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Abstract. In this article we study the security of the authenticated encryption algo-
rithm Ketje against divide-and-conquer attacks. Ketje is a third-round candidate
in the ongoing CAESAR competition, which shares most of its design principles with
the SHA-3 hash function. Several versions of Ketje have been submitted, with
different sizes for its internal state. We describe several state-recovery attacks on
the smaller variant, called Ketje Jr. We show that if one increases the amount
of keystream output after each round from 16 bits to 40 bits, Ketje Jr becomes
vulnerable to divide-and-conquer attacks with time complexities 271.5 for the original
version and 282.3 for the current tweaked version, both with a key of 96 bits. We
also propose a similar attack when considering rates of 32 bits for the non-tweaked
version. Our findings do not threaten the security of Ketje, but should be taken as
a warning against potential future modifications that would aim at increasing the
performance of the algorithm.
Keywords: Ketje · Authenticated Encryption · cryptanalysis · divide-and-conquer ·
nonlinear sieving

1 Introduction
Authenticated encryption algorithms aim at providing both integrity and confidentiality
with only one cryptographic primitive. For example, AES-GCM is widely used but is often
considered not strong enough. Indeed, when too long messages are encrypted under the
same key, or if an initialization value is reused, its security collapses and the integrity key
leaks. These features impose heavy conditions on the use of AES-GCM.
Hence the CAESAR competition was launched in 2014. The purpose of this competition
is to provide a portfolio of robust algorithms with better performances for different
environments. These algorithms aim at providing confidentiality and integrity to a message,
along with integrity of the so-called (unencrypted) associated data. Such mechanisms are
called Authenticated Encryption with Associated Data (AEAD) algorithms.

Ketje [BDP+df] is a family of Authenticated Encryption algorithms that was submitted
to this competition, and that is one of the 15 candidates that were selected for its (currently
ongoing) third round. It was designed by Bertoni, Daemen, Peeters, Van Assche and Van
Keer and reuses some of the internal components of Keccak [BDPA13], the winner of
the SHA-3 competition. Ketje was initially submitted to the competition as a set of
two lightweight AEAD, denoted Ketje Jr and Ketje Sr [BDP+df]. These algorithms
rely on a version of the internal permutation of Keccak, used in a specific mode of
operation called the MonkeyWrap construction [BDPA12], which is derived from the
sponge construction [BDPA08]. Ketje Jr and Ketje Sr act on internal states of
respective sizes 200 and 400 bits. At the beginning of the third round of the CAESAR
competition, the designers proposed a new version of Ketje [BDP+df]. This new version
includes two new variants called Ketje Minor and Ketje Major, with larger internal
states of sizes 800 bits and 1600 bits, as well as one modification of previous variants.
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The amount of publicly available security analysis of an algorithm is known as an
important selection criterion in cryptographic competitions. Therefore, the designers of
Ketje are organizing the Ketje cryptanalysis contest. In particular, they show interest
in State-Recovery attacks on weakened versions of Ketje, including increases in the rate
of the MonkeyWrap construction.

Our contributions. In this article, we focus on the smaller variant Ketje Jr, and
denote by v1 and v2, the initial and tweaked version of the algorithm. We aim at recovering
the internal state of the algorithm, by applying a divide-and-conquer strategy. We target
modified versions of Ketje Jr with an increased rate. The security claimed by the authors
for Ketje Jr is determined by min(96, k) for a key of size k.

The MonkeyWrap construction that is used by Ketje works as follows. First, the key
and initialization vector are loaded in a 200 bits internal state. Then, an initialization
step is performed. After this step, the associated data is processed, and then the plaintext.
Finally, the tag is extracted. Our attacks focus on the message processing phase, which
informally works as follows. The message is divided into r-bit blocks, where r is called the
encryption rate. At each step, r bits of keystream are extracted from the state, x-ored
to a message block to obtain a ciphertext block, which is loaded in the internal state,
then an update of the state is performed by the application of a variant of the Keccak
permutation.

In this phase, keystream bits are output after each permutation round. Trying to
determine the security margin offered by Ketje by studying round-reduced variants is
therefore pointless. Instead, we try to evaluate this security margin by targeting variants
of Ketje Jr with an increased rate, which can be viewed as the main security parameter
during the message processing phase.

We aim at recovering the internal state of Ketje Jr from several consecutive r-bit
output blocks. For Ketje Jr, the internal state contains 200 bits. Any sequence of n
consecutive r-bit output blocks can then be generated by 2200−nr values of the internal
state. As long as nr ≤ 200, we cannot get a unique candidate for the internal state during
encryption. Instead, we aim at getting 2200−nr candidates, among which the effective value
can be searched exhaustively if more output blocks are available.

In this paper we describe several attacks, that all consist in applying a divide-and-
conquer strategy in a known plaintext scenario. Knowing 3 or 4 consecutive blocks of a
plaintext-ciphertext pair, and thus of keystream, the adversary tries to guess the remaining
bits of the internal state independently half by half, when the second block is extracted.
Then, he tries to deduce information on the internal state by computing both forwards
and backwards. Information arising from both guesses on half states are then combined
with the other 2 or 3 known blocks of keystream to determine all possible values of the
internal state.

Our attacks using 3 consecutive blocks can be adapted to both v1 and v2 of Ketje
Jr. When the rate is increased to 40, 2200−3×40 = 280 values of the state are consistent
with a given value of 3 keystream blocks. Our attack recovers these 280 values in 282.3

operations, which is below the 296 security target of Ketje Jr. We also describe an attack
that makes use of the knowledge of 4 consecutive keystream blocks, and recovers the 240

possible values of the internal state with a complexity of 271.5 operations when applied to
Ketje Jr v1 with rate 40 bits. Eventually, a variant of these attacks can be applied to
Ketje Jr v1 with rate 32, with a total complexity of 292, below the 296 computations
from the generic attack.

We also give estimations on the complexity of our attacks when applied to the recom-
mended parameter set of Ketje Jr, including a rate of 16 bits, and show that they do
not threaten the version of Ketje Jr that was submitted to the CAESAR competition.
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Related work. Since the competition SHA-3, the Keccak-p permutation (described
in 2.3) has been widely analyzed [BCC11, DGPW12, JN15]. In the literature, reduced
versions of Ketje have been cryptanalyzed with cube attacks [DLWQ17] and linearization
techniques [GLS16]. However, all the previous available cryptanalysis focus on the initial-
ization phase of Ketje. As our technique aims at recovering the internal state during the
message processing phase, it might show new analysis direction of interest for the crypto
community and the CAESAR competition.

Organization of the paper. In Section 2, we give a brief description of Ketje Jr.
Then, we describe generic divide-and-conquer algorithms and show how to apply them
to recover the internal state from 3 consecutive output blocks of Ketje Jr in Section 3.
We show in Section 4 how to improve our algorithm and apply it to 4 consecutive output
blocks of Ketje Jr v1 with an increased rate of 40 bits. In Section 5 we propose an
attack on a version with 32 bits of rate, and conclude in Section 6.

2 Description of Ketje Jr
Ketje is an authenticated encryption mode proposed by Bertoni et al. In this section
we describe the variant Ketje Jr which is the one that we will center the analysis on in
this paper. The Ketje family of AEAD algorithms is a third-round CAESAR candidate
designed by Bertoni et al [BDP+df]. It relies on the use of a round-reduced version of the
Keccak permutation, together with the MonkeyWrap mode of operation. In the following
we give a short description of Ketje Jr, and focus on those of its components that our
attacks exploit.

2.1 The monkeyWrap mode of operation
The MonkeyWrap mode of operation [BDPA12] is a mode for authenticated encryption
with associated data built upon the sponge construction [BDPA08]. It allows for the
authenticated encryption of sequences of plaintexts, each one with optional associated data.
In the following, we focus w.l.o.g. on the encryption of one plaintext P , without associated
data. As our attack targets the internal state during the processing of the plaintext, it
does not depend on the number of plaintext and associated data fields. The encryption of
P consists in the following operations.

Initialization. A b-bit internal state S is initialized with a key K of variable length (of
bit length k recommended 96 bits, up to a max of 182) and a variable length nonce N .
S is divided into two parts R and C of respective lengths r and c. The initial value of S
is enc(k/8)||K||padK ||N ||pad, where enc(k/8) is a specific encoding of integer k/8, padK
and pad are constant padding strings. Then, 12 rounds of the Keccak-p permutation are
applied to S.

