

max{r, 1− r}
min

{
r

NM
,

1− r
NF

}
.

(28)
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• 4. Finally, putting together the sufficient conditions in (23), (25) and (28)
yields the following sufficient condition for global asymptotic stability of E∗0 :210 〈

1

Mper
S

〉
< eβγmax

{
1

NM
,

1

NF
,

2

max{r, 1− r}
min

{
r

NM
,

1− r
NF

}}
.

Expressing the mean value as a function of Λ with the help of (18), one
establishes that E∗0 is GAS if

Λ >
2

eβγ

cosh(µSτ)− 1

µSτ2
1

max
{

1
NM ,

1
NF ,

2
max{r,1−r} min

{
r
NM ,

1−r
NF

}}
=

2

eβγ

cosh(µSτ)− 1

µSτ2
min

NM ,NF , max{r, 1− r}

2 min
{

r
NM ,

1−r
NF

}


=
2

eβγ

cosh(µSτ)− 1

µSτ2
min

{
NM ,NF ,

max{r, 1− r}
2

max

{
NM
r
,
NF

1− r

}}
,

which is exactly the formula (19). This concludes the proof of Theorem 5.

Remark 3. A rough upper bound estimate for Λcritper can be obtained using the
result from the constant continuous release case: if Λ is chosen such that Λ >

Λcrit := 2
µS
βγ

φcrit(NF )

1 + NF
NM

, then E∗0 is GAS for the constant continuous release

system (7). Thus, using a comparison principle, a sufficient condition to ensure
global asymptotic stability of E∗0 is to choose

Mper
S ≥ Λcrit

µS
,

where Mper
S = min

t∈[0,τ ]
Mper
S (t) = τΛ

e−µSτ

1− e−µSτ
. Thus, we derive that, for a given

τ , if

Λ ≥ Λcrit
eµSτ − 1

µSτ
, (29)

then E∗0 is GAS. When τ → 0+, we recover the result for the constant continuous
release (cf. Theorem 3).215

5. Elimination by feedback control

We now assume that measurements are available, providing real time es-
timates of the number of wild males and females M(t), F (t), at least for any
t = nτ, n ∈ N. One thus has the possibility to choose the number τΛn of
mosquitoes released at time nτ in view of this information: this is a closed-loop220

control option. We study in the sequel this strategy.

17



5.1. Principle of the method

The principle of the stabilization method that we introduce now is based
on two steps. The first one (Section 5.1.1) consists in solving the stabilization
problem under the hypothesis that one can directly actuate on MS . The second225

one (Section 5.1.2) consists in showing how to realize, through adequate choice
of Λn, the prescribed behavior of MS defined in Step 1. The formal statement
and proof are provided later, in Section 5.2.

5.1.1. Step 1 – Setting directly the sterile population level

We first suppose to be capable of directly controlling the quantity MS . We230

will rely on the following key property.

Proposition 1. Let k be a real number such that

0 < k <
1

NF
. (30)

Then every solution of (7a)-(7b) such that

M(t)

M(t) + γMS(t)
≤ k, t ≥ 0 , (31)

converges exponentially to E∗0 .

The idea behind formula (30) is quite natural: it suffices to impose a fixed

upper bound k on the ratio
M

M + γM∗S
in order to make the ‘apparent’ basic

offspring number kNF smaller than 1, and consequently to render inviable the235

wild population. Notice that this condition corresponds exactly to the stability
of the system linearized around the origin. It may be excessively demanding for
large population sizes, as it ignores the effects of competition modeled by the
exponential term. We shall come back to this point in Section 6 and introduce
saturation.240

Proof of Proposition 1. From equations (7a) and (7b), we have, for any solution
that fulfils (31):

Ṁ = rρ
FM

M + γMS
e−β(M+F ) − µMM

≤ rρ FM

M + γMS
− µMM ≤ −µMM + rρkF (32a)

and

Ḟ = (1− r)ρ FM

M + γMS
e−β(M+F ) − µFF ≤ ((1− r)ρk − µF )F. (32b)

The linear autonomous system(
Ṁ ′

Ḟ ′

)
=

(
−µM rρk

0 −µF + (1− r)ρk

)(
M ′

F ′

)
(33)
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is monotone [22] (it involves a Metzler matrix) and may thus serve as a com-
parison system for the evolution of (7a)-(7b). Thus, it is deduced that

0 ≤M(t) ≤M ′(t), 0 ≤ F (t) ≤ F ′(t), t ≥ 0,

where (M ′, F ′) is the solution of (33) generated by the same initial values as
the underlying solution (M,F ) of (7a)-(7b).

On the other hand, system (33) is asymptotically stable when (30) holds. In
other words, M ′(t) and F ′(t) converge to E∗0 asymptotically. In consequence,
M(t) and F (t) also converge to E∗0 asymptotically when (30) is in force. This245

achieves the proof of Proposition 1.

