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Abstract A point-interval (Iv, pv) is a pair constituted by an interval Iv of R and
a point pv ∈ Iv. A graph G = (V,E) is a Max-Point-Tolerance (MPT) graph if
each vertex v ∈ V can be mapped to a point-interval in such a way that (u, v) is
an edge of G iff Iu∩ Iv ⊇ {pu, pv}. MPT graphs constitute a superclass of interval
graphs and naturally arise in genetic analysis as a way to represent specific rela-
tionships among DNA fragments extracted from a population of individuals. One
of the most important applications of MPT graphs concerns the search for an asso-
ciation between major human diseases and chromosome regions from patients that
exhibit loss of heterozygosity events. This task can be formulated as a minimum
cost clique cover problem in a MPT graph and gives rise to a NP-hard combi-
natorial optimization problem known in the literature as the Parsimonious Loss
of Heterozygosity Problem (PLOHP). In this article, we investigate ways to speed
up the best known exact solution algorithm for the PLOHP as well as techniques
to enlarge the size of the instances that can be optimally solved. In particular, we
present a Branch&Price algorithm for the PLOHP and we develop a number of
preprocessing techniques and decomposition strategies to dramatically reduce the
size of its instances. Computational experiments show that the proposed approach
is 10-30x faster than previous approaches described in the literature, and suggest
new directions for the development of future exact solution approaches that may
prove of fundamental assistance in practice.
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1 Introduction

Interval graphs (namely, intersection graphs of intervals on a line [3, 13, 15]) con-
stitute an important class of graphs in computer science and discrete mathematics
both for their significance in practical applications [10] and because classical NP-
hard combinatorial optimization problems, such as the maximum clique problem
[15, 16], the weighted independent set problem [14, 16] and the coloring problem
[16, 18], can be solved in polynomial time in this particular class of graphs [13, 15].

In the last three decades, numerous research efforts have been carried out to
extend the properties of interval graphs to more general classes of graphs [2, 9, 10,
17, 18, 19]. In this context, an important generalization is constituted by tolerance
graphs, first introduced in [19, 20]. Specifically, a graph G = (V,E) is a tolerance
graph (namely, a max-tolerance graph [20]) if every vertex v ∈ V can be associated
with both an interval Iv ⊆ R and a tolerance value tv ∈ R in such a way that
(u, v) is an edge of G iff |Iu ∩ Iv| ≥ max{tu, tv}. In other words, G is a tolerance
graph if each pair of intervals can “tolerate” a non-empty intersection (without
forming an edge) as long as the length of this intersection is strictly smaller than
the maximum of the corresponding tolerance values. As for interval graphs, solving
the maximum clique problem on a tolerance graph can be performed in polynomial
time both in the weighted and the unweighted case [22]. In contrast, the recognition
problem has been shown to beNP-complete [22] and little is known concerning the
complexities of other classical combinatorial optimization problems in this class.

Another generalization relevant to this work is represented by a variant of
tolerance graphs, called Max-Point-Tolerance (MPT) graphs, recently introduced
in [5] and characterized in [6]. Specifically, a graph G = (V,E) is a MPT graph if
each vertex v ∈ V can be mapped to a point-interval, i.e., a pair (Iv, pv) constituted
by an interval Iv = (lv, rv) of R and a point pv ∈ Iv (see Figure 1), in such a way
that (u, v) is an edge of G if and only if Iu ∩ Iv = (lu, ru) ∩ (lv, rv) ⊇ {pu, pv}.
In other words, G is a MPT graph if each pair of intervals can “tolerate” a non-
empty intersection (without forming an edge) as long as their distinct points are
not contained in this intersection. As an example, Figure 2 shows the MPT graph
associated to the point-intervals shown in Figure 1.

As for interval graphs, classical combinatorial optimization problems over MPT
graphs can be solved in polynomial time, including the maximum clique problem
[5] and the maximum weight independent set problem [6]. In contrast, the coloring
problem and the minimum cost clique cover problem [16] have been shown to be
NP-hard [6]. The latter problem is particularly relevant to this article due to its
remarkable importance in practical applications. Specifically, MPT graphs natu-
rally arise in genome-wide association studies as a way to represent relationships
of loss of heterozygosity among DNA fragments extracted from a patient cohort
affected by a common genetic disease [5, 21, 21, 28]. In such applications, an in-
terval I represents the maximal boundary on a chromosome region from a patient
that may carry a loss of heterozygosity; the point p ∈ I instead represents a site
in the considered region that shows evidence for a loss of heterozygosity [5, 21].
Catanzaro et al [5] showed that searching across the genomes extracted from the
patient cohort for massive shared loss of heterozygosity events that can be asso-
ciated with a given genetic disease is equivalent to solving a particular version of
the minimum cost clique cover problem stated as follows:
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Fig. 1: An example of point-intervals Fig. 2: The MPT graph induced by the
point-intervals shown in Figure 1.

The Parsimonious Loss of heterozygosity Problem (PLOHP) [5]. Given
the MPT graph G = (V,E) induced by a set I of point-intervals and a cost function
f that associates a positive value to every maximal clique C and every singleton
(clique of cardinality 1) v ∈ V of G, find a cover C∗ of G into singletons and
maximal cliques such that

C∗ = arg min
C⊆C(G)

∑
C∈C

f(C)

where C(G) is the set of all maximal cliques and singletons in G. To simplify the
notation, we define f(v) = f({v}), for all v ∈ V .