Plaintext processing. The plaintext is padded and divided into a sequence of r-bit
blocks, P0, . . . , P`−1, which are processed iteratively as follows. First, the state S is divided
into Sr||Sc, where Sr are its first r bits1. One then computes the i-th ciphertext block
Ci = Pi + Sr, and replace S with Ci||sc. Then, one round of the Keccak-p permutation
is performed on S.

1Domain separation bits are appended to each plaintext block. The description of the domain separation
mechanism is however not necessary for our attack and is therefore not detailed here.
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Tag extraction. The final step is the extraction of the authentication tag. After the
plaintext processing, 6 rounds are performed on S before the tag extraction. Then, the tag
is computed as a sequence of r-bit blocks, which are defined as the Sr part of the state.
The state is updated by one round between consecutive extractions.

2.2 The Ketje Jr state
We briefly recall here that the claimed security on Ketje Jr is roughly given by min(96, k).
The description of the Keccak-p permutation rounds that are used in Ketje Jr relies
on a specific representation of the b = 200-bit internal state. The state of Ketje is a
three-dimensional array of elements of F2 of size 5× 5× 8. For simplicity, we use the same
vocabulary as the authors, namely if A denotes the state, then:

• Ax,y,z denotes the bit at position (x, y, z).

• A row is a set of 5 bits with constant y and z coordinates (A∗,y,z).

• A column is a set of 5 bits with constant x and z coordinates (Ax,∗,z).

• A lane is a set of 8 bits with constant x and y coordinates (Ax,y,∗).

• A sheet is a set of 40 bits with constant x coordinate (Ax,∗,∗).

• A plane is a set of 40 bits with constant y coordinate (A∗,y,∗).

• A slice is a set of 25 bits with constant z coordinate (A∗,∗,z)

The 200 bits of the state are ordered from 0 to 199 according to their position (x, y, z),
as 40x+ 8y + z. We adopt the same representation of the state as the designers. Each
slice is represented by a 5× 5 array, with index (x, y) = (0, 0) at the center:

S∗,∗,z =


(2, 3) (2, 4) (2, 0) (2, 1) (2, 2)
(1, 3) (1, 4) (1, 0) (1, 1) (1, 2)
(0, 3) (0, 4) (0, 0) (0, 1) (0, 2)
(4, 3) (4, 4) (4, 0) (4, 1) (4, 2)
(3, 3) (3, 4) (3, 0) (3, 1) (3, 2)



2.3 The Keccak permutation
Ketje Jr is an iterated authenticated encryption mode where the round function is
derived from the Keccak-p permutation. The Keccak-p round function consists of five
steps: R = ι ◦ χ ◦ π ◦ ρ ◦ θ. We now give more details about each of these operations.

2.3.1 Specification of θ

θ is a linear transform that works as represented in figure 1. This operation provides
linear diffusion, which is achieved by relying on the sum of all bits of each column of the
state P (A)x,z =

∑4
y=0 Ax,y,z. We refer to these sums as parity bits of the state. Each bit

(at position x, y, z) is x-ored with the two parity bits P (A)x−1,z and P (A)x+1,z−1, where
indexes are taken modulo their maximal value (i.e. 5 for the x-coordinate and 8 for the
z-coordinate). The output of θ is given by Ax,y,z ← Ax,y,z + P (A)x−1,z + P (A)x+1,z−1.
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x

y z z

Figure 1: Computation of one output bit of θ

2.3.2 Specification of ρ

ρ is linear and provides diffusion between the slices of the state. It consists of a different
circular rotation applied to each lane. Its output is given by Ax,y,z ← Ax,y,z−(t+1)(t+2)/2,

with t satisfying 0 ≤ t < 24 and
(

0 1
2 3

)t(1
0

)
=
(
x
y

)
in F2×2

5 , or t = −1 if x = y = 0.

More concretely, the number of positions each lane is rotated by is given by the following
matrix: 

1 7 3 2 3
7 4 4 4 6
4 3 0 1 6
0 6 2 2 5
5 0 1 5 7


2.3.3 Specification of π

π is also linear and is shuffles the positions of lanes. It is therefore applied slice by

slice, according to the pattern represented on Figure 2. Its output is given by
(
x
y

)
=(

0 1
2 3

)(
x′

y′

)
,

Figure 2: Representation of π on each slice of the state
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2.3.4 Specification of χ

χ is the nonlinear layer of the permutation used in Ketje Jr. It can be interpreted
as a layer of 5-bit to 5-bit Sboxes of algebraic degree 2, computed on the rows of the
state. Moreover, each output bit depends on only 3 input bits, according to the formula:
Ax,∗,∗ ← Ax,∗,∗ + (Ax+1,∗,∗ + 1)Ax+2,∗,∗,

2.3.5 Specification of ι

ι is an addition of a round constant. The round constants are of the following form:

RC[ir][0, 0, 2j − 1] = rc[j + 7ir] for all 0 ≤ j ≤ `,

the other values are zero and the values rc[t] ∈ F2 are defined as the output of a binary
linear feedback shift register (LFSR):

rc[t] =
(
xt mod x8 + x6 + x5 + x4 + 1

)
mod x ∈ F2[x] .

Eventually, the Ketje Jr permutation is defined by the application of nr rounds R,
indexed with ir from 18− nr to 17.

2.4 Keystream extraction
The MonkeyWrap construction with rate r states that the first r bits of the state are
extracted as keystream. As the bits are ordered first on their x coordinate, then on their y
coordinate, and finally on their z coordinate, keystream bits are extracted by lane. For
Ketje Jr v1, as long as the rate does not exceed 40 bits, keystream bits are concentrated
on the plane x = 0, and on lanes y = 0 . . . br/8c. Please note that if the rate is 40 bits, the
full plane x = 0 is output as keystream.

However, in Ketje Jr v2, the authors replace the direct use of the Keccak-p permu-
tation by using a variant of it, called the twisted permutation. The twisted permutation
Keccak-p? is defined as:

Keccak-p?[b, nr] = π ◦Keccak-p ◦ π−1

It is also important to notice that applying Keccak-p? is equivalent to output different
lanes, not belonging to the same plane, because all intermediate π and π−1 will cancel out.
The keystream bits are now still concentrated on lanes, on the diagonal of the state with
equation x = y, starting from x = y = 0 and up to x = y = br/8c.

3 Divide-and-Conquer attack using 3 output blocks on
Ketje Jr

In all the paper, we describe different attacks on Ketje Jr v1 or v2. Those attacks
rely on the following fundamental idea: separate the state in 2 parts, then construct 2
lists independently that cover each part and eventually merge both lists using linear or
non-linear sieving relations.

In this section we describe a state-recovery attack that works on both versions of Ketje
Jr (i.e., with the initial or the twisted permutations). This attack enables the adversary
to recover the state of Ketje Jr during one encryption, under the hypothesis that he
knows three consecutive keystream blocks. We first show our attack on Ketje Jr v1, and
then show how to adapt it to the new version with the twisted permutation. The strategy
is rather generic and applies for any rate. We point out that its complexity decreases with
the encryption rate, and is in any case too high to contradict the security claims made
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by the designers. The complexity of the attacks in this section can not be smaller than
2200−3×r for a rate r, as this is the number of possible solutions that we recover, and have
to test in order to find the correct one. For a rate of r = 40 the best possible achievable
complexity is therefore 280. Therefore, in order to have an attack better than generic ones,
we have to consider a rate of at least r = 40 bits.

3.1 A basic attack against Ketje Jr v1 with rate 40 bits
The attack strategy against Ketje Jr v1 is rather straightforward. In this subsection we
suppose that the rate of Ketje Jr is 40 bits. In other words, a full plane is output after
each round.

Divide-and-conquer framework. Our attack is based on a divide-and-conquer technique.
A generic formulation of the problem we aim at solving is the following:

Given two sets U and V, two functions f : U → GF (2)c and g : V → GF (2)c and one
element t ∈ GF (2)c, find all u ∈ U and v ∈ V such that f(u) + g(v) = t.

Solving this problem is folklore in cryptography (many examples can be found for
instance in meet-in-the-middle attacks [BR10, DSP07, Sas11] or rebound attacks [LMR+09,
KNRS10]). One computes f(u) for all u ∈ U and stores (u, f(u)) in a table, sorted according
to the value of f(u) + t. Then, one computes g(v) for all v ∈ V and search the table for a
match. For all u such that f(u) + t = g(v), (u, v) is one solution to the problem.