5.1.2. Step 2 – Shaping an impulsive control compliant with Step 1

We now want to ensure that condition (31) is fulfilled, through an adequate
choice of the impulse amplitude Λn. In virtue of (15c)-(15d), the value of MS

on the interval
(
nτ, (n+ 1)τ

]
is given by

MS(t) = MS(nτ+)e−µS(t−nτ) =
(
Λnτ +MS(nτ)

)
e−µS(t−nτ), (34)

and we would like to choose Λn in such a way that (31) stays in force. However,
instead of computing the (nonlinear) evolution of M(t) on the interval

(
nτ, (n+

1)τ
]
, we will impose, rather than (31), the stronger condition

γMS(t) ≥
(

1

k
− 1

)
M ′(t), t ≥ 0 (35)

where M ′(t) refers to the super-solution of M(t) introduced in the proof of
Proposition 1. (Notice that the conservatism introduced in this step remains
reasonable when the original nonlinear system evolves in region where β(M +250

F )� 1.) Due to its linearity, system (33) may be solved explicitly on
(
nτ, (n+

1)τ
]

using the following result.

Lemma 2. The solution of system (33) on
(
nτ, (n + 1)τ

]
with initial values(

M ′(nτ), F ′(nτ)
)

=
(
M(nτ), F (nτ)

)
is given by(

M ′(t)
F ′(t)

)
= P

(
M(nτ)
F (nτ)

)
(36a)

where

P :=

e−µM (t−nτ) rρk

µM − µF + (1− r)ρk
(
e−(µF−(1−r)ρk)(t−nτ) − e−µM (t−nτ))

0 e−(µF−(1−r)ρk)(t−nτ)


(36b)
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The proof of Lemma 2 presents no difficulty and is left to the reader.
All the components of the matrix in (36a) are nonnegative provided that µF ,255

µM , ρ and k are chosen such that µF − µM − (1− r)ρk ≤ 0. It is worthwhile to
recall that µF ≤ µM (see (2), page 4); therefore, the former condition is indeed
verified for any positive ρ and k.

We now come back to the control synthesis. Using (34) and (36a), condition
(35) is equivalent, on any interval

(
nτ, (n+ 1)τ

]
, with the condition260

γ
(
Λnτ +MS(nτ)

)
e−µS(t−nτ) = γMS(t) ≥

(
1

k
− 1

)
M ′(t)

=
1− k
k

(
e−µM (t−nτ)M(nτ)

+
rρk

µM − µF + (1− r)ρk

(
e−(µF−(1−r)ρk)(t−nτ) − e−µM (t−nτ)

)
F (nτ)

)
.(37)

This condition is equivalent to

Λnτ ≥ −MS(nτ) +
1− k
γk

e(µS−µM )s
(
M(nτ)

+
rρk

µM − µF + (1− r)ρk

(
e(µM−µF+(1−r)ρk)s − 1

)
F (nτ)

)
(38)

for any s ∈ [0, τ ]. In virtue of the relationships (2) and (8), the right-hand side
of previous inequality (38) is increasing in s. Therefore, condition (38) has to
be checked only for s = τ .

5.2. Stabilization result

5.2.1. Synchronized measurements and releases265

We now state and prove the stabilization result suggested by the previous
considerations.

Theorem 6 (Sufficient condition for stabilization by impulsive feedback con-

trol). For a given k ∈
(

0, 1
NF

)
, assume that for any n ∈ N:

τΛn ≥
∣∣∣∣K (M(nτ)

F (nτ)

)
−MS(nτ)

∣∣∣∣
+

K :=
1

γ

(
1−k
k e(µS−µM )τ

rρ(1−k)
µM−µF+(1−r)ρk

(
e(µS−µF+(1−r)ρk)τ − e(µS−µM )τ

))T

(39a)

(39b)

Then every solution of system (15) converges exponentially towards E∗0 , with
a convergence rate bounded from below by a value independent of the initial
condition.270

If moreover

τΛn ≤ K

(
M(nτ)
F (nτ)

)
(39c)

then the series of impulses
+∞∑
n=0

Λn converges.
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In (39a), the notation |z|+ := max{0, z} represents the positive part of the
real number z. Notice that the row vector K defined in (39b) has positive
components.

Implementing the previous control law necessitates the measurement ofM(nτ),
F (nτ) (or their upper estimates), and of MS(t) (or its lower estimate). A possi-
bility to have (39a) fulfilled, is to ignore the population of sterile males already
present at time nτ and to take simply the linear control law

τΛn = K

(
M(nτ)
F (nτ)

)
.