The NP-hardness of the PLOHP as well as the need to solve practical instances of
the problem have justified in recent years the development of enumerative search
methods and approximation algorithms such as those described in [5, 21]. In par-
ticular, Halldorsson et al [21] proposed both an exact algorithm and a greedy
constructive heuristic to solve the problem. The exact algorithm is based on a
brute force enumeration of all of the possible clique covers of G and proved to be
unpractical even for small instances of the PLOHP [21]. The constructive heuristic
instead builds a solution to the PLOHP by finding first the maximal cliques of
G and by greedily combining them to obtain a cover of G. As a drawback, the
approximate approach may largely overestimate the loss of heterozygosity events
across the considered genomes and lead to wrong associations [21].

Catanzaro et al [5] investigated possible ways to overcome the performances
of the exact algorithm presented in [21]. In particular, the authors first proved
the NP-hardness of the PLOHP and investigated some fundamental properties
of MPT graphs. Subsequently, the authors proposed an Integer Linear Program-
ming (ILP) formulation and a number of valid inequalities able to optimally solve
instances containing up to 250,000 point-intervals within 5 hours of computing
time. In this article, we investigate ways to improve upon the performances of
the ILP formulation described in Catanzaro et al [5] s well as techniques to solve
instances having size much larger than those solvable via that formulation. To this
end, in Section 3 we revisit the ILP formulation described in Catanzaro et al [5]
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and we develop a new one based on inverse projection [23] and solvable by column
generation approaches and Branch&Price techniques. In particular, we show that
the pricing oracle reduces to finding a maximum node-weighted cliques in a MPT
graph and we develop a polynomial time solution algorithm for this purpose. In
Section 2, we introduce a number of preprocessing and decomposition strategies
to dramatically reduce the size of a given instance of the problem and to divide a
reduced instance into a family of independent subproblems. In Section 4, we mea-
sure the performance of the proposed algorithm on a set of artificial and biological
instances of the PLOHP and we compare them versus the current state of the art
presented in [5, 21]. The results show that proposed algorithm is on average 10-30x
faster than the ILP formulation described in [5] and enable the solution of very
large practical instances of the PLOHP containing over half million point-intervals
within 1 hour computing time.

2 Preprocessing

In this section we develop a number of preprocessing techniques both to reduce
the size of an instance of the PLOHP and to decompose an instance into a family
of independent subproblems having a smaller size than the original one. We will
discuss the computational impact of these techniques in Section 4.

2.1 Removing Vertices

A natural approach to reduce the size of an instance of the PLOHP consists of
removing point-intervals inducing isolated vertices in the MPT graph. In fact, any
feasible solution to the PLOHP is characterized by identifying as singleton any
isolated vertex of the MPT graph. The isolated vertices can be efficiently detected
by inspecting the set I for intervals having no-compatibility between each other.
For example, the point-interval Iv induces an isolated vertex in V if there does not
exists in I a distinct point-interval Iu such that (lu ≤ pv ≤ ru) ∧ (lv ≤ pu ≤ rv).
It is easy to see that the removal of the isolated vertices from an instance of the
PLOHP can be performed in O(|I|(|I| − 1)/2).

It is worth noting that the isolated vertices are not the only vertices that can
be removed from an instance of the PLOHP. For example, given a point-interval
Iv = [(lv, rv), pv] ∈ I, consider the situation in which there exists another interval
Iu = [(lu, ru), pu] ∈ I such that lu = lv, pu = pv, ru = rv. In such a case, we say
that Iu is a cloned interval of Iv. Let ΓIv be the set of cloned intervals of Iv. Then,
it is easy to see that the set of vertices induced by ΓIv can be removed from V as
Iv is representative of the induced equivalence class ΓIv . The identification of the
cloned intervals can be performed in time O(|I|(|I|−1)/2) and can be carried out
together with the removal of the isolated vertices.

2.2 Decomposing a MPT graph into connected components

The particular nature of point-intervals may give rise to MPT graphs with several
connected components. For example, the point-intervals shown in Figure 1 leads to
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Fig. 3: An example of block decomposition of the point-intervals shown in Figure 1.

to a MPT graph with by two connected components (see Figure 2). The potential
existence of connected components in a MPT graph can be exploited both to reduce
the time necessary to identify a maximal clique in G as well as to decompose the
problem into independent subproblems of smaller size. A possible way to quickly
identify connected components in a MPT graph consists of ordering the point-
intervals according to a specific precedence rule. In particular, given two distinct
point-intervals Iu, Iv ∈ I, we say that Iv precedes Iu, in symbols Iv ≺ Iu, if one
of the following cases is verified:

1. lv < lu;
2. if lv = lu then pv < pu;
3. if lv = lu and pv = pu then rv ≤ ru.

For example, Figure 3 shows the result of the application of the precedence rule on
the point-intervals shown in Figure 1. It is easy to realize that, if the point-intervals
have been sorted according to the above precedence rule, a connected component
arises in G whenever there exist two Iu = {(lu, ru), pu} and Iv = {(lv, rv), pv}
such that pv ≤ lu.

The set of connected components can be identified either by an exact approach
such as that described in [8] or by heuristics. As the exact approach is time consum-
ing for very large graphs and not particularly beneficial in terms of identification
of connected components, we opted for an heuristic approach able to exploit the
particular structure of a MPT graph. In particular, the heuristic provided in Al-
gorithm 1 runs in O(|I|) and exploits the sufficient condition pi < li+1 to identify
a set of nodes not connected with a given node. The algorithm takes as input the

Algorithm 1 — Connected Components Finder

Input: sorted I
Output: K: set of connected components of G
1: i = 0, K = ∅, K = ∅
2: while i < |I| do
3: if pi > li+1 then
4: K = K ∪ {Ii}
5: else
6: K = K ∪ {K}, K = ∅
7: return K
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set I sorted according to the above precedence rule. Subsequently, the algorithm
visits each point-interval in I and constructs a connected component B of G by
collecting all of the point-intervals Ii such that Ii does not satisfy the condition
pi ≤ li+1. The decomposition of G into connected components enables running in
parallel several Branch&Price algorithms; this approach may vastly shorten the
solution time of the overall solution algorithm for the PLOHP.