The memory complexity is |U|(log(|U|) + c) bits, where |U| is the number of elements
in U and assuming they can be represented on log(|U|) bits. The time required to mount
the attack is |U|+ |V| computations of functions f and g, and |U| × |V| × 2−c to describe
the set of solutions.

Divide-and-conquer against Ketje Jr. This technique can be applied to 3 consecutive
output blocks of Ketje Jr, covering two Keccak rounds. Let us introduce the following
notation: A0 is the state containing the first known output, B0 the value of the state after
applying θ to A0 and C0 the state after ρ and π. Then, χ is applied and a new output
block is computed. We also denote by A1, B1 and C1 the same values one round later,
and by A2 the value after the last χ layer. These notations are displayed on Figure 3.

A0 B0 C0 A1 B1 C1 A2θ ρ, π χ θ ρ, π χ

A0
∗,0,∗ A1

∗,0,∗ A2
∗,0,∗

Figure 3: Notations used for our attack on 3 consecutive outputs A0
∗,0,∗, A

1
∗,0,∗, A

2
∗,0,∗ for

Ketje Jr v1 and a rate of 40 bits.

We can now describe our attack. The idea is to recover the full state A1 by using a
divide-and-conquer strategy, sieving with the information known from blocks A0 and A2.
Before starting the core of our attack, we can compute the planes C1

∗,0,∗ by computing the
inverse Sbox layer on A2

∗,0,∗. Then, we can express C1
∗,0,∗ as a function of A1, and A0

∗,0,∗ as
a function of C0. A key to our attack is that as θ, ρ, π and their inverse permutations are
linear we can divide states A1 and C0 into two halves (Au, Av), corresponding to (Cu, Cv)
and write the previous expressions as

C1
∗,0,∗ = f1(Au) + g1(Av)

A0
∗,0,∗ = f2(Cu) + g2(Cv)
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More precisely, we define Au (resp. Cu) as the first four slices (with index 0 ≤ z ≤ 3)
of A1 (resp. C1).

We can now describe the core of our attack. We guess the front half state Au. For
each slice, the 5 bits at position y = 0 are already known, which leaves 20 bits to guess
per slice, and a total of 80 bits to guess from Au. We denote our guess by i ∈ {0, 1}80.
Then, we can compute the resulting value of Cu, by applying χ−1. We then define

f(Au) = (f1(Au), f2(Cu)).

Similarly, by guessing 80 bits of the back half of the state Av, we can compute

g(Av) = (g1(Av), g2(Cv)).

Our attack then consists in applying the divide-and-conquer strategy described above to
Au, Av and t = (C1

∗,0,∗, A
0
∗,0,∗). We have |U| = |V| = 280 and c = 80, therefore the time

complexity of our attack is 280 evaluations of f and g for the divide-and-conquer phase.
Then, the remaining 280 candidates can be searched exhaustively, for a cost of 280.

The general idea is summarized on Figure 4.

A0 B0 C0 A1 B1 C1 A2

θ ρ, π χ θ ρ, π χ

Guess
Deducef2(u) + g2(v) f1(u) + g1(v)

Known bits Bits derived from u Bits derived from v
Bits computed as f(u) + g(v) Known bits used to sieve

Figure 4: Summary of our basic state-recovery attack

3.2 An attack against Ketje Jr v2 with rate 40 bits
3.2.1 Sieving with nonlinear relations

We now show how to modify the previous attack to apply it to Ketje Jr with the twisted
permutation. By studying every step of the attack, we can notice that the only point that
prevents it from being directly applied is that we can no longer compute 40 bits of C1 from
known bits of A2, as the output bit positions no longer cover outputs of the same Sbox.
We overcome this problem by sieving using A2 instead of C1 in our divide-and-conquer
attack.

To this end, we need to modify our divide-and-conquer algorithm. Indeed, our previous
attack consists in expressing known bits as the sum of two values computed from indepen-
dent guesses u and v. One limitation of this strategy is that it cannot be applied as soon
as such an expression involves a nonlinear combination of u and v. We now demonstrate
how to modify our attack to encompass more cases without a significant increase in the
time complexity of the algorithm. After that, we show how to use our new algorithm to
improve the attack against Ketje Jr.

Divide-and-conquer with nonlinear interactions. We now modify the divide-and-
conquer framework (that was previously limited to linearly independent expressions in u
and v) to encompass cases that will help attacking Ketje Jr with the twisted permutation.
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We define the following problem as a system of equations built from three subsystems with
respective sizes α, β and γ. We consider the following boolean functions :

• 2α functions fi : U → {0, 1} and gi, : V → {0, 1}, for 0 ≤ i ≤ α− 1 ;

• 3β functions f ′i : U → {0, 1} and gi, g′i : V → {0, 1}, for α ≤ i ≤ α+ β − 1 ;

• 3γ functions fi, f ′i : U → {0, 1} and g′i : V → {0, 1}, for α+ β ≤ i ≤ α+ β + γ − 1 ;

The problem we try to solve then consists in finding all (u, v) ∈ U × V such that :

fi(u) + gi(v) = 0 for 0 ≤ i ≤ α− 1 (1)
f ′i(u)g′i(v) + gi(v) = 0 for α ≤ i ≤ α+ β − 1 (2)
fi(u) + f ′i(u)g′i(v) = 0 for α+ β ≤ i ≤ α+ β + γ − 1 (3)

In summary, we consider a system of c = α + β + γ equations and partially remove
the condition on linearly independent contributions from u and v to all equations. More
precisely, we can deal with equations involving one product of u and v dependent values,
provided there is only one other term involving either u or v (but not both). A similar
problem was treated in [LN15].

Link with Ketje. The nonlinear layer χ of Ketje involves only one product, namely
(a, b, c)→ a+ bc. We focus on a very specific case of divide-and-conquer attacks, involving
a χ-layer in which:

• Every input bit can be fully computed by guessing either u or v;

• Some output bits are known to the adversary.

Depending on which half of the state input bits a, b and c are computed from, the knowledge
of the output bit a+ bc can be expressed as an equation of type 1, 2 or 3.

Our modified divide-and-conquer strategy. As in the case of the initial problem of
Section 3.1, our solution consists in building two (sorted) lists of values LU and LV such
that each solution (u, v) to our problem leads to a match between both lists. We also want
to be able to recover u and v from the matching elements, and require that our algorithm
avoid false positives, i.e., matches between lists that do not lead to values u and v that
verify the system of equations.

We now describe how we build the list LU . Each element of this list is a couple (F, u),
where F is a c-bit value. The bit at each position i of F is meant to be compared with the
same bit of elements (G, v) of LV to verify the equation involving fi, f ′i , gi, g′i. We append
u to the elements of the list so as to recover a solution (u, v) from a match.

Dealing with equations independently. We now describe how we deal with each
equation. For each value u and v and for each equation, we aim at defining sets Ri(u)
and Si(v) such that there is a collision between Ri(u) and Si(v) if and only if (u, v) is a
solution to the i-th equation. We now study the three possible cases.

1. Case of eq.1. This is the usual case of divide and conquer attacks, with independent
contributions from u and v. The equation is satisfied if fi(u) = gi(v). We therefore
define Ri(u) = {fi(u)} and Si(v) = {gi(v)}.
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2. Case of eq.2. Our goal is to verify such an equation by comparing f ′i(u) with some
v-dependent values. Therefore, we define Ri(u) = {f ′i(u)}. We handle v in a more
complicated manner. Si(v) is build from values gi(v), g′i(v) only, but different cases
occur. First, one computes g′i(v). If g′i(v) = 1, equation 2 becomes f ′i(u) = gi(v)
and therefore we define Si(v) = {gi(v)}. If g′i(v) = 0, equation 2 becomes gi(v) = 0.
If gi(v) = 1, the i-th equation cannot be satisfied. Therefore Si(v) = ∅. Finally, if
gi(v) = 0, the i-th equation holds independently of u. We need to have a match
between any Ri(u) and Si(v), therefore we define Si(v) = {0, 1}.

3. Case of eq.3. Equation 3 is equivalent to equation 2 by exchanging the roles of u
and v. We therefore handle these equations as in case 2, exchanging u and v.