Notice that this expression corresponds to the value in the right-hand side of275

(39c).
On the other hand, (39a) means that the release of sterile males at time

t = nτ is not (really) necessary if the sterile males population is large enough,

more precisely if MS(nτ) ≥ K

(
M(nτ)
F (nτ)

)
. Using this result, one may avoid

unnecessary releases, thereby reducing the overall cumulative number of released280

males and the underlying cost of SIT control.

Proof of Theorem 6. When
(
M(nτ), F (nτ)

)
= (0, 0), an impulsion Λn has no

effect on the evolution of (M,F ): the origin is an equilibrium point of system
(15). We now consider the case

(
M(nτ), F (nτ)

)
6= (0, 0).

• 1. Assume first that (39a) is fulfilled with a strict inequality. By construction,
one has:

∀ t ∈
(
nτ, (n+ 1)τ

]
, γMS(t) >

1− k
k

M ′(t) (40)

where (M ′, F ′) stands for solution of (33) departing from
(
M(nτ), F (nτ)

)
at285

time nτ .
We will first establish that this implies:

∀ t ∈
[
nτ, (n+ 1)τ

]
, M(t) ≤M ′(t), F (t) ≤ F ′(t). (41)

For this, let t0 be any element of
[
nτ, (n + 1)τ

)
such that M(t0) ≤ M ′(t0),

F (t0) ≤ F ′(t0) with at least one equality. Let us show the existence of t1 such
that t0 < t1 < (n+ 1)τ and

∀ t ∈ (t0, t1), M(t) < M ′(t), F (t) < F ′(t). (42)

Indeed, due to (40) and by definition of t0, one has

γMS(t0) >
1− k
k

M ′(t0) ≥ 1− k
k

M(t0),

where we write by convention MS(t0) := MS(nτ+) when t0 = nτ . By continuity
of the functions M(t) and MS(t) on the open interval

(
nτ, (n+ 1)τ

)
, there thus

exists t1 such that t0 < t1 < (n+ 1)τ and

∀ t ∈ (t0, t1), γMS(t) >
1− k
k

M(t).
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In such conditions, it can be shown as in Proposition 1 that
(
M ′(t), F ′(t)

)
≥(

M(t), F (t)
)

for any t ∈ (t0, t1), and even that
(
M ′(t), F ′(t)

)
>
(
M(t), F (t)

)
,

because the functions defining the right-hand sides of (15a) and (15b) take on
strictly smaller values than those defining the right-hand sides of (33). There-290

fore, for any t0 ∈
{
nτ+

}
∪
(
nτ, (n + 1)τ

)
, there exists t1 > t0 such that (42)

holds.
From (42) and the fact that

(
M(nτ), F (nτ)

)
=
(
M ′(nτ), F ′(nτ)

)
, one de-

duces that (42) is true for t1 = (n+1)τ , and therefore that (41) is true. Finally,
putting together (40) and (41) yields the following key property:

∀ t ∈
(
nτ, (n+ 1)τ

]
, γMS(t) >

1− k
k

M(t). (43)

• 2. Assume now that (39a) is fulfilled (with the original non-strict inequality).
Considering values of Λn converging from above towards the quantity in the
right-hand side of this inequality and relying on the continuity of the flow with
respect to Λn, yields instead of (43) the non-strict inequality:

∀t ∈ (nτ, (n+ 1)τ ], γMS(t) ≥ 1− k
k

M(t). (44)

• 3. Let us now study F . In view of (44), we have that for any t ∈
(
nτ, (n+1)τ

]
it holds that

M(t)

M(t) + γMS(t)
e−β(M(t)+F (t)) ≤ M(t)

M(t) + γMS(t)
≤ k.

Therefore,

Ḟ = (1− r)ρ FM

M + γMS
e−β(M+F ) − µFF ≤

(
(1− r)ρk − µF

)
F.

Due to (39b), there exists ε > 0 such that

µF − (1− r)ρk > ε

and then Ḟ ≤ −εF . This property ensures that F (t) decreases with time, and295

converges exponentially towards 0. It is then deduced from (15a) that M(t) also
converges exponentially towards 0: overall,

(
M(t), F (t)

)
converges towards E∗0 .

• 4. Last, choose now Λn fulfilling (39a) and (39c). From the property of
exponential stability previously demonstrated, there exist C, ε > 0 such that300
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M(t) < Ce−εt and F (t) < Ce−εt for any t ≥ 0. We then deduce that

Λn ≤ 1

γτ

(
1− k
k

e(µS−µM )τM(nτ)

+
rρ(1− k)

µM − µF + (1− r)ρk

(
e(µS−µF+(1−r)ρk)τ − e(µS−µM )τ

)
F (nτ)

)
≤ C

γτ

(
1− k
k

e(µS−µM )τ

+
rρ(1− k)

µM − µF + (1− r)ρk

(
e(µS−µF+(1−r)ρk)τ − e(µS−µM )τ

))
e−nετ ,

and one gets by summation

+∞∑
n=0

Λn ≤
C

γτ

(
1− k
k

e(µS−µM )τ

+
rρ(1− k)

µM − µF + (1− r)ρk

(
e(µS−µF+(1−r)ρk)τ − e(µS−µM )τ

)) 1

1− e−ετ
.