3 A Branch&Price algorithm for the PLOHP

In this section we describe an exact solution algorithm for the PLOHP based on
Branch&Price. Throughout the section we assume, without loss of generality, that
the cost function f in the PLOHP is a size-defined submodular set function, i.e., it
is such that f(S) = ψ(|S|), for any subset S ⊆ V and for some ψ : [0 . . . |V |]→ R+

0 .
This characterization of f is commonly assumed in loss of heterozygosity studies
[5] and allows to solve the PLOHP in polynomial time when the MPT graph is
reducible to an interval-graph [11].

3.1 An integer linear programming formulation for the PLOHP

Consider a set I of point-intervals and let G = (V,E) be the MPT graph induced
by I. Then, the following proposition holds [5]:

Proposition. A MPT graph contains at most |I|(|I| − 1)/2 maximal cliques.

As the number of maximal cliques in a MPT graph is polynomially bounded and a
polynomial time algorithm to determine all of them exists (see [5]), a polynomial
sized formulation for the PLOHP can be obtained as follows. Consider a vertex
v ∈ V and let Cv = {C ∈ C(G) : v ∈ C}. Let xv be a decision variable equal to
1 if vertex v ∈ V forms a singleton in a solution to the problem and 0 otherwise.
Similarly, let yC be a decision variable equal to 1 if the maximal clique C ∈ C(G),
with |C| ≥ 2, is selected in a solution to the problem and 0 otherwise. Then, a
valid ILP formulation for the PLHOP is:

Catanzaro-Labbé-Halldorsson’ ILP Formulation (CLHF).

zBIP = min
∑

C∈C(G)
|C|≥2

f(C)yC +
∑
v∈V

f(v)xv (1a)

s.t.
∑

C∈Cv(G)
|C|≥2

yC + xv ≥ 1 ∀ v ∈ V (1b)

xv ∈ {0, 1} ∀ v ∈ V (1c)

yC ∈ {0, 1} ∀ C ∈ C(G), |C| ≥ 2. (1d)

The objective function (1a) minimizes the cost of finding a clique cover of G,
and constraints (1b) impose that, for each vertex v ∈ V , the solution contains
either a clique or a singleton in C(G) that covers v. Note that, as the overall num-
ber of maximal cliques in a MPT graph is polynomially bounded, the CLHF is
polynomial-sized. However, when the instances of the PLOHP are very large (e.g.,
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they include more than 250,000 point-intervals), the use of the CLHF may become
unpractical due to the large number of y variables. A possible approach to over-
come such a limitation consists of reformulating the CLHF by inverse projection
[23]. To this end, denote Ck(G) as the subset of C(G) that includes k ≤ |C(G)|
maximal cliques in G and set Ckv (G) = {C ∈ Ck(G) : v ∈ C}. Now, consider the fol-
lowing Restricted Master Problem (RMP) associated with the linear programming
relaxation of the CLHF:

the CLHF - The Restricted Master Problem (RMP).

zRMP = min
∑

C∈Ck(G)
|C|≥2

f(C)yC +
∑
v∈V

f(v)xv (2a)

s.t.
∑

C∈Ckv (G)
|C|≥2

yC + xv ≥ 1 ∀ v ∈ V (2b)

xv ≥ 0 ∀ v ∈ V (2c)

yC ≥ 0 ∀ C ∈ Ck(G), |C| ≥ 2. (2d)

Note that in the RMP constraints xv ≤ 1, for all v ∈ V , and yC ≤ 1, for all
C ∈ Ck(G), |C| ≥ 2, have been omitted as they are redundant. The RMP can
be solved by standard linear programming techniques. To this end, denote µv
as the dual variables associated with constraints (2b). The dual of the RMP is
characterized by the following dual constraints:

µv ≤ f(v) ∀ v ∈ V (3a)∑
v∈V :v∈C

µv ≤ f(C) ∀C ∈ Ck(G) : |C| ≥ 2. (3b)

A variable with negative reduced cost to be added to the RMP corresponds to a
dual constraint violated by the current optimal solution. Since all of the xv vari-
ables are present in the RMP, constraints (3a) will never be violated. In contrast,
constraints (3b) are violated if

∃ Ĉ ∈ C(G) : |Ĉ| ≥ 2 and
∑

v∈V :v∈Ĉ

µv > f(Ĉ). (4)

Checking whether (4) holds in the current optimal solution to the RMP involves
solving a maximum node-weighted clique problem in G with weights {µ}. This task
can be performed e.g., by means of Algorithm 3 that is described in Section 3.2.
Algorithm 2 implements the column generation technique by using Algorithm 3
as pricing oracle. Specifically, Algorithm 2 takes G as an input and iterates the
following steps: line 2 solves the RMP; line 3 gets the dual values {µ} and associates
a weight µv to each vertex v ∈ V ; line 5 calls the oracle and searches in C(G) for
a maximum node-weighted clique Ĉ satisfying (4); if such a clique exists, line 7
adds variable yĈ (and its corresponding column) to the RMP and iterates lines
1-8; if, there are no violated constraints (2b), the solution to the RMP is provably
optimal and Algorithm 2 returns the optimal value to the RMP. We observed that
adding many cliques C having an overall weight larger than f(C) together with
the most violated node-weighted clique at each iteration of the pricing oracle may
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Algorithm 2 — Column Generation