In each case, one can check that there is a collision between Ri(u) and Si(v) if and
only if (u, v) is a solution to the i-th equation.

Solving all equations simultaneously. Let us now consider the cartesian products
R(u) = R0(u)× . . .×Rα+β+γ−1(u) and S(v) = S0(v)× . . .× Sα+β+γ−1(v). If (u, v) is a
solution to all the α+ β + γ equations, there is a collision between elements of sets Ri(u)
and Si(v) for all i, and thus there is a collision between elements of the cartesian products
R(u) and S(v). Conversely, if there is a collision between elements of R(u) and S(v), each
coordinate of this collision gives a collision between Ri(u) and Si(v), and thus (u, v) is a
solution of all the equations.

Solving the nonlinear divide-and-conquer problem. Our algorithm then consists in
building LU by enumerating all the elements (F, u) for all elements in R(u) and all u in U .
Elements are sorted according to the value of F (in lexicographic order for instance). A
similar operation is done to compute LV . Then, the solutions (u, v) to our problem can be
retrieved by searching collisions in the lists. We proceed in two steps to build LU . First, we
show in Algorithm 1 how to build the first α bits of all values in R(u), for any guess u, and
store them in a list denoted Lu. A similar list Lv can be computed similarly by replacing
loops from α+ β to α+ β + γ − 1 by loops from α to α+ β − 1. Then, in Algorithm 2, we
show how to build the full list LU , by completing all γ-bit elements of each list Lu to a
c-bit value and merging all these lists. Again, the list LV can be computed similarly.

Size of the lists. Now, we have to evaluate the size of the lists LU and LV that are
merged during our algorithm. To do this, we compute the expected size of Lu, which
is the expected number of entries that are added to the list LU for each value of u. We
focus on the joint values of (fi(u), f ′i(u)) for all α+ β ≤ i < α+ β + γ. First, according
to Algorithm 1, entries are added to the list only if none of these values is (1, 0), which
happens with probability (3/4)α. We denote by ω this event, and by N(u) the number
of entries added to the list. We have N(u) = 2j , where j is the number of positions such
that (fi(u), f ′i(u)) = (0, 0). We can now compute:

Pr
[
N(u) = 2j |ω

]
=
(
α

j

)
(1/3)j(2/3)α−j .

The expected value of N(u) is then:

E(N(u)) =
∑α
j=0

(
Pr
[
N(u) = 2j |ω

]
Pr [ω]× 2j

)
= (3/4)α ×

∑α
j=0

(
α
j

)
(1/3)j(2/3)α−j2j

= (3/4)α × (2/3 + 2/3)α
= 1.
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Algorithm 1 Computing the list Lu of elements Z such that equations α+β to α+β+γ−1
are satisfied for any (u, v) such that Z = (g′α+β(v), . . . , g′α+β+γ−1(v)).
Input: u ∈ U
Output: a list Lu containing all elements of Rα+β(u)× . . .×Rα+β+γ−1(u)
Lu ← (ε) // Initialize Lu with the empty string
for i = α+ β to α+ β + γ − 1 do
// Check whether the list is empty
if fi(u) = 1 and f ′i(u) = 0 then

return ()
for i = α+ β to α+ β + γ − 1 do

if f ′i(u) = 1 then
for Z ∈ Lu do
append fi(u) to Z

else
//fi(u) = 0 and f ′i(u) = 0
for Z ∈ Lu do
replace Z with two elements Z||0 and Z||1 in Lu

return Lu

Algorithm 2 Enumerating all values in LU .
Input: U , functions fi, 0 ≤ i < α and α+β ≤ i < α+β+γ, functions f ′i , α ≤ i < α+β+γ
Output: The list LU
LU ← ()
for u ∈ U do
Compute X = f0(u)|| . . . ||fα−1(u)
Compute Y = f ′α(u)|| . . . ||f ′α+β−1(u)
Compute Lu using Algorithm 1
for Z ∈ Lu do
Insert (X||Y ||Z, u) in LU

return LU
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The average size of the list resulting from the first step of our algorithm is then |U|.
Similarly, the number of values tried during the second step is |V|.

Complexity analysis. For the sake of simplicity, we did not try to completely optimize
the algorithm we use to build lists LU and LV . One of the reasons for it is that for our
attack against Ketje Jr, we will precompute these lists, and the time required for that
will not be the bottleneck of the attack. For each value of u, we need to compute at most
α+β+2γ functions fi or f ′i , and for each of the last γ equations, we need two comparisons
to determine which values need to be added to the list. Each value added to the list also
requires at most γ modifications on the list Lu, and one insertion in the global list LU .
The total complexity is therefore bounded by 2c(|U|+ |V|) computations and comparisons
and c(|U|+ |V|) insertions in lists.

In the sieving step, we search for matches between two lists of respective (average)
sizes |U| and |V|, which can be achieved in |U|+ |V| operations. This is equivalent to the
complexity of the divide-and-conquer without nonlinear sieving algorithm.

3.2.2 An improved attack against Ketje Jr v2

Adapting guesses on parts of the state. We can now come back to Ketje Jr.
The state A1 is divided in two halves Au and Av, increasing the size of the lists by

adding parity bits of 5 columns. More precisely, Au is defined as the first four slices
(0 ≤ z ≤ 3) with the 5 parity bits of the columns of A1

i,∗,7, for i ∈ {0, 1, 2, 3, 4}, and Av
corresponds to the last four slices (4 ≤ z ≤ 7) with the 5 parity bits of the columns of A1

i,∗,3,
for i ∈ {0, 1, 2, 3, 4}. By adding those 5 parity bits, the application θ becomes transparent:
Bu and Bv (first four slices and last four slices of B1) are immediately derived from Au

and Av independently.
For guessing the first half augmented state Au, we know that for each slice the 5 bits
at position y = 0 are already known (from A1

∗,0,∗), but also there are 5 known bits of
information from B1, which leaves a total of 4× 5× 5 + 5− 4× 5− 4× 5 = 65 bits.
As the 5 additional bits from each list correspond to parity bits from the other list, there
exist 10 extra linear equations (in addition to the 40 bit conditions given by the known
values from A0) that can sieve the number of possible combinations between the two lists
(factor 2−10−40 when considering all the linear relations). In other words there exist f1
and g1 : {0, 1}65 → {0, 1}10 such that

0 = f1(Au) + g1(Av)

In the same way as in 3.1, there exist two functions f2 and g2 such that

A0
∗,0,∗ = f2(Au) + g2(Av)

Removing the condition on the rate. Our first attack from Section 3.1 could only work
if the keystream blocks extracted from the state cover full Sboxes, so that one can invert
the Sbox layer to prepare the divide-and-conquer attack. As we no longer need to invert a
χ layer, this condition disappears. We can then apply our strategy to both versions of
Ketje Jr even if the rate is smaller than 40 bits. The complexity of our attack however
highly depends on the rate.

Saving time through pre-computation. Our algorithm involves the construction of lists
LU and LV , which implies a time complexity linear in the number of equations, due to
iterations of Algorithm 1. However, in the case of Ketje Jr, we can improve our algorithm
by computing Lu for all possible values of u in a pre-computation step. Indeed, let us
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A0 B0 C0 A1 B1 C1 A2

θ ρ, π χ θ ρ, π χ

Guess
DeduceLinear

Sieving
Deduce Nonlinear

Sieving

Known bits
Known bits used to sieve Bits derived from v

Bits derived from u

Figure 5: Summary of our advanced divide-and-conquer attack

take a deeper look at C1 and A2 and look for nonlinear sieving relations (see Equations 2
and 3), i.e., known bits of A2 which expression involves the product of two bits of C1, one
computed from Au and the other from Av. We can count that for Ketje Jr v1, there
are at most 20 such relations, leading to β ≤ 10 and γ ≤ 10. Overall, (at most) 20 bits of
C1 depending on u are involved in the γ case 3 equations, and similarly (at most) 20 bits
depending on v are involved in the γ case 3 other relations. As a consequence, all the 220

possible lists Lu (and similarly Lv) can be precomputed before starting Algorithm 2, for a
(negligible) complexity of about 4× 10× 220, and a memory of about 10× 220 bits per list.
Please note that we consider Ketje Jr v1 here because if the rate is below 40, one can no
longer invert the χ layer between C1 and A2 and thus, one uses A2 to sieve nonlinearly.
For Ketje Jr v2, we can compute that α ≤ 9 and β ≤ 9, leading to even lower complexities.