This shows the convergence of the series and concludes the proof of Theorem 6.

5.2.2. Sparse measurements

The feedback control approach requires to assess the size of mosquito pop-305

ulation at every time t ∈ τN. As mentioned in the Introduction, rough esti-
mates of a wild population are achievable through direct capture and counting,
or through more sophisticated methods such as Mark-Release-Recapture [27].
However, this protocol is long and costly. We now show how it is possible to
reduce its frequency and to complete measurements only with a period pτ for310

some p ∈ N∗ := N \ {0}. The values of the (p − 1) intermediate releases are
computed using the last sampled information.

The following result adapts in consequence the control laws given in Theorem
6 to sparse measurements.

Theorem 7 (Stabilization by impulsive control with sparse measurements). Let

p ∈ N∗. For a given k ∈
(

0, 1
NF

)
, assume for any n ∈ N, m = 0, 1, . . . , p− 1,

τΛnp+m ≥

∣∣∣∣∣Kp

(
M(nτ)
F (nτ)

)
−MS(npτ)e−mµSτ −

m−1∑
i=0

Λnp+ie
−µS(m−i)τ

∣∣∣∣∣
+

Kp :=
eµSτ

γ

(
1−k
k e−(m+1)µMτ

rρ(1−k)
µM−µF+(1−r)ρk

(
e−(µF−(1−r)ρk)(m+1)τ − e−µM (m+1)τ

))T

(45a)

(45b)

Then every solution of system (15) converges exponentially towards E∗0 , with315

a convergence speed bounded from below by a value independent of the initial
condition.
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If moreover

τΛnp+m ≤ Kp

(
M(nτ)
F (nτ)

)
, (45c)

then the series of impulses
+∞∑
n=0

Λn converges.

Notice that Theorem 7 represents an extension of Theorem 6, recovered in
the case p = 1 (and thus m = 0): in this case, (45a) boils down to (39a).320

Proof of Theorem 7. The demonstration comes from a slight adaptation of the
proof of Theorem 6. Indeed, it suffices to verify that, under the conditions in
Theorem 7, property (37) holds on the interval (npτ, (n + 1)pτ ], of length pτ .
Let m ∈ {0, 1, . . . , p− 1}. One has for any s ∈ (0, τ ] that

MS

(
s+ (np+m)τ

)
=
(

Λnp+mτ +MS

(
(np+m)τ

))
e−µSs

=
(

Λnp+mτ + Λnp+m−1τe
−µSτ + . . .

+ Λnpτe
−mµSτ +MS(npτ)e−mµSτ

)
e−µSs.

Inequality (37) is thus true on
(
(np + m)τ, (np + m + 1)τ

]
if and only if it

is imposed that, for any m ∈ {0, 1, . . . , p − 1} and any s ∈ (0, τ ], γ
(

Λnp+mτ +

Λnp+m−1τe
−µSτ+· · ·+Λnpτe

−mµSτ+MS(npτ)e−mµSτ
)
e−µSs ≥ 1−k

k

(
e−µM (s+mτ)

M(nτ) + rρk
µM−µF+(1−r)ρk

(
e−(µF−(1−r)ρk)(s+mτ) − e−µM (s+mτ)

)
F (nτ)

)
, that is,

Λnp+mτe
mµSτ + Λnp+m−1τe

(m−1)µSτ + · · ·+ Λnpτ +MS(npτ)

≥ 1− k
γk

(
e(µS−µM )(s+mτ)M(nτ)

+
rρk

µM−µF + (1−r)ρk

(
e(µS−µF+(1−r)ρk)(s+mτ)−e(µS−µM )(s+mτ)

)
F (nτ)

)
(46)

In virtue of the relationships (2) and (8), the right-hand side of (46) is an325

increasing function of s. Therefore, (46) is more restrictive when taken at s = τ .
This yields (45a) and shows the first part of the result. The convergence of the
series of impulses is demonstrated similarly to Theorem 6.

6. Mixed impulsive control strategies

The results obtained in the previous sections for open-loop and closed-loop330

SIT control allow us to compare several SIT release strategies. Here, we consider
only periodic impulsive control, which is more realistic than continuous control.