Input: G
Output: Optimal solution to the RMP
1: repeat
2: Solve the RMP
3: Get the dual vector µ associated to (2b)
4: Set weight µv on each vertex v ∈ V
5: Ĉ =PricingOracle(G,µ)

6: if Ĉ 6= ∅ then
7: Add yĈ and its column to the RMP

8: until Ĉ = ∅
9: return z∗RMP

decrease the running time of Algorithm 2. Section 4 explores, via computational
experiments, the problem of deciding how many cliques should be added in a
generic instance of the PLOPH.

3.2 Finding a maximum node-weighted clique in a MPT graph

A critical step in Algorithm 2 consists of finding a maximum node-weighted clique
in G. Although this problem is NP-hard for general graphs, it can be solved
in polynomial time when the graph is MPT and the objective function is size-
defined submodular [4]. In fact, it is worth noting that, as G is a MPT, any subset
of vertices that forms a maximal clique C in G is characterized by having two
vertices whose corresponding points, say pl and pr, are the furthest to the left and
to the right, respectively, in the set of point-intervals induced by C. Each vertex v
in the clique is connected to these two vertices and its corresponding point-interval
is such that pv ∈ [pl, pr] ⊆ [lv, rv]. Hence, a clique can be defined by the leftmost
and rightmost vertices, respectively. Then, a possible approach to enumerate the
polynomial bounded number of cliques in G consists of picking any pair of adjacent
vertices in G (i.e., distinct point-intervals in I, say (Iu, pu) and (Iv, pv), such that
Iu ∩ Iv = (lu, ru) ∩ (lv, rv) ⊇ {pu, pv}) and searching for the largest set of points
that fall inside [pi = min{pu, pv}, pj = max{pu, pv}], i.e., the largest set of point-
intervals Ik that satisfy condition (pi ≤ pk ≤ pj)∧(lk < pi)∧(rk > pj). Algorithm
3 outlines the pseudo code necessary to perform the overall task. We note that the
complexity of Algorithm 3 is O(|I|3).

3.3 Initializing the columns of the RMP

In order to initialize the RMP we first search for a subset Ck(G) ⊂ C(G) covering all
of the vertices in G and such that any clique in Ck(G) has cardinality greater than
or equal to 2. A possible approach to carry out this task is outlined in Algorithm 4.
In particular, the algorithm takes it as input the set I in the non-decreasing order
described in Section 2.2 to rapidly identify the maximal cliques. Subsequently it
iterates the following procedure: for each point-interval Ik ∈ I (i) find a maximal
clique C that cover (the vertex induced by) Ik and (ii) remove from I the point-
intervals (whose induced vertices are) in C. The procedure stops when I = ∅. The
complexity of Algorithm 4 is O(|I|3).
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Algorithm 3 — Pricing Oracle

Input: G,µ
Output: C?: a maximum node-weighted clique in G
1: set C = ∅, max = 0, get I from G
2: for all Ii, Ij ∈ I : i < j and adjacent(Ii, Ij) do
3: set cost = 0
4: for all Ik ∈ I do
5: if (pi ≤ pk ≤ pj) ∧ (lk < pi) ∧ (rk > pj) then
6: C = C ∪ {pk}
7: for all v ∈ V : v ∈ C do
8: cost = (cost+ µv)

9: if cost > max then
10: max = cost
11: C? = C
12: return C?

3.4 Branching rules

In order to find the optimal solution to the CLHF, we embody the previously
described column generation approach in a Branch-&-Bound algorithm, in which
the branching is performed on both x and y variables. Specifically, concerning the
x variables, the algorithm branches according to the most fractional variable rule
(see [26]). The same rule also applies to the y variables with the exception that
a y variable that has been set to 0 in a previous node of the search tree cannot
be set to 1 in one of its descendants. To ensure the application of this rule we
perform the following steps: (1) we store all the maximal clique generated in each
node; (2) during the column generation process, we filter, from among all of the
maximal cliques, the ones associated to the y variables that have been set to 0 in
the parent node; (3) we propagate the filtered set to all the descendant nodes.

4 Computational experiments

In this section we analyze the performance of the Branch&Price algorithm to solve
instances of the parsimonious loss of heterozygosity problem. Our experiments

Algorithm 4 — Ck(G)-Generator

Input: Set of intervals I
Output: Ck(G)
1: C = ∅, Q = I
2: for all Ii, Ij ∈ I : i < j and adjacent(Ii, Ij) and Q 6= ∅ do
3: C = ∅
4: for all Ik ∈ I do
5: if compatible(Ii, Ij , Ik) then
6: Q = Q \ Ik
7: C = C ∪ Ik
8: C = C ∪ C
9: return C

10: function compatible(Iu, Iv , Iz)
11: return (pu ≤ pz ≤ pv) ∧ (lz < pu) ∧ (rz > pv)



10 L. Porretta, et al.

Nodes Edges Cliques

Maximun 66 670 2 060 044 865 52 522
Minimum 35 725 742 125 353 16 915
Average 57 581.35 1 335 575 876.85 36 824.55
Standard Deviation 8 056.94 313 44 967.49 8 011.84

Table 1: Summary of number of nodes, edges and cliques contained in the learning
set of instances of the PLOHP used to calibrate the pricing oracle.

were motivated by a number of goals, namely: to compare the performance of the
Branch&Price algorithm with the ones obtained by the CLHF [5], which currently
is the best exact algorithm for the PLOHP; to evaluate the benefits obtained by
using the presolving and block decomposition strategies previously described; and
finally, to allow the analysis of larger data sets with respect to the ones currently
analyzed. As in Catanzaro et al [5] and Halldorsson et al [21], we emphasize that
our experiments simply aim to evaluate the computational performance of the
exact algorithms. We neither attempt to study the efficiency of the Branch&Price
algorithm to predict LOH events across the genomes of a population of individuals
nor to compare its accuracy versus LOH predictors that do not use the parsimony
criterion. This analysis has been performed by [7, 21, 27] and [25] and we refer the
interested reader to these articles for further information.