Therefore, partial lists Lu and Lv can be pre-computed using Algorithm 1 and stored,
as only (at most) 220 cases can occur for both u and v. When computing LU (resp. LV),
one does not need to run Algorithm 1 and to recompute Lu (resp. Lv) for each value of u
(resp. v), but only search for it in a precomputed list and insert the corresponding values
in LU (resp. LV).

Complexity analysis. Each guess u or v consists of 4 slices of 25 bits and 5 parity bits
from A1, but r/2 of these bits are known. Therefore, the complexity required to generate
each list is

Tlist = 2105−r/2 .

The number of solutions given by our divide-and-conquer algorithm depends on the
number of sieving relations. We have r sieving relations from the value of A2, r sieving
relations from the value of A0, and 10 sieving relations from the parity bits. Therefore,
the number of remaining values for the full state A1 is

Tsearch =
(
2105−r/2)2 × 2−10−2r

= 2200−3r .

When the rate is less than 40, the cost of the exhaustive search on the remaining
solutions dominates the complexity of the attack. When the rate is 40, the complexity
mainly comes from the computations of the values of u and v. We can however improve
this complexity by noticing that some bits of A2 might fully be computed from u or v,
thus reducing the size of the lists (but not the number of solutions left after the divide-and-
conquer part). By looking carefully at the details of ρ and π, we find that in the case of
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Ketje Jr v2, 4 bits can be recovered from u and 4 bits from v. Thus, the complexity of
searching all the values of u and v drops from 285 to 281, leading to an overall complexity
of 2× 281 + 280 ≈ 282.

The case of Ketje Jr v1 is studied in Section 3.3. We show that the list of 280 possible
values of the internal state can be recovered with a complexity of 266 operations, therefore
the exhaustive search dominates the time complexity of the attack in that case.

Our results are summarized in Table 1

Table 1: Complexities of our divide-and-conquer attack with nonlinear sieving

Cipher Version Rate Complexity
Ketje Jr v1 and v2 16 2152

Ketje Jr v1 and v2 24 2128

Ketje Jr v1 and v2 32 2104

Ketje Jr v2 40 282

Ketje Jr v1 40 280

3.3 Application to the initial Ketje Jr with rate 40 bits.
We now study the specific case of the initial Ketje Jr permutation with an increased rate
of 40 bits. In that case, the adversary can compute backwards the partial χ layer between
states A2 and C1, and therefore knows 40 bits of state C1. As π and ρ only shuffle bit
positions, the adversary knows 40 bits of B1. Moreover, one can easily notice that these
bits are located on 5 lanes. Therefore, the adversary knows 5 bits on each slice.

In our advanced attack represented on Figure 5, we can see that the adversary can
deduce the value of 4 full slices of B1 from his guess (both the green phase and the red
phase), as they are computed linearly (through a θ layer) from the guessed bits. Putting
it together, he gets 20 linear relations on the 85 guessed bits in each phase of the attack.
Taking account of these relations, he only needs to guess 65 bits. This case is represented
on Figure 6. One can also notice that nonlinear sieving relations are not used in that
specific case.

A0 B0 C0 A1 B1 C1 A2

θ ρ, π χ θ ρ, π χ

Guess
DeduceLinear

Sieving
Verify Compute

Known bits
Known bits used to sieve Bits derived from v

Bits derived from u

Linear relations on guessed bits

Figure 6: Divide-and-conquer attack against initial Ketje Jr with rate 40 bits with
guessing of parity bits.

Unsurprisingly, the number of remaining candidates after the divide-and-conquer
phase of the attack is left unchanged. The number of pairs before sieving is divided by
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(220)2 = 240, however the 40 known bits of A2 have already been used and do not provide
useful information for the sieving phase.

4 An attack using 4 output blocks with a rate of 40 bits
on Ketje Jr

We describe here a more performant attack that uses 4 consecutive output blocks (i.e. 3
rounds) of the non-twisted version of Ketje Jr and we consider a rate of 40 bits. Hence,
this produces a smaller number of solutions of 2200−4×r = 240. The principle of the attack
is similar, but we have in addition a last non-linear sieving using the keystream extracted
from A3 that is the most complicated part of the attack, and we will describe in detail in
the next sections how to efficiently perform it. In fact, we aim at sieving with B2 instead
of A3 because χ can be inverted on the full plane A3

∗,2,∗ and the ρπ application can also be
inverted such that we move the known parts to the lanes B2

i,i,∗. For this we propose two
different methods. The first performs a few initial guesses on some bits in the state C1 in
order to be able to partially compute through the non-linear relations (that are coming
from the χ-layer between C1 and A2) and sieve linearly. The second uses the merging lists
algorithm from [Nay11], refined in [CNV13] with the ideas from [DDKS12]: the instant
matching algorithm and the parallel matching without memory.

Our attack considers 4 consecutive output blocks of Ketje Jr v1, covering then three
Keccak rounds. We use the same notations as in 3.1 and in figure 7. The idea relies also
on guessing separately both halves of the state that complete the known part of A1, and
merging these lists by considering the sieve given by the information from A0, A2 and A3.
As in 3.1, we can compute the planes C2

∗,0,∗, C1
∗,0,∗ and C0

∗,0,∗ through the inverse of χ,
as the whole corresponding rows are well known. Moreover, we also compute the (ρπ)−1

application and get the full lanes B0
i,i,∗, B1

i,i,∗ and B2
i,i,∗ for i ∈ {0, 1, 2, 3, 4} as it is shown

in figure 7.

θ ρπ χ θ

ρπ

χ ρπ θ χ

A0 B0 C0 A1 B1

C1A2B2C2A3

Figure 7: Representation of 3 rounds of Ketje. Each colored part corresponds to lanes
that can be directly computed known from the 4 known output blocks.

As previously described in section 3.2.2, the state A1 is divided in two halves Au and
Av, increasing the size of the lists by adding parity bits of 5 columns. Each list has a size
of 24×5×5+5−4×5−4×5 = 265 elements.
There exist 10 extra linear equations (in addition to the 40 bit conditions given by the
known values from A0) that can sieve the number of possible combinations between the
two lists. In other words there exist f1 and g1 : {0, 1}65 → {0, 1}10 such that

0 = f1(Au) + g1(Av)
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In the same way as in 3.1, there exist two functions f2 and g2 such that

A0
∗,0,∗ = f2(Au) + g2(Av)

4.1 First method for sieving with B2: preliminary guessing
As we focus on guessing slices independently, we focus on the application of ρπ to the
slices. More precisely, B denotes the state before ρπ, hence each bit of the lane B0,4,∗
will stay in the same slice, each bit of B1,4,∗ will be shifted by 2,... Those shift values are
called the ρ-shift offsets and are displayed in figure 8.

7 0 3 4 2

1 2 6 7 7

5 6 0 4 3

5 5 4 4 3

0 2 1 6 1

Figure 8: ρ-shift offsets, that is the positions in each lane where bits of slice z = 0 before
the application of ρπ are relocated.

Eventually, we look where the bits of Au and Av are found in the state C1 after the
ρπ application. However, one needs to pass from C1 on to A2 through χ and then to B2

through θ, in order to sieve with known bits of B2 (colored in blue in 7). To do so, we fix
bits of the state such that some rows in C1 are fully determined by the value Au (resp.
Av). The bits that are guessed this way are given in figure 9. However, the attack has to
be done 2` times if ` denotes the number of guessed bits. But guessing those bits allows
us to compute entire rows on the state A2 with only bits from Au (resp. Av). However,
the application θ after A2 remains, so we have a clever choice of guesses to make in order
to be able to sieve with the known part of the state B2. To do so we fix bits such that we
can compute at least two consecutive slices of A2, hence there will be a linear sieving. The
details of the state C1 and the choices of bits to guess are given in figure 9.
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Figure 9: C1: the green part is known, the bits with > correspond to the half state Au,
the other ones to Av. Bits colored in yellow, grey or blue correspond to the best choice of
guesses such that an entire slice is known after χ.
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Moreover, guessing bits decreases the size of the two lists, and allows us to sieve more
bits, by using the known information from B2 (that is immediately obtained from A3

0,∗,0).
On the other hand, the number of guess will increase our time complexity.