The open-loop approach (developed in Section 4), is based on the determi-
nation of a sufficient size of sterile males to be released, in order to eradicate the
wild population. This choice is made according to (19). Under this approach,335
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even though the previous formula is ‘tight’, the same amount of sterile insects
is used during the whole release campaign.

On the contrary, the closed-loop control approach (exposed in Section 5)
is based on estimates of the wild population and thereby it enables fitting the
release sizes. As evidenced by (39a), under this approach the released volume340

is essentially chosen as proportional to the measured population. However, this
condition is certainly too demanding for large values of M,F (see the comments
preceding Lemma 2). Taking advantage of the apparent complementarity of the
two approaches, we propose here mixed impulsive control strategies, combining
the two previous modes. They gather the advantages of both approaches, guar-345

anteeing convergence to the mosquito-free equilibrium with releases that remain
bounded (like the periodic impulsive control strategies, Section 4) and vanishing
with the wild population (like the feedback control strategies, Section 5).

Theorem 8. Let p ∈ N∗. Assume that, for any n ∈ N, Λn is chosen at least
equal to the smallest of the right-hand side of (45a) and of a positive constant350

Λ̄ that verifies one of the following cases:
• Case 1.

Λ̄ = 2
(cosh (µSτ)− 1)

µSτ2
1

eβγ
NF if k ∈

(
0,

µF
(1− r)ρ

)
. (47)

• Case 2.

Λ̄ =
(cosh (µSτ)− 1)

µSτ2
1

eβγ
max{r, 1− r}max

{
NM
r
,
NF

1− r

}

if k ∈

0, 2
µM
ρ

1− r
r2

√1 +
µF
µM

(
r

1− r

)2

− 1

 . (48)

Then every solution of system (15) converges globally exponentially to E∗0 .

The interest of the previous result is of course to consider the smallest of
the two values of Λ̄ and of the value provided by the closed-loop control law: it355

results in saturated control laws.
The main issue of the proof (presented below) is to establish convergence

in the occurrence of infinitely many switches between the two modes. The
demonstration is based on the use of common Lyapunov functions, that decrease
along the trajectories of the system, regardless of the mode in use. Different360

Lyapunov functions are required for the two cases.

Remark 4. Notice that

2
µM
ρ

1− r
r2

√1 +
µF
µM

(
r

1− r

)2

− 1


< 2

µM
ρ

1− r
r2

1

2

µF
µM

(
r

1− r

)2

=
µF

(1− r)ρ
, (49)

so the condition on k contained in (48) is more restrictive than the one in (47).

25



Remark 5. The values of Λ̄ that appear in (47) and (48) are two of the three
that appear in (19), corresponding to (23) and (28) in the proof of Theorem 5,
page 14. See the proof for more explanations.365

Proof of Theorem 8. For simplicity, we consider here the case where p = 1. The
case with p > 1 is treated in a similar way.

• 1. For the Case 1, consider the evolution of F . As shown in the proof of
Theorem 5, item 1, it holds that

F
(
(n+ 1)τ

)
≤ e−ετF (nτ) (50)

for a certain ε > 0 (independent of n) when Λn is at least equal to Λ̄ given in
(47). On the other hand, it is shown in the proof of Theorem 6, item 3, that
F also decreases exponentially according to (50) when Λn is chosen according370

to (39a) (which is (45a) in the case p = 1). Therefore, regardless of the mode
commutations, F (t) converges exponentially towards zero for every trajectory.
As substantiated in the proof of Theorem 6, this is sufficient to deduce the
convergence of M(t) towards zero. Thereby, Theorem 8 is proved in the Case
1.375

• 2. For the Case 2, let V be the positive definite function V(M,F ) := 1
2 (M2 +

F 2) introduced in (26), page 16. It was shown in the proof of Theorem 5, item
3, that property (50) also holds for some ε > 0 when Λn is chosen according to
(39a).

On the other hand, when Λn is taken smaller than the value in (19), due to
Theorem 6, one has for all t ∈

(
nτ, (n+ 1)τ)

]
, see (37), that

γMS(t) ≥
(

1

k
− 1

)
M(t), that is:

M(t)

M(t) + γMS(t)
≤ k. (51)

Therefore, on the same interval, it holds:380

V̇ = MṀ + FḞ

= ρ
FM(rM + (1− r)F )

M + γMS
e−β(M+F ) − µMM2 − µFF 2

≤ ρkF (rM + (1− r)F )e−β(M+F ) − µMM2 − µFF 2

≤ ρkF (rM + (1− r)F )− µMM2 − µFF 2

= −
(
µMM

2 − ρkrMF + (µF − ρk(1− r))F 2
)
.