4.1 Implementation

We implemented the CLHF in ANSI C++ by using FICO Xpress 7.6, Optimizer
libraries v26.01.04 (64-bit Hyper capacity). This implementation complies with the
methodology described in Catanzaro et al [5]. We implemented the Branch&Price
algorithm in ANSI C++ by using SCIP Optimization Suite 3.1.0 [1] to handle
the column generation and the Branch&Price routines. Moreover, we used FICO
Xpress Optimizer as linear programming solver. The experiments have been per-
formed on an Intel Core i7-4930K CPU, 3.40GHz, equipped with 64 GByte RAM
and operating system Ubuntu release 12.10 (kernel Linux 3.5.0-41-generic). Dur-
ing the runtime of the CLHF we activated Xpress automatic cuts, Xpress pre-
solving strategy, and Xpress primal heuristic to generate the first upper bound
for the PLOPH. Finally, similar to Halldórsson et al. [21] and Catanzaro et al.
[5], we set the maximum runtime for the Formulations to 5 hours. The executable
codes used in the experiments can be downloaded together with the instances at
http://homepages.ulb.ac.be/~lporrett/PLOHP/Code.tar.bz2.

4.2 Calibrating the pricing oracle

Determining the number of variables to be added in the RMP at each iteration is
crucial for the performances of the proposed Branch&Price. To perform this task,
we generated a learning set of instances of the PLOHP constituted by 100 random
instances. We generated such a set by using the same approach and parameters dis-
cussed in [21]. Each random instance has between 35725 and 66670 point-intervals

http://homepages.ulb.ac.be/~lporrett/PLOHP/Code.tar.bz2
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Fig. 4: BoxPlot of the solution time taken by the Branch&Price algorithm to
exactly solve the learning set of instances of the PLOHP when considering different
percentages of violated cliques.

and between 16915 and 52522 cliques on the real segment [1, 1000]. Table 1 reports
on the main characteristics of this set. We introduced a parametrized number of
violated cliques to be added by the pricing oracle at runtime. Such a number is a
fraction of the overall number of maximal cliques contained in a random instance
and we set it to be equal to one of the following seven different percentages: 1%,
3%, 5%, 7%, 10%, 15% and 20%. Figure 4 shows the box-and-whisker plot his-
togram of the solution time taken by the Branch&Price algorithm to exactly solve
the learning set of instances of the PLOHP when considering different percent-
ages of violated cliques. A box shows the range between the 25% and the 75%
quantile of the data. The median of the data is indicate by a bar. The whiskers
extend to the most extreme data point which is no more than 1.5 times the in-
terquartile range from the box. The figure shows that the median of the solution
time taken by the Branch&Price algorithm to exactly solve the learning set of
instances of the PLOHP is minimum when adding in the RMP no more than 1%
of violated cliques. To exclude the presence of statistical equivalence between the

1% 3% 5% 7% 10% 15% 20%

1% — 1.97784× 10−18 1.97784× 10−18 1.97784× 10−18 1.97796× 10−18 1.97796× 10−18 1.97796× 10−18

3% 1 — 2.95093× 10−17 1.97796× 10−18 1.97796× 10−18 1.97784× 10−18 1.97796× 10−18

5% 1 1 — 1.79421× 10−17 2.03865× 10−18 1.97796× 10−17 1.97784× 10−18

7% 1 1 1 — 6.37311× 10−18 1.97784× 10−18 1.97796× 10−18

10% 1 1 1 1 — 4.83732× 10−17 2.16549× 10−18

15% 1 1 1 1 1 — 2.4767× 10−18

20% 1 1 1 1 1 1 —

Table 2: Wilcoxon signed-rank test on solution time for each pair of percentages
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Reference Overall point Edges Connected Cloned point Singletons
Intervals Components Intervals

gens-1α [1,1 500] 84 435 49 690 310 29 59 666 3
gens-2α [1,1 500] 84 436 49 681 938 29 59 659 0
gens-3α [1,1 500] 84 427 49 669 238 30 59 669 0
gens-4α [1,1 500] 84 440 49 660 650 29 59 656 5
gens-5α [1,1 500] 86 467 50 023 009 37 58 052 5

gens-1β [1,2 000] 245 205 289 645 236 37 191 817 4
gens-2β [1,2 000] 245 198 289 599 050 39 191 832 4
gens-3β [1,2 000] 245 177 289 589 450 40 191 907 3
gens-4β [1,2 000] 245 197 289 527 061 38 191 904 7
gens-5β [1,2 000] 250 539 291 137 895 33 187 199 4

gens-1γ [1,3 575] 645 572 1 137 465 967 61 526 689 13
gens-2γ [1,3 575] 645 552 1 137 474 258 65 526 688 9
gens-3γ [1,3 575] 645 510 1 137 451 358 62 526 657 11
gens-4γ [1,3 575] 645 543 1 137 258 659 62 526 703 13
gens-5γ [1,3 575] 659 885 1 143 798 666 40 514 953 2