To be more precise, let us explain one choice of guess: we fix all bits in yellow (that are
on the slices 1, 2, 5 and 6). There are 16 of them. 8 are coming from Au and 8 are coming
from Av, then the size of the lists becomes 265−8 = 257. Hence, we can compute 5× 4 rows
of the state A2, there exists then two functions f3 and g3 : {0, 1}57 → {0, 1}10 such that

(B2
0,0,2, .., B

2
4,4,2, B

2
0,0,6, ..., B

2
4,4,6) = f3(Au) + g3(Av)

Eventually, we then define f and g: {0, 1}57 → {0, 1}60:

f(Au) = (f1(Au), f2(Au), f3(Au))

g(Av) = (g1(Av), g2(Av), g3(Av))

Our attack consists now in applying the strategy that merges lists using linear sieving
relations described in section 3 to u = Au, v = Av and the known values 0,...,0, A0

∗,0,∗,
B2

0,0,2,..,B2
4,4,2, B2

0,0,6,...,B2
4,4,6 where the 0’s come from the 10 parity bits of columns A1

i,∗,3
for i ∈ {0, 1, 2, 3, 4}. We have |U| = |V| = 257 and c = 10 + 40 + 10 = 60, however we
have to do the attack 216 times (for all possible values of guesses), therefore the time
complexity is 216 × 257 = 273 evaluations of f and g for this phase. Then, the number of
remaining candidates is 2572572−102−402−10216 = 270. Those candidates can be searched
exhaustively for a cost of 270.

This choice of guess is the best one we can do regarding the total time complexity of
the attack, that is 273. The other reasonable choices of guesses are described in Table 2.

Table 2: Attack complexity for different choices of guessed slices. Guess is the number of
bits the adversary has to guess and Rel. is the number of new sieving relations he gets.
Tsearch is the complexity of the exhaustive search on the remaining state values after the
sieving.

Choice |U| |V| Rel. Guess Tsearch Neval(f, g) Complexity

265 265 0 0 280 265 280

{1, 2} 263 259 5 8 275 271 275

{1, 2, 5, 6} 257 257 10 16 270 273 273

{1, 2, 3, 5, 6} 254 254 15 22 265 276 276

{1, 2, 3, 5, 6, 7} 251 251 20 28 260 279 279

{1, 2, 3, 4, 5, 6} 252 248 25 30 255 282 282

{1, 2, 3, 4, 5, 6, 7} 249 245 30 36 250 285 285

{0, ..., 7} 243 243 40 44 240 287 287

4.2 Second method for sieving with B2: list merging
Here we have two lists L1 (which corresponds to Au) and L2 (which corresponds to Av) of
size 265 each as explained in the beginning of section 4. We also have 50 linear relations
coming from the 40 known bits of A0 and the 10 parity bits of columns that should be
satisfied by any candidate pair of elements. Each list can be partitioned in 250 sublists
of average size 215. All the elements in each sublist are associated to the same value
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of the corresponding half of the state associated to the 50 linear relations. In order to
separate each list in 250 sublists we compute and store the associated values to the linear
relations (f1(Au), f2(Au)) from the elements in L1 and (g1(Av), g2(Av)) from the elements
in L2. Each one of the different possible values that (f1(Au), f2(Au)) could take defines a
sublist. Because of the linear relations, there is only one possible value that is a match for
(g1(Av), g2(Av)) from L2 (which also defines another sublist). Each sublist, associated to a
different value of (f1(Au), f2(Au)), contains 265−50 = 215 elements from L1, and the same
goes for the elements in the sublists from L2 associated to each value of (g1(Av), g2(Av)).
Then we have that, for each one of the 250 possible combinations to compute the linear
relations, we can merge the 2 associated sublists (one from each list) of average size 215

that meet this sharing.
We propose then an algorithm that, for each one of the 250 different sublists associated

to (f1(Au), f2(Au)), considers the only correct sublist (g1(Av), g2(Av)), and efficiently
merges next the two remaining sublists of size 215. The final cost of the algorithm will be
250 times the cost of merging the two lists of 215. Those lists are denoted by L′1 and L′2.

Let us point out here that for each one of the values in the sublists of size 215, we are
able to compute the yellow (resp. purple) bits depicted in figure 10 in C1 by computing
through ρ and π. We can also compute the yellow and purple bits in A2 as all the
corresponding inputs belong to the same list. We can also deduce from each list the values
that, xored with a value given by the other half, will determine the bits marked with L (L
means that the associated bits depend on linear relations between both lists).

In order to reduce the cost of this merge from the trivial 230 (given by trying all the
elements in one sublist with all the elements in the other), we have to consider the relations
imposed by the output known in A3, that we can trace up to B2.

Merging the two lists L′
1 and L′

2 of size 215 through parallel matching without memory.
We will recall here how this algorithm detailed in [CNV13] works, but first we have to

determine the relations that we will consider for the sieving. In Figure 11, we can see
some information regarding the equations to satisfy certain of the known bits of B2. More
precisely, we focus on the known bits e0, b1, d1, a2, d2, e2, b5, d5, a6, d6, e6 and c7. As
can be seen in equations from (16) to (25), those bits (or linear combinations of them)
have a small number of known variables that intervene in a non-linear way.

For the sake of readability, xijk denotes the bit C1
i,j,k if it belongs to L′1 and yijk if it

belongs to L′2.
In the following, we explain as an example how we get the equation of b5. Through θ, we
get that

b5 = A2
3,3,5 +

4∑
i=0

A2
2,i,5 +A2

4,i,4 .

However, in this equation only A2
4,4,4 has a non-linear combination of variables from one

variable of each list. In other words there exist two linear functions `1 and `2 such that

b5 = `1(Au) + `2(Av) +A2
4,4,4 = `1(Au) + `2(Av) + C1

4,4,4 + (C1
0,4,4 + 1)C1

1,4,4 .

C1
4,4,4 = x444 , C1

0,4,4 = y044 and C1
1,4,4 = x144 .

We can then define two linear functions `xb5
and `yb5

such that

b5 = `xb5
(Au) + `yb5

(Av) + y044x144 .

By doing the same for the other chosen bits of B2 we get the following equations.
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Figure 10: Representation of the 3-round attack. Each 5 × 5 square represents a slice,
each small square is a bit, and each line of squares represents the full state (the 8 slices)
at a certain instant. The first state that outputs a value is the one on the top, and the
last the one at the bottom. The bits colored in grey, green, red and blue are known bits
from the outputs. The bits colored in yellow are known bits from Au (L1). Colored bits in
purple are known bits from Av (L2). Bits with an L represent bits that can be computed
as a linear combination of bits from values obtained from Au and from Av. The ones in
white represent a quadratic combination of both lists.



48 State-Recovery Attacks on Modified Ketje Jr
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Figure 11: Scheme on exploited quadratic relations between the last output and the
unknown bits for the final sieving

b5 = `xb5
(Au) + `yb5

(Av) + y044x144 (4)
b1 = `xb1

(Au) + `yb1
(Av) + x040y140 (5)

c7 = `xc7
(Au) + `yc7

(Av) + y247x347 + y207x307 (6)
e0 = `xe0

(Au) + `ye0
(Av) + x100y200 + x040y140 + y247x347 + y207x307 (7)

a2 = `xa2
(Au) + `ya2

(Av) + y141x241 + y111x211 + x101y201 (8)
d1 = `xd1

(Au) + `yd1
(Av) + y141x241 + y111x211 + x101y201 + x340y440 (9)

a6 = `xa6
(Au) + `ya6

(Av) + x145y245 + x115y215 + y105x205 (10)
d5 = `xd5

(Au) + `yd5
(Av) + x145y245 + x115y215 + y105x205 + y344x444 (11)

e2 = `xe2
(Au) + `ye2

(Av) + x102y202 (12)
d2 = `xd2

(Au) + `yd2
(Av) + y212x312 + x102y202 + x112y212 (13)

e6 = `xe6
(Au) + `ye6

(Av) + y106x206 (14)
d6 = `xd6

(Au) + `yd6
(Av) + x216y316 + y106x206 + y116x216 (15)

By looking at the equations, we see that there are a lot of variables that appear several
times in different equations. For instance the equations (5), (6) and (7) only involve 14
variables, 7 from L′1 and 7 from L′2. Moreover we can linearly combine the equations, for
example:

a2 + d1 = x340y440 + `xa2
(Au) + `ya2

(Av) + `xd1
(Au) + `yd1

(Av)