The discriminant of the previous quadratic form is

∆′ = r2ρ2k2 + 4µM (1− r)ρk − 4µMµF , (52)

which is negative when k is taken according to (48). In such case, V̇ is negative
definite. One concludes that V decreases exponentially to zero, and this ensures
the global exponential stability of the mosquito-free equilibrium E∗0 . The result
is thus also proved in the Case 2. This achieves the proof of Theorem 8.
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7. Numerical illustrations385

We present here several numerical simulations, aimed at illustrating and
comparing the different impulsive release strategies developed in the previous
sections. The values of the vital characteristics of the mosquitoes which are
used in the simulations are summarized in Table 2.

Parameter Value Description
ρ 4.55 Number of eggs a female can deposit
r 0.5 r : (1− r) expresses the primary sex ratio in offspring
σ 0.05 Regulates the larvae development into adults under

density dependence and larval competition
K 140 Carrying capacity
µM 0.04 Mean mortality rate of wild adult male mosquitoes
µF 0.03 Mean mortality rate of wild adult female mosquitoes
µS 0.04 Mean mortality rate of sterile adult male mosquitoes
γ 1 Fitness of sterile adult male mosquitoes

Table 2: Aedes spp parameters values

The carrying capacity K in the Table corresponds to 1 hectare. With the390

above numbers, we have here for the global competition coefficient β =
σ

K
=

3.57× 10−4, and for the basic offspring numbers NF ≈ 75.83 and NM ≈ 56.87.
At equilibrium, the mosquito population is thus E∗ = (M∗, F ∗) with M∗ ≈
6, 925, F ∗ ≈ 5, 194 individuals per hectare. Let us remind that the basic off-
spring numbers represent the average number of offspring produced over the395

lifetime of an individual. As reflected in Theorem 1, they are closely related to
the viability of the species, while for its part, the coefficient β affects directly
the value of the equilibrium population.

The SIT control starts at time t = 100. All simulations run as long as
log10 F (t) remains larger than a given threshold value, here −1, below which we400

assume that elimination has been reached.

• Constant impulsive releases. We here illustrate the release method exposed in
Theorem 5. For open-loop periodic impulsive releases carried out every 7 (resp.
14) days, we consider the smallest value given in (19), page 14, to estimate the
number of sterile males to release, that is, 7× Λcritper =7× 1, 573 = 11, 011 (resp.405

14× Λcritper =14× 1, 604 = 22, 456) sterile males per hectare and per week (resp.
every two weeks).

The corresponding simulations are given in Figure 3. In Table 3, we sum-
marize the cumulative number of sterile males as well as the number of releases
needed to reach nearly “elimination”. While, as expected, the total number of410

released sterile males is lower for τ = 7, there is no gain in terms of treatment
duration. Thus, taking into account the cost of each release and also the risk of
failure during the transport, it seems preferable to consider the lower number
of releases, and thus to choose τ = 14.
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Figure 3: Open-loop periodic impulsive SIT control of system (15) with a period of: (a) 7
days, (b) 14 days.

Period (days) Cumulative Number of Nb of Weeks
released sterile males to reach elimination

τ = 7 924,627 84
τ = 14 942, 869 84

Table 3: Cumulative number of released sterile males for each open-loop periodic SIT control
treatment.

The closed-loop approach can be used to reduce the cumulative number of415

released sterile insects and the number of effective releases. Further on, we will
consider several sub-cases.

• Impulsive feedback control. We now show application of the algorithms given
in Theorems 6 and 7. Here and in the study of all feedback methods, we consider
measurements of the wild population every τ days or every pτ days for p = 4.
Also, in order to display the tradeoff between treatment duration and control
effort, we investigate two values of k, namely

kNF = 0.2 and kNF = 0.99. (53)

With the smaller value k = 0.2/NF , the control effort is larger and one expects
faster convergence toward E0 = (0, 0), at the price of larger releases of sterile
males, i.e. higher costs. On the contrary, for larger k = 0.99/NF , the control420

effort is smaller and convergence should be slower, with smaller total number of
released insects.

The size Λn of the n-th release is taken equal to the right-hand side of
formula (39a) for p = 1 (of (45a) for p = 4): if, at the moment of the estimate,
the size of the sterile male population is sufficiently large, Λn may be small or425

even null.
Simulations presented in Figures 4 (page 30) and 5 (page 31) clearly show

that the choice of k and p, as well as the period τ of the releases play an
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important role in the convergence of the wild population to E∗0 . Tables 4 and
5 provide the total cumulative number of released sterile males, the number of430

weeks of SIT treatment needed to reach elimination, and the number of effective

(that is nonzero) releases. For instance, when (τ, p) = (14, 4) and k =
0.2

NF
is

relatively small, elimination of wild mosquitoes can be achieved in 56 weeks,
with only 17 effective releases, as shown in Fig. 6(b), page 32. However, this
option requires to release significant number of sterile insects per hectare (close435

to 2.9× 106 for the whole treatment).