Table 3: Statistics of gens-xα , gens-xβ , gens-xγ

solution times when considering different percentages of violated cliques, we run a
Wilcoxon signed-rank test with Holmes correction for multiple tests [12]. Table 2
reports on the p-values so obtained. Specifically, the presence of a value smaller
then 0.05 in a cell means that the sample in the row is statistically significant
smaller than the sample in the column. In contrast, the presence of a value bigger
than 0.05 in a cell means that the sample in the row is statistically significant
bigger than the sample in the column. In particular, Table 2 shows that adding
the 1% of the violated cliques always provide a smaller solution time compared to
the others approaches. For this reason, we decided to use this setup in applying
the Branch&Price algorithm to the remaining experiments.

4.3 Benchmark instances

In order to compare the performance of the Branch&Price algorithm with the ones
obtained by the CLHF [5], we considered the instances of the PLOHP described
in [5] and [21]. These instances, hereafter denoted as “gens-1”, “gens-2”, “gens-3”,
“gens-4” and “gens-5”, are characterized by having 645572, 645552, 645510, 645543
and 659885 point-intervals on the real segment [1, 3575], respectively, each having
minimum length 1 and maximum length 9. Catanzaro et al observed that the ILP
formulation presented in [5] proved unable to solve any of these instances within 1
hour of computing time. Hence, the authors also considered smaller instances of the
PLOHP obtained from the given ones by extracting from each “gens-x”, x ∈ {1, 5},
the point-intervals contained in the real segments α = [1, 1500], β = [1, 2000] and
γ = [1, 3575], respectively. The authors obtained this way 15 instances of the
PLOHP, that are hereafter grouped into three datasets denoted as “gens-xα”,
“gens-xβ” and “gens-xγ”, x ∈ {1, 5}, respectively. Table 3 shows the main char-
acteristics of the 15 instances. In particular, the table is composed by three main
sections, each one corresponding to the datasets “gens-xα”, “gens-xβ” and “gens-
xγ”, x ∈ {1, 5}, previously described. The first three columns of Table 3 report on
the size of the reference segment, the overall number of point-intervals and edges
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Set of Point-interval Max. number of Min. number of Average number of
Instances Length Point-intervals Point-intervals Point-intervals

Sim-1 2 23963 23777 23851 ±52.79
Sim-2 5 24012 23823 23950.5±58.03
Sim-4 7 23615 23454 23553.5±50.67
Sim-3 9 23777 23803 23828 ±42.55
Sim-5 random in [1,9] 29020 28699 28904 ±94.11

Table 4: Parameter sets used to generate random instances of the PLOHP.

contained in a given instance. The last three columns report on the number of
Connected components, cloned intervals and singletons contained in a given in-
stance. Table 3 shows that the instances “gens-xα”, x ∈ {1, 5} are characterized by
a number of connected components ranging from 29 to 37, a number of singletons
ranging from 0 to 5 and over 70% of cloned point-intervals. The instances “gens-
xβ”, x ∈ {1, 5} are characterized by a number of connected components ranging
from 33 to 40, a number of singletons ranging from 3 to 7 and over 70% of cloned
point-intervals. Finally, the instances “gens-xγ”, x ∈ {1, 5} are characterized by a
number of connected components ranging from 40 to 61, a number of singletons
ranging from 2 to 13 and over 80% of cloned point-intervals.

We also considered a set of 5 artificial datasets of the PLOHP, hereafter de-
noted as “Sim-1”, “Sim-2”, “Sim-3”, “Sim-4” and “Sim-5”, each containing 10
random instances of the problem and mainly differing from one another both by
the length and the number of the point-intervals contained in each of the cor-
responding instances. We generated the instances in each dataset by first fix-
ing the real segment [1, 6000] as a reference and by generating, by means of
the Mersenne Twister library [24], a random number of triplets (lv, pv, rv) such
that 1 ≤ lv ≤ pv ≤ rv ≤ 6000. Table 4 summarizes the characteristics of
the considered datasets. Finally, in order to evaluate the performance of the
Branch&Price algorithm also on biological instances of the PLOHP, we con-
sidered a biological instance provided by deCode Genetics and hereafter called
“Bio22”. This instance is constituted by 20022 point-intervals on the real segment
[1, 6000], each having minimum length 2 and maximum length 6000. The point-
intervals in “Bio22” refers to genetic fragments from chromosome 22 extracted
from a population of 18360 individuals and consists of 6000 single nucleotide poly-
morphisms. All of the instances used in our experiments can be downloaded at
http://homepages.ulb.ac.be/~lporrett/PLOHP/Datasets.tar.bz2.

