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Highlights 

 Increasing slip effect increase Nusselt number in Br>0. 

 Nusselt number decrease by increasing Brinkman number in Br>0. 

 For the cooling case fluid starts to warm up in Br>Br1. 

 Nusselt curve show a singularity in Br2. 

 Br1 and Br2 increase by Increasing slip effect. 

 

Abstract  

Forced convective heat transfer in pipes is investigated for viscoelastic fluids obeying the Giesekus 

constitutive equation including effect of slip condition by an approximated analytical method. The slip 

equation at wall is considered nonlinear Navier model with non-zero slip critical shear stress. The 

problem under consideration is steady, laminar and fully developed. Thermal boundary conditions are 

assumed peripherally and axially constant heat flux at wall. The fluid heating and cooling cases are 

considered for analysis. Dimensionless temperature profiles and Nusselt number are obtained by solving 

governing equations and the effects of slip parameters, viscous dissipation and fluid elasticity are 
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discussed. Results show that Nusselt number increases by increasing slip effect but decreases by 

increasing Brinkman number for the case of fluid heating. However, for the cooling case, the heat 

generated by viscous dissipation can overcome the effect of wall cooling at first critical Brinkman 

number and fluid starts to warm up. Also the Nusselt curve shows a singularity in a second critical 

Brinkman number. 

 

Keywords: Giesekus Constitutive Equation; Slip effect; Viscous Dissipation; Nusselt number; Cooling and 

heating cases; Fluid elasticity 

 

1. Introduction 

The heating and cooling processes have to use the non-Newtonian fluids in a broad variety of equipment 

and industries related to fluid such as shell and tube heat exchangers, polymer and plastic extrusion, 

drilling operations and food industries [1,2]. Therefore, the knowledge of heat transfer is mandatory for 

the equipment design and quality control of the final products. Also the empirical evidences indicate 

that, in certain circumstances, most of these complex fluids may be slipped at the solid boundary which 

again has a strong influence to quality of final products such as sharkskin, stick-slip, and gross melt 

fracture instabilities in polymer extrusion. Slip can be occurred by three mechanisms as below: 

- Adhesive failure of the polymer chains on the solid surface leading to detachment of the 

absorbed chains from the wall.  

- Cohesive failure arising from disentanglement of the bulk chains from chains adsorbed at the 

wall, and then disentangled chains will slip over adsorbed chains. 

- Formation of a low viscosity layer of solvent which is known to low-viscosity mesophase and the 

bulk polymer chains slip on this layer. 

One of the most common models for determine the slip velocity at the wall is the nonlinear Navier slip 

law which is based on experimental results and consists in a power law relationship between slip 

velocity and shear stress at the wall as follows: 
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where wu , wτ and s are the slip velocity, shear stress at wall and  power law index  respectively. 

 is the slip coefficient which depends on temperature, normal stress, molecular parameters and 

properties of the fluid/wall interface [3]. As 0  full slip flow and  no slip boundary condition 

are recovered. . Fig.1 shows the Hagen–Poiseuille velocity profile for slip and no slip boundary 

conditions.  

 

Fig. 1. Schematic diagram of Poiseuille flow with slip boundary conditions. 

 

 Since the empirical evidence shows the slip occurs only when wall shear stress exceeds a critical value 

[4] therefore the nonlinear Navier slip model is employed under the following form: 
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Effect of slip condition in the flow field of Newtonian and non-Newtonian fluids has been investigated 

extensively [5-16] but research on heat transfer is scant. Analytical solutions for heat transfer and 

entropy generation of Newtonian fluid in microchannel were obtained by Anand [17] considering slip 

boundary conditions. The non-linear Navier, Hatzikiriakos and asymptotic slip laws were employed and 

the microchannel walls were subject to uniform heat flux. Finally, the effect of slip at walls on velocity 

distribution, temperature distribution, Nusselt number, entropy generation rate and Bejan number has 

been reported in this paper. Shojaeian and Kosar [18] investigated effect of slip condition on convective 

heat transfer and entropy generation for Newtonian and non-Newtonian fluid using the linear Navier 

slip model between parallel-plates. The thermal boundary conditions were assumed isoflux and 
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isothermal and the expressions for velocity, local and mean temperature distributions, Nusselt number, 

entropy generation and Bejan number were obtained analytically. The slip effect on flow and thermal 

fields of Ostwald–de Waele power law fluid in circular microchannel are studied by Barkhordari and 

Etemad [19] using control volume finite difference method. The slip velocity in their study is defined as a 

constant coefficient of mean velocity of fluid and thermal boundary conditions are considered constant 

temperature and constant heat flux at wall. Eventually, the influence of slip coefficient on friction factor 

and Nusselt number were investigated. Mahjoob et al [20] performed a similar research in rectangular 

microchannel. To the best of our knowledge, the slip effect on convective heat transfer of viscoelastic 

fluid, with effect of critical shear stress in slip model, has not been yet investigated. Then, we propose in 

the present study an analytical approach of forced convection heat transfer in pipe for laminar, steady 

state and fully developed flow of nonlinear viscoelastic fluid obeying Giesekus model with accounting 

slip effect. The slip law at wall employed is the nonlinear Navier one with non-zero slip critical shear 

stress. The canonical geometry of pipe flow is considered in the present paper regarding its wide range 

of applications. 