Eventually, we can also factorize the terms y212 and x216 in the equations (10) and (12),
which gives us the following system of 10 equations that totals 21 variables of L′1 and 21
variables of L′2. As there are more variables with 2 quadratic terms, the complexity would
only increase if we considered more. We will explain later that our obtained complexity is
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optimal as far as no more relations depending on one variable exist.

b1 = x040y140 + `xb1
(Au) + `yb1

(Av) (16)
c7 = y247x347 + y207x307 + `xc7

(Au) + `yc7
(Av) (17)

e0 = x100y200 + x040y140 + y247x347 + y207x307 + `xe0
(Au) + `ye0

(Av) (18)
a2 + d1 = x340y440 + `xa2+d1

(Au) + `ya2+d1
(Av) (19)

a6 + d5 = y344x444 + `xa6+d5
(Au) + `ya6+d5

(Av) (20)
b5 = y044x144 + `xb5

(Au) + `yb5
(Av) (21)

e2 = x102y202 + `xe2
(Au) + `ye2

(Av) (22)
e6 = y106x206 + `xe6

(Au) + `ye6
(Av) (23)

e2 + d2 = y212(x312 + x112) + `xe2+d2
(Au) + `ye2+d2

(Av) (24)
e6 + d6 = x216(y316 + y116) + `xe6+d6

(Au) + `ye6+d6
(Av) (25)

General intuition of the algorithm. Given two lists L′1 and L′2, the idea of the algo-
rithm is to find all the pairs of elements, one from each list, satisfying a certain number
(naux + nrem) of bit-relations by testing in parallel naux relations and the nrem remaining
ones. The aimed complexity is better than the naive one of testing each element with
all the elements in the other list. As the considered relations are not linear, if for each
elements we check all the possible matches regarding a certain number of relations, the
complexity might soon become higher than the naive limit. For this we will first consider
naux relations, and classify the first list regarding the vaux1 involved values. For each value,
we consider all the possible matches through the naux for the value of the vaux2 involved
variables from the second lists. With all the elements from the second list that satisfy
these values in the vaux2 variables, we build an auxiliary list, smaller than the second one,
that we order by the values of the vrem2 variables involved in the nrem remaining relations.
This has to be done for each different value of the vaux1 variables. We can now go back
to the first sublist, of elements associated to a certain value for the vaux1 variables. We
know that these elements and the ones from the auxiliary list already satisfy the naux first
relations. If we now go through the different values for the vrem1 variables involved from
the first list in the nrem relations and check in the auxiliary list if the possible values of
the vrem2 variables appear or not, when we find a match we will find a pair of elements
that satisfies both the naux relations and the nrem relations. The intuition of the gain can
be explained by imagining that the number of each group of relations and of the variables
are balanced. The overhead of trying all the possible matches for one element in the other
list is reduced by a square root (for similar relations). In the particular case we are dealing
with here, vaux1 = vaux2 = vaux and vrem1 = vrem2 = vrem. We want to point out here
that the final complexity cannot be better than |L′1| × |L′2| × 2−naux−nrem , as this is the
number of solutions obtained.

We want to merge L′1 and L′2. In order to apply the parallel matching algorithm, we
have to separate these relations in two. A number of naux relations (involving vaux variables
from each list) will be considered for building the auxiliary lists of elements from L′2. For
each value of the vaux variables from the elements in L′1, this auxiliary list will contain
only the elements from L′2 satisfying these naux relations. The remaining nrem relations,
involving vrem variables from each list, will be checked later. The parallel matching
algorithm, for each one of the 2vaux different values of the vaux variables associated to the
first naux relations in L′1 (that produces a sublist of L′1), will perform the following:

1. Use the naux relations to build the auxiliary list with the elements from L′2 that are
already a match with respect to these relations. About 2vaux−naux values for the
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variables from the second list will be a match. Each will be composed of |L′2|/2naux

elements

2. Next, we reorder this auxiliary list, with respect to the vrem variables involved in
the nrem remaining relations.

3. For each one of the elements in the generated sublist from L′1 check, for all possible
matches with respect to the nrem equations, if they belong to the auxiliary list. If
yes, we keep the candidate and go to the next possible match, if not, go to the next
possible match.

4. The final complexity cannot be smaller than the expected number of solutions.

The complexity of this algorithm will be:

2vaux × [2(vaux−naux)+(15−vaux) + 215−vaux × 2vrem−nrem(max(1, 2
15−naux

vrem ))] =

215+vaux−naux + max(215+vrem−nrem , 230−naux−nrem).

This corresponds to: 2vaux is the number of sublists of L′1 that we consider and therefore
of auxiliary lists from the elements of L′2 we have to build. For each sublist, 2vaux−naux

possible values in L′2 have to be checked, and 215−vaux elements from the second list will
be associated to each matched value. This leads to the first term on the complexity
215+vaux−naux , that corresponds finally to the size of the auxiliary lists, 215−naux that have
to be built 2vaux times. Next, for each element in the first list associated to a certain value
out of the 2vaux possible ones, we have 215−vaux elements to test with respect to the nrem
equations. The values to try in the auxiliary list are 2vrem−nrem . The cost for this part
will be the max between 215+vrem−nrem (corresponding to when we do not always find a
solution), and 230−naux−nrem corresponding to the final number of solutions.

Let us choose for determining vaux and naux the equations associated to b1, e0, c7 (with
7 variables from L′1 and 7 from L′2) plus the ones associated to a2 and a6 (with 4 additional
variables from each list). In this case, naux is 5, vaux = 11, and the size of the auxiliary
list (that we need to build for each one of the different values of the vaux variables from
L′1) will be 211−5+4 = 210. The remaining equations filter through nrem = 5 conditions
and involve vrem = nrem × 2 = 10 variables from each list.

The final complexity is then

215+11−5 + max(215+10−5, 230−10) = 221 + 220 = 221.5

Complexities of the full attack. As previously said, the time complexity of the full
attack is given by repeating the parallel list merging algorithm for each one of the 250

different values that determine the linear relations. We obtain then:

250+21.5 = 271.5 computations.

Let us point out that each one of this computation is much smaller than a full round, so
there should be a reduction factor when comparing with exhaustive search, but we leave it
this way as it is the worst case for the attacker.

The memory complexity is given by the two lists of size 265, as the auxiliary list is
smaller. We do not need to add a logarithmic factor when ordering and searching the lists,
as this can be done using hash tables.

In order to find one only solution, we should have one more output, otherwise we
recover 240 candidates for the internal state.
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5 Improved attack using 4 output blocks with a rate of 32
bits

In this section we describe an improved version of the previous divide-and-conquer attacks
described in section 4 that allows us to build an attack when considering a rate of r = 32
bits. The number of expected remaining candidates is equal to 2200−4×r = 272 which is
still lower than 296. Moreover, similar techniques as the ones used in section 4 can be
applied to mount an attack of complexity 292.

New ideas used for the attack. Our attack on initial Ketje Jr with rate 32 relies on
two new ideas. First, please notice that the 32 bits that are known to the adversary from
each state A0, . . . , A3 are 4 of the 5 output bits of the 8 Sboxes from the sheet x = 0.
We show that we can partially invert such Sboxes layers and derive useful information on
state B2 from the known bits of A3. Our second idea is that we can reduce the number of
nonlinear interactions between guesses u and v in B2 by guessing some bits of C1 before
starting applying divide-and-conquer algorithm.

5.1 Using known information from A0, A1 and A2.
If we consider the red bits from Figure 10, that correspond to known bits of A1, there is
nothing to change from the previous attack with a rate r = 40, but the size of the two
lists increases by a factor 24 for both lists : half of the 8 bits that are now unknown are
located in parts of the state Au and Av, and need to be guessed while building our lists.

The 32 known bits from A0 can be computed as linear relations between the bits of
the two lists. Hence there is no longer 40 linear relations that are sieving in the merging
lists algorithm, but only 32.

In our attacks with a rate 40, we need to recover 40 bits of B1 from the 40 known bits
of A2. To transpose this information to a rate of 32, we guess the 8 missing bits before
starting our attack and apply the same strategy, such that the green part can sieve the
same information on the 2 lists. However, this increases the complexity of the attack by a
factor 28 but reduces by 24 the size of both lists.