4.4 Computational performances

Table 5 shows the performances of the CLHF and the Branch&Price in solving the
instances derived from the 5 real instances described in [21] with and without the
presolving strategies. In particular, the table is constituted by three main sections,
each one corresponding to the datasets “gens-xα”, “gens-xβ” and “gens-xγ”, x ∈
{1, 5}, previously described. Moreover, the columns are divided in four sections,
each of them showing the solution time (expressed in seconds) and the number
of cliques needed to optimally solve a given instance of the PLOHP. Specifically,

http://homepages.ulb.ac.be/~lporrett/PLOHP/Datasets.tar.bz2
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CLHF B&P CLHF + Preprocessing B&P + Preprocessing
Time (sec.) Cliques Time (sec.) Cliques Time (sec.) Cliques (Avg.) Time (sec.) Cliques (Avg.)

gens-1α 1 062.46 63660 316.99 1 845 70.83 2 490.00± 3 684.44 63.06 587.59 ±1 410.13
gens-2α 1 145.84 63784 302.88 1 859 68.14 2 497.38± 3 686.79 58.91 256.62 ± 563.91
gens-3α 1 090.85 63303 312.52 1 845 63.42 2 288.30± 2 491.55 56.54 166.97 ± 166.97
gens-4α 1 035.16 63507 301.02 1 871 67.67 2 421.41± 2 719.01 62.13 551.07 ± 877.04
gens-5α 1 198.22 69266 378.390 2 852 74.19 2 055.49± 2 118.55 68.93 551.07 ± 193.30

gens-1β 9 039.54 148 862 2 455.14 3 532 350.39 5 095.03± 9 235.71 314.69 1 267.97±4 578.73
gens-2β 8 965.42 148 505 2 743.00 3 521 313.93 4 843.21± 7 851.87 267.17 534.77 ±1 338.22
gens-3β 8 901.90 148 042 2 562.65 3 510 292.18 4 691.43± 7 651.59 258.19 305.28 ± 756.50
gens-4β 8 925.68 147 249 2 630.90 3 508 328.28 4 909.92± 7 926.41 279.21 797.00 ±2 868.75
gens-5β 9 488.87 138 627 3 805.31 5 739 500.18 5 033.58± 7 523.26 396.62 906.76 ±2 107.23

gens-1γ >5h — >5h — 2 005.03 7 219.23±15 025.36 1 800.91 752.97 ±2 334.55
gens-2γ >5h — >5h — 1 901.62 6 939.11±14 928.34 1 708.04 525.54 ±1 390.90
gens-3γ >5h — >5h — 1 973.48 7 227.92±15 273.65 1 757.70 604.76 ±1 881.98
gens-4γ >5h — >5h — 1 978.90 7 065.68±15 232.85 1 754.85 252.03 ± 579.87
gens-5γ >5h — >5h — 3 292.84 9 311.35±11 355.82 2 859.05 437.95 ± 635.70

Table 5: Computational performances comparison of the CLHF and the
Branch&Price algorithm with and without presolving strategies

the first pair of columns is related to the execution of the CLHF. The second
pair of columns is related to the execution of the Branch&Price. The third pair of
columns is related to the execution of the CLHF using the presolving strategies.
Finally, the fourth pair of columns are related to the execution of the Branch&Price
using the presolving strategies. Table 5 shows the benefits of using the presolving
strategies. Specifically, we have observed the removal of at least 70% of cloned
intervals (hence xv variables in the CLHF) in each of the considered instances.
Moreover, the detection of the connected components in the considered instances
enabled the decomposition of the corresponding induced MPT graphs into at least
29 connected components (i.e., independent subproblems); the combination of the
two strategies allowed a speed up of about 18x of the solution times taken by
the CLHF. Table 5 also shows that, independently of the presence (or absence) of
the presolving strategies, the Branch&Price is always faster than the CLHF. This
fact alone justifies and shows the importance of using column generation when
dealing with very large instances of the PLOHP. In this context, it is worth noting
that, although the Branch&Price is faster than the CLHF, it also proves unable
to solve the instances “gens-xγ”, x ∈ {1, 5}, within the considered time limit. This
fact is mainly due to the pricing oracle, which proves particularly time-consuming
in gens-xγ .

4.5 Computational performances on larger datasets of the PLOHP

Table 6 shows the performance of the CLHF and the Branch&Price in solving
the “Sim” instances when using the presolving strategies. Both the CLHF and the
Branch&Price algorithm without presolving strategies proved unable to solve any
instance in this set. The table reports on the mean and standard deviation of (i)
the solution time (expressed in seconds) necessary to solve a random instance of
the PLOHP; (ii) the gap (expressed in percentage), i.e., the difference between
the optimal value to a given instance of the PLOHP in a specific dataset and the
objective function value of the linear programming relaxation at the root node
of the respective search tree, divided by the optimal value; and (iii) the nodes
explored in the search tree. In general, Table 6 shows that the CLHF and the
Branch&Price, combined with presolving strategies, is able to solve each simulated
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instance in about half an hour, except for the parameter set “Sim-5” that required
on average 26 minutes for the Branch&Price while the CLHF exceeds the 64GB
of memory available for the experiments. The table also shows that the solution
times necessary to solve the artificial instances of the PLOHP are longer than
the corresponding ones necessary to solve any other instance considered in this
article. This fact is possibly due to the larger number of point-intervals present
in the artificial instances which in turn increases the number of cliques in the
corresponding MPT graphs.

Table 7 reports on the minimum, maximum and average number of connected
components, intervals, singletons, edges and cloned nodes in the considered sim-
ulated instances. Table 8 reports on the minimum, maximum and average time
(expressed in seconds) to filter both the singletons and the cloned intervals as
well as to identify the connected components. Table 9 shows the performance of
the Branch&Price in solving “Bio22” instance using the presolving strategies. The
table reports on (i) the solution time (expressed in seconds) necessary to solve
the biological instance of the PLOHP; (ii) the gap (expressed in percentage); (iii)
the nodes explored in the search tree; and (iv) the overall number of connected
components, intervals, cloned intervals and singletons, respectively.