For the larger k =
0.99

NF
and with (τ, p) = (7, 1) (see Figure 5(a)), the

convergence is slower: more than 240 weeks of SIT treatment are required to
reach nearly elimination. For p = 4 (see Figure 5(b)), the wild population is
close to extinction after 58 weeks of SIT treatment. However, based on Table440

5, it seems that the choice (τ, p) = (14, 4) leads to the best result in terms of
timing (62 weeks) and also in terms of cumulative size encompassing 20 effective
releases.

The parameter k is of main importance: when p = 4, while the number of
weeks to reach elimination is quite similar for both values of τ , the cumulative445

number of released sterile males is clearly smaller when k is closer to 1/NF .

Cumulative Nb of Nb of weeks to
released sterile males reach elimination Nb of nonzero releases

Period
p

1 4 1 4 4

τ = 7 2, 251, 052 4, 363, 430 64 54 34
τ = 14 2, 390, 676 2, 896, 835 64 56 17

Table 4: Cumulative number of released sterile males and number of releases for each closed-

loop periodic SIT control treatment when k =
0.2

NF
. See Figure 4, page 30.

Cumulative Nb of Nb of weeks needed
released sterile males to reach elimination Nb of nonzero releases

Period
p

1 4 1 4 4

τ = 7 794, 807 1, 221, 593 240 58 37
τ = 14 909, 344 1, 043, 107 130 62 20

Table 5: Cumulative number of released sterile males and number of releases for each closed-

loop periodic SIT control treatment when k =
0.99

NF
. See Figure 5, page 31

• Mixed control. We now consider mixed control strategies as exposed in Section
6 (Theorem 8). In Figures 7 and 8 (pages 33 and 34, respectively) are shown the
simulations obtained with the same two underlying values of k given in (53).
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Figure 4: Closed-loop periodic impulsive SIT control of system (15) with k =
0.2

NF
: (a) 7 days,

p = 1; (b) 7 days, p = 4; (c) 14 days, p = 1; (d) 14 days, p = 4. See Table 4, page 29

Cumulative Nb of Nb of weeks needed
released sterile males to reach elimination Nb of nonzero releases

Period
p

1 4 1 4 4

τ = 7 450, 668 534, 849 72 65 53
τ = 14 465, 187 499, 497 72 66 25

Table 6: Cumulative number of released sterile males and number of releases for each mixed

open/closed-loop periodic SIT control treatment when k =
0.2

NF
. See Figure 7, page 33.

Except for the case with (τ, p) = (7, 1) and k =
0.99

NF
(see Table 6, page 30),450

where the convergence to E∗0 is slow, it turns out that the mixed open/closed-
loop control strategies derive the best results, not only in terms of releases
number but also in terms of overall cumulative number of sterile males to be
released.

According to Tables 6 and 7 (pages 30 and 31, respectively), for both values455
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Figure 5: Closed-loop periodic impulsive SIT control of system (15) with k =
0.99

NF
: (a) 7

days, p = 1; (b) 7 days, p = 4; (c) 14 days, p = 1; (d) 14 days, p = 4. See Table 5, page 29

Cumulative Nb of Nb of weeks needed
released sterile males to reach elimination Nb of nonzero releases

Period
p

1 4 1 4 4

τ = 7 457, 489 450, 077 246 69 53
τ = 14 427, 701 449, 059 136 74 28

Table 7: Cumulative number of released sterile males and number of releases for each mixed

open/closed-loop periodic SIT control treatment when k =
0.99

NF
. See Figure 8, page 34.

of k, the best solution would be to release sterile insects every 2 weeks with
population assessments carried out by measurements every 4 weeks (p = 4). In
addition, and thanks to (45), Figure 9 displays the release sizes Λn for each
mixed strategy. It clearly shows that during the first releases, Λn = Λcritper .
Further, when the wild population drops below a certain threshold, the feedback460

control occurs or not, depending on the (estimated) size of the sterile male
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Figure 6: Size of the release, Λn at time t = nτ for closed-loop SIT control: (a,b) k =
0.2

NF
;

(c,d) k =
0.99

NF
. The discontinuities indicate “no release”.

population. That is why in Tables 6 and 7, we derive the number of effective
releases (only for the case p = 4) which confirms that the best combination is
(τ, p) = (14, 4), regardless of the value of k.

For the mixed open/closed-loop periodic impulsive SIT control, the choice465

of k does not matter compared to the closed-loop control only. Our preliminary
results thereby indicate that a mixed SIT control option with (τ = 14, p = 4)
leads to the best strategy in terms of the total number of released sterile males
and also in terms of effective releases number.