2. Governing Equation 

The problem under consideration is steady, laminar, thermally and hydrodynamically fully developed 

flow in a pipe (see Fig. 2). Axial heat conduction is neglected compared to the radial heat transfer by the 

order of magnitude analysis [21]. The effect of viscous dissipation is included due to the high viscosity of 

viscoelastic fluids considered. Thermophysical properties of fluid are taken independent of temperature. 

This assumption sounds reasonable since temperature variations are not high enough to significantly 

change fluid properties [22-24]. 
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Fig. 2. Schematic diagram of the pipe and its thermal boundary conditions. 

 

The continuity, momentum and Giesekus constitutive equations (without retardation time) are: 
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 and  are the model parameters representing zero shear viscosity and zero shear relaxation time, 

respectively [25]. In particular, the zero shear relaxation time is corresponding to the time that the 

stresses arising from shear rate relax after the fluid motion has stopped, which is characteristic of 

viscoelastic fluids [26]. The model parameters are function of shear rate. They approach to a constant 

value at very low shear rate which are named zero shear model parameters. Parameter in Eq.3-c, lying 

in the range 10  [27] is a mobility factor. The term containing in the constitutive equation is 

attributed to anisotropic Brownian motion and/or anisotropic hydrodynamic drag on the constituent 

polymer molecules [23]. 

Dimensionless quantities are as follows: 
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Where U is the average velocity over cross-section of the pipe and described as follows: 
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3. Analytical solution 

3.1 Hydrodynamic solution 

The shear stress equation is derived from Eq 3-b as follows: 
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The shear rate equation was derived from Giesekus equation by Yoo and Choi [28] as follows: 
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De is the Deborah number, defined as ( RUDe  ), which is related to the level of fluid elasticity. 

The dimensionless form of the slip boundary conditions is as follows: 
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B and Bc are dimensionless slip number and dimensionless slip critical shear stress number respectively 

and are defined as follows: 
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The positive and negative signs of Eq.9 are referred to upper and lower branch solutions, respectively. 

Yoo and Choi [28] by employing thermodynamic considerations, and Schleiniger and Weinacht [29] using 

linear stability analysis and considering requirements arising from configuration tensor reached to the 

same restrictions for the case of no-solvent viscosity of Giesekus model as follows: 
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For the upper branch solution: 
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For the lower branch solution: 
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Since the Giesekus model exhibits unrealistic behavior in range 1
2

1
  [23, 28], the lower branch 

solution is not valid and only the upper branch solution (Eq.11-a) is considered.  

In order to reduce the complexity of the problem, an approximate solution approach which has been 

suggested in references [30-32] is employed. To do so, the term 
2*2241 rzDe τ in Eq. 9 can be 

expressed by a power series using the binominal expansion: 

2*222*22 2141 rzrz DeDe ττ           (13) 

 where all terms of higher order have been neglected compared to the leading term in the 

approximation which is valid for small values of
2*224 rzDe τ . Truncation error is less than 6% when 

2*224 rzDe τ is less than 1/2 (6% relative to the exact value of
2*2241 rzDe τ ). Therefore when 

214
2*22 rzDe τ  or Derz 221* τ , the accuracy of approximation is more than 94%. Noting that in 

equation ( Derz 221* τ ), *
rzτ  is function of De and , it therefore implicitly indicates conditions for 

having acceptable approximation errors. Hence the relevant constitutive stability condition, i.e. Eq. (11-

a) and the approximation validity condition i.e. Derz 221* τ  should be simultaneously satisfied [30- 

32]. It should be noted that including effect of slip condition causes *
rzτ  to largely reduce and thus 

2*224 rzDe τ  is much less than ½ for a wide range of and De and accuracy of approximation would be 

higher than 94%. Also slightly away from the wall, *
rzτ  decreases which causes 

2*224 rzDe τ to decrease 
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and thus accuracy increases again [4]. Approximated and exact solutions are compared in section 4. 

By substituting Eq. (13) in Eq. (9) and integrating, dimensionless velocity profile can be obtained as 

follows: 
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 is an unknown parameter in the velocity profile. To determine it, a dimensionless average velocity 

definition is employed. It can be noted that *

wu  depends on the critical shear stress via the term Bc. 

Dimensionless form of Eq. 7 is as below: 
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By integrating in Eq.15, the equation for determining is obtained as follows: 
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 is determined by solving  Eq. 16. 