Table 9 shows that the proposed Branch&Price, combined with presolving
strategies, is able to solve “Bio22” in 664.40 seconds. This instance is characterized
by having a number of point-intervals smaller than those relative to the instances
considered in Table 3 as well as by a smaller number of cloned ones. Filtering the
cloned point-intervals in “Bio22” reduces the number of xv variables by the 20%
as opposed to 70% in Table 5. However, the relative higher number of connected
components in “Bio22” allows to decompose the problem into a bigger family of
small independent subproblems; this fact justifies the remarkable speed up in terms
of solution time.

5 Conclusion

The Parsimonious Loss of heterozygosity Problem (PLOHP) is a NP-hard combi-
natorial optimization problem consisting of solving the minimum cost clique cover
problem on a MPT graph. The optimal solutions to the PLOHP have a remarkable
importance in practice, as they enable the association of major human diseases
with chromosome regions from patients that exhibit loss of heterozygosity events.
As genome-wide association studies usually involve the analysis of massive amount

CLHF Branch&Price
Instance Time Gap Nodes Time Gap Nodes

(sec.) (%) (sec.) (%)

Sim-1 1 217.96±41.14 0.017±0.18 1.012±0.20 577.77±18.24 0.003±0.13 1.003±0.12
Sim-2 1 200.47±39.02 0.009±0.17 1.010±0.18 552.44±40.46 0.004±0.12 1.004±0.11
Sim-3 1 200.24±48.61 0.007±0.13 1.010±0.19 575.27±32.15 0.001±0.05 1.001±0.06
Sim-4 1 162.67±94.31 0.007±0.14 1.012±0.26 509.01±84.75 0.003±0.09 1.003±0.08
Sim-5 OOM±OOM OOM±OOM OOM±OOM 969.56±424.29 0.002±0.09 1.001±0.06

Table 6: Computational performances comparison of the CLHF+Preprocessing
and the Branch&Price algorithm + Preprocessing on artificial instances of the
PLOHP.
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Sim1 Sim2
Min Max Average Min Max Average

# Conn. Comp. 293 311 298 291 307 295
# Intervals 20 562 20 763 20 689 205 270 20 693 20 587
# Singletons 18 32 24 16 30 26
# Edges 2 824 349 2 922 094 2 881 541 281 133 2 889 021 2 854 612
# Cloned Inter. 3 218 3 243 3 237 3 223 3 255 3 241

Sim3 Sim4
Min Max Average Min Max Average

# Conn. Comp. 288 303 298 279 305 293
# Intervals 20 539 20 670 20 567 20 187 20 359 20 312
# Singletons 16 30 23 18 31 26
# Edges 2 810 257 2 862 659 2 833 031 2 728 854 2 767 026 2 744 176
# Cloned Inter. 3 222 3 254 3 242 3 221 3 241 3 233

Sim5
Min Max Average

# Conn. Comp. 259 291 28
# Intervals 25 328 25 649 25 525
# Singletons 5 16 11
# Edges 4 688 361 4 810 792 4 760 66
# Cloned Inter. 3 358 3 391 3 371

Table 7: Statistics of simulated instances Sim1, Sim2, Sim3, Sim4, Sim5.

Sim1 Sim2
Min Max Average Min Max Average

Singleton 0.43 0.52 0.44 0.43 0.52 0.43
Cloned Inter. 0.42 0.43 0.42 0.42 0.50 0.42
Conn. Comp. 6.2·10−5 1.3·10−5 6.2·10−5 6.1·10−5 1.7·10−5 6.2·10−5

Sim3 Sim4
Min Max Average Min Max Average

Singleton 0.43 0.52 0.43 0.41 0.42 0.41
Cloned Inter. 0.42 0.50 0.42 0.40 0.41 0.42
Conn. Comp. 6.1·10−5 6.2·10−5 6.2·10−5 6.0·10−5 1.3·10−5 6.1·10−5

Sim5
Min Max Average

Singleton 0.73 0.78 0.74
Cloned Inter. 0.65 0.66 0.65
Conn. Comp. 7.7·10−5 7.9·10−5 7.8·10−5

Table 8: The minimum, the maximum and the average time (expressed in seconds)
both to filter the singletons and the cloned intervals, and to identify the connected
components in Sim1, Sim2, Sim3, Sim4, Sim5.

of data, practical instances of the PLOHP may have very large sizes. This fact pre-
cludes the use of exact solution approaches to the PLOHP such as those described
in [5, 21]. In this article, we have investigated ways (i) to overcome this limit, (ii)
to speed up the solution time of the best known exact solution algorithm for the
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PLOHP, and (iii) to enlarge the size of the instances that can be optimally solved
within the same time limit. We developed a number of preprocessing strategies able
to both dramatically reduce the size of the instances analyzed and decompose the
reduced instances into a collection of small independent subproblems. These strate-
gies allowed to speed up of about 8 times the solution times of the best known
exact solution algorithm for the PLOHP as well as enabled the resolution, within
the same time limit, of instances previously too large to be tackled. Moreover, we
combined such preprocessing strategies with a Branch&Price algorithm based on
column generation techniques able to exploit the combinatorial properties of the
MPT graphs. The overall performances of the proposed algorithm proved to be
up to 30 times faster than previous approaches described in the literature; such
performances could be further enhanced, by parallelizing the way in which the
Branch&Price algorithm handle the collection of small independent subproblems
provided by the preprocessing strategies. This result helps to illustrate the power
of ILP approaches to tackle problems arising from genome-wide association studies
and characterized by complex sets of constraints. Hopefully, future research efforts
will provide new insights on the combinatorics of MPT graphs and will enable the
analysis of even larger genomic fragments.
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