5.2 Linear relations derived from A3.
The problem that we aim at solving is that we can no longer invert the application of χ
between C2 and A3. Moreover, guessing 8 more bits will cost us too much. However, as
only 1 known bit is missing for each row we want to propagate backwards through χ that
we want to invert, there are exactly 32 linear equations between the bits in C2 and the
known bits of A3. Hence, we do not know each bit in blue from state B2 on Figure 10
independently, but we know exactly 32 independent linear equations. It is important to
know that those equations depend on the value of the observed value in A3. In other words,
as there is only 1 bit missing per slice (per χ), each bit taken as input of χ depends linearly
from those missing values. Considering a rate of 32 and the specifications of Ketje Jr,
the known bits of A3 are the following ones:{

A3
2,2,∗, A

3
3,2,∗, A

3
4,2,∗, A

3
0,2,∗

}
All the bits A3

1,2,∗ are unknown. For sake of readability, we note A3
1,2,i = xi, for all

0 ≤ i ≤ 7, and all the known bits of A3 will be denoted by αj for 0 ≤ j ≤ 31. We note
(α||X) = (α0, ..., α31, x0, ..., x7)> and we note β the vector that corresponds to the 40
bits (blue) in C2. Then there exists a matrix M of size 40 × 8 and a constant vector
β0 such that β = MX + β0. It is important to notice that M depends on the values αj
for 0 ≤ j ≤ 31, but these values are known to the adversary. Moreover, the applications
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π and ρ are bit transpositions, hence, by using the same notations as in figure 11, we
can assume that there exists a 40 × 8 matrix M ′ and a constant vector β′0, such that
(a0, ..., e0, a1, ..., e6, a7, ..., e7)> = M ′X + β′0.

5.3 Guessing 20 bits from C1

However, the bits a0, ..., e0, a1, ..., e6, a7, ..., e7 cannot be expressed as a the sums of linearly
independent expressions of bits in Au and bits in Av. To solve this issue, we guess 20
bits (10 in each list), such that we can get some linear equations. More precisely, we fix
all bits that correspond to C1

0,5,0, C1
3,5,0, C1

1,5,1, C1
1,1,1, C1

3,5,2, C1
2,1,2, C1

4,5,3, C1
5,4,3, C1

0,0,3,
C1

3,0,3, C1
0,5,0, C1

3,5,0, C1
1,5,1, C1

1,1,1, C1
3,5,2, C1

2,1,2, C1
4,5,3, C1

5,4,3, C1
0,0,3, C1

3,0,3. We guess all
those bits because for each of those bits C1

x,y,z, the bits C1
x−1,y,z and C1

x+1,y,z belong to
the same list. Hence guessing those bits drastically decreases the number of quadratic
variables on the equations we consider for the bits a0, ..., e0, a1, ..., e6, a7, ..., e7. The details
of this part is depicted in figure 12.

X X X X X X X X X X

X X

X X X X

X X X X

chi 0 1 2 3 4 5 6 7

1 L 2 L 13 L 14 L

3 L 4 L 11 L 12 L 15 L 16 L 23 L 24 L

5 L 6 L 7 L 8 L 9 L 10 L 17 L 18 L 19 L 20 L 21 L 22 L

theta

a0 a1 a2 a3 a4 a5 a6 a7

b0 b1 b2 b3 b4 b5 b6 b7

c0 c1 c2 c3 c4 c5 c6 c7

d0 d1 d2 d3 d4 d5 d6 d7

e0 e1 e2 e3 e4 e5 e6 e7

C
1

A
2

B
2

Figure 12: The bits with X in C1 are the 20 bits we guess, hence only 24 quadratic
variables remain (denoted with 1, 2,...,24).

Hence, we get 40 equations for the bits a0, ..., e0, a1, ..., e6, a7, ..., e7, where 24 quadratic
variables occur. Each quadratic variable appears during the χ function between C1 and
A2: as soon as two adjacent bits on the same row belong to the two different sets of our
divide-and-conquer division of the state, A2 involves the product of these bits, which can
be viewed as a new variable (referred to as quadratic). Hence, we can derive at least 16
linearly independent expressions that do not imply quadratic variables, but in fact there
is exactly 20 of them. In the following we note qi, for 1 ≤ i ≤ 24 the quadratic variables
depicted in figure 12. Hence the following equations hold.
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a0 = q2 + q4 + q6 + q23 + la0(L1, L2) a1 = q1 + q3 + q5 + q8 + la1(L1, L2)
b0 = q2 + lb0(L1, L2) b1 = lb1(L1, L2)
c0 = q24 + lc0(L1, L2) c1 = q2 + q4 + q6 + lc1(L1, L2)
d0 = q1 + q3 + q5 + ld0(L1, L2) d1 = q7 + ld1(L1, L2)
e0 = q5 + le0(L1, L2) e1 = q7 + le1(L1, L2)

a2 = q7 + la2(L1, L2) a3 = q9 + q12 + la3(L1, L2)
b2 = q10 + lb2(L1, L2) b3 = lb3(L1, L2)
c2 = q8 + lc2(L1, L2) c3 = lc3(L1, L2)
d2 = q9 + ld2(L1, L2) d3 = q10 + q11 + ld3(L1, L2)
e2 = q9 + le2(L1, L2) e3 = le3(L1, L2)

a4 = q11 + q14 + q16 + q18 + la4(L1, L2) a5 = q13 + q15 + q17 + q20 + la5(L1, L2)
b4 = q14 + lb4(L1, L2) b5 = lb5(L1, L2)
c4 = q12 + lc4(L1, L2) c5 = q14 + q16 + q18 + lc5(L1, L2)
d4 = q13 + q15 + q17 + ld4(L1, L2) d5 = q19 + ld5(L1, L2)
e4 = q17 + le4(L1, L2) e5 = q19 + le5(L1, L2)

a6 = q19 + la6(L1, L2) a7 = q21 + q24 + la7(L1, L2)
b6 = q22 + lb6(L1, L2) b7 = lb7(L1, L2)
c6 = q20 + lc6(L1, L2) c7 = lc7(L1, L2)
d6 = q21 + ld6(L1, L2) d7 = q22 + q23 + ld7(L1, L2)
e6 = q21 + le6(L1, L2) e7 = le7(L1, L2)
The 20 linear equations that we get correspond then to a0 + c1 + b6 + d7, c0 + a7 + e6,

d0 +a1 +c2, b1, d1 +e1, d1 +a2, d2 +e2, b2 +d3 +a4 +c5, d2 +a3 +c4, b3, c3, e3, d4 +a5 +c6,
b5, d5 + e5, d5 + a6, d6 + e6, b7, c7, e7.

Sieving with 12 linear equations. We have exactly 20 independent linear equations
between the two lists and the vector space of dimension 40 that corresponds to a0, b0, ..., e7.
We note β′ = (a0, ..., e0, a1, ..., e6, a7, ..., e7)>. Moreover, we know that there exist a matrix
M ′ and a vector β0 such that β′ = M ′X + β0. Hence, there exist (li)1≤i≤20 and (l′i)0≤i≤20
40 linear equations such that li(L1 + L2) = l′i(β′) = l′i ◦M ′X + l′i(β0), for all 1 ≤ i ≤ 20.
Eventually, we apply a Gauss pivot on the 8 first equations such that we can eliminate the
unknown values of x0, ..., x7, then we get at least 12 linear equations between the 2 lists.

Guessing 4 more bits. Now we have guessed 28 bits in total. The size of the lists
becomes now 2100 × 2−16 × 25 × 2−20 × 2−10 = 259. 2100 is half of the state, 2−16

corresponds to the known bits in A1, 25 corresponds to the parity bits of the columns,
2−20 corresponds to the known bits in A2 (8 are guessed) and 2−10 corresponds to half
of the bits we guess to get linear equations. The final cost of the algorithm is then
(228 × 259) + 228 × 22×59 × 2−32 × 2−10 × 2−12, which is 287 + 292. Both lists are of size
259 and we have 54 linear relations, hence it is of interest to guess few bits more such that
both terms become equal.

6 Conclusion
These attacks do not pose a threat to Ketje Jr instantiated with the recommended
parameters. In particular, the attacks against 4 consecutive output blocks do not work
with the twisted permutation, and therefore, the tweak seems to make the primitive more
resistant to divide-and-conquer attacks. However, our attacks provide us with a new
non-trivial limit on the rate we can output.
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