8. Conclusion470

In this work, we studied various strategies to control mosquito population
using SIT: open-loop and closed-loop periodic impulsive control strategies, as
well as their combination (mixed open/closed-loop strategy). For the open-
loop strategy (that is usually considered during field experiments) we found the
minimal number of sterile males to be released every τ days in order to reach475
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Figure 7: Combination of open/closed-loop periodic impulsive SIT control of system (15) with

k =
0.2

NF
: (a) 7 days, p = 1; (b) 7 days, p = 4; (c) 14 days, p = 1; (d) 14 days p = 4. See

Table 6, page 30.

elimination of wild mosquitoes. This number is constant and relatively low. The
question of determining a stopping time for the release campaigns is not simple,
but clearly of primordial importance, as premature ending ruins the preceding
efforts.

On the contrary, the feedback SIT-control commences with relatively abun-480

dant releases and their amplitude steadily declines with the wild population
size until fading away and vanishing when the system converges towards the
desired mosquito-free state. This closed-loop control strategy requires to assess
the current size of the wild population (using MRR experiments, for instance).

Finally, we proposed a mixed control strategy, combining open-loop and485

closed-loop strategies. This control input mode renders the best result, and
turns out rather meaningful from the experimental standpoint: the control input
is launched at the open-loop mode during first weeks (initial phase) and then is
shifted to the closed-loop mode (final phase), once the size of wild population
exhibits steady decline. With this approach, the gain in terms of release pick-490

value, number of nonzero releases, and overall cumulative volume is clearly
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Figure 8: Combination of open/closed-loop periodic impulsive SIT control of system (15),

with k =
0.99

NF
: (a) 7 days, p = 1, (b) 7 days, p = 4, (c) 14 days, p = 1, (d) 14 days p = 4.

See Table 7, page 31.

visible. This is due to the fact that initial phase of control action is done at
the open-loop mode, i.e. by performing releases of sterile males regardless of
the current size of wild population, a pretreatment which induces an essential
decline of the wild population before switching to the closed-loop control mode.495

Even considering the simulations displayed in terms of cost, the mixed control
seems to be definitively the best choice when a release is carried out every two
weeks, based on a population estimate acquired every four weeks.

Knowledge of the cost of each stage of the SIT control (mass rearing, ster-
ilization either by irradiation or using Wolbachia, transportation to the target500

locality, wild population measurements with MRR techniques, and other neces-
sary supplies) will allow to estimate more precisely and optimize the treatment
cost, and thus to make the most appropriate choices from an economical point
of view.

As a last remark, we notice that, from a mathematical point of view, the use505

of closed-loop methods, as well as the fact that the proof of their effectiveness
is based on argument of monotonicity, are certainly able to guarantee robust-
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Figure 9: Size of the release, Λn, at time t = nτ for mixed open/closed-loop SIT control:

(a,b) k =
0.2

NF
; (c,d) k =

0.99

NF
. The discontinuities indicate “no release”.

ness of the proposed closed-loop algorithms with respect to several uncertainties
present in the problem under study. In particular, it is believed that the frame-
work developed here could most certainly be extended to consider the effects510

of modeling and measurement errors, as well as imprecision and delay in the
control-loop.
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Appendix: Proof of Lemma 1, page 11620

First, it is easy to check that function f , defined in (14), page 11, is first
decreasing and then increasing, and, thus, may solely have no root, one root or
two zeros.

On the other hand, the number of roots of f(x) = 0 is clearly non-increasing
with respect to a > 0: it has two roots for ‘small values’ of a, no root for ‘large
values’ of a, and exactly one root for a certain critical value acrit separating
the two previous regions. This critical value is characterized by the fact that it
possesses a double root xcrit > 0, such that f(xcrit) = f ′(xcrit) = 0, that is:

1 +
acrit

xcrit
= NF e−cx

crit

,
acrit

(xcrit)2
= NF ce−cx

crit

. (A-1)

Eliminating the exponential term in the previous formulas yields the second-

order polynomial equation in
1

xcrit(
1

xcrit

)2

− c

xcrit
− c

acrit
= 0.

Its unique positive root is

1

xcrit
=

c+

√
c2 + 4

c

acrit

2
=
c

2

(
1 +

√
1 +

4

acritc

)
,

that is:

xcrit :=
2

c

1

1 +

√
1 +

4

acritc

.

Introducing this expression back in (A-1), leads to

1 +
acritc

2

(
1 +

√
1 +

4

acritc

)
= NF exp

− 2

1 +
√

1 + 4
acritc

.
Thus φcrit :=

acritc

2
is solution of (11), page 10, such that, at the critical point,

the parameters acrit,NF , c are interrelated.625

For positive values of a smaller than acrit, the equation f(x) = 0 has two
roots, and no root whenever a > acrit. This achieves the proof of Lemma 1.
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