 

3.2 Thermal solution 

Hydrodynamic solution has been determined in section 3.1. Since thermophysical parameters are 

assumed to be independent of the temperature, the hydrodynamic solution is decoupled from the 

energy equation. This allows us to determine the temperature profiles analytically. The energy equation 

with considering assumptions can be represented by the following equation: 
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Where cp,  and k are specific heat capacity , density and thermal conductivity of the fluid, respectively. 

T is temperature and is dissipation function which includes only the shear stress and shear rate for this 

flow. 
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The thermal boundary conditions are peripherally and axially constant heat flux at wall and symmetry at 

the axis. 
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For fully developed temperature profile, the following relation holds [33]: 
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Where Tw and Tb represent wall and bulk temperatures, respectively.  Bulk temperature is defined as 

follows: 
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For the imposed heat flux case, Eq.20 reduces to: 
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Applying energy balance over an infinitesimal element of fluid, dz, the following equation is obtained for 

axial gradient of fluid bulk temperature. 
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Eq.24 is obtained by combining Eqs. (17), (22) and (23) and using dimensionless terms. 

**

*

*

**
BrXu

r
r

rr



















1

         (24) 

Where 

 




1

0

*

*

*
**21 dr

r

u
rBrX            (25-a) 

*

*
**

r

u




 

           (25-b) 

Detail regarding X is presented in the Appendix A. 

  is the dimensionless local temperature and Br is the dimensionless Brinkman number, which is a 

measure of importance of the viscous dissipation term. 
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The dimensionless thermal boundary conditions are as follows: 
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Dimensionless temperature profile ( ) is obtained by integrating Eq. 24. 
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Expressions of U and   are presented in Appendix A. 

Since both boundary conditions are of second type, determination of C2 value is not possible directly. 

Hence, C2 is eliminated from Eq.29 by subtracting the dimensionless wall temperature ( w ) from the 

dimensionless temperature profile ( ) as shown below. 
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C1 can be obtained as follows: 
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By substituting temperature (T) from Eq. 26 into Eq. 21, the following expression for the dimensionless 

wall temperature is obtained after simplifications: 

  
1

0
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Details of mathematical process for deriving Eq.33 are in Appendix B. 

After numerical integration of Eq.(33),  we have access to the convective heat transfer between wall and 

fluid which is quantified by Nusselt number ( Nu ), defined as ( khRNu 2 ).The heat transfer coefficient 
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(h) is obtained from (  bww TThq  ). By using dimensionless temperature definition (Eq.26), the Nusselt 

number at wall becomes:  

wwNu 1            (34) 

 

4. Results and Discussion 

For the evaluation of our approximation accuracy, the numerical solving for hydrodynamic and energy 

differential equations is performed without considering the approximate assumption (Eq.13) by 

MATHEMATICA. A comparison between the exact numerical and approximate analytical solutions is 

made for the velocity and temperature profiles that are shown in Figs.3-a and 3-b. As it is seen, there is 

high compliance between results of two solutions. To go further in the thermal part, we have to use the 

approximated analytical method. 
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Fig.3- Dimensionless a- velocity profile for =0.1, De = 1, s = 1 and Bc = 0   b- temperature profile for =0.1, De = 1, s = 0.5 and 

Bc = 0.5. 

 

4.1 Wall heating 

Fig. 4 shows effect of slip number on velocity profile. It is seen that figure tends to no slip and full slip 

conditions for B =10000 and B = 0.001 respectively. For full slip case, uw = 1 and plug flow is recovered. 

In case of heat transfer it should be noted the viscoelastic fluid behavior during heating ( 0wq ) and 

a b 
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cooling ( 0wq ) processes is different. Figs. 5a-c show effects of Brinkman number and dimensionless 

slip parameters on Nusselt number for the case of wall heating. From Figs. 5a-c we can notice that the 

Nusselt number decreases when increasing the Brinkman number because the heat generation by 

viscous dissipation increases in this case. Since both shear stress and velocity gradient reach their 

maximum values adjacent to the walls and according to the viscous dissipation function (Eq. 18), the 

heat generation is stronger near the wall. Therefore, the difference between the wall temperature and 

the bulk temperature increases and according to the Nusselt number and dimensionless temperature 

expressions (Eqs. 34 and 26) the Nusselt number decreases.  
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Fig.4. Dimensionless velocity profile with variation of the B for =0.1, De = 1, s = 1 and Bc = 0. 
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Fig.5. Variation of Nuw versus Br in the case of fluid heating (Br>0) for =0.1, De=1 and  a- dimensionless slip number (B) at s=1 

and Bc=0  b- power law index of slip (s) at B=2 and Bc=0.5  c- dimensionless slip critical shear stress number (Bc) at B=4 and s=1. 

 

 

The slip effect on Nusselt number is significant. According to Eq.10, the slip velocity increases by 

decreasing slip number (B) and slip critical shear stress number (Bc) or increasing power law index of slip 

(s). Nusselt number increases by increasing slip effect because the slip effect decreases both shear stress 

and velocity gradient and therefore viscous dissipation is reduced. Decreasing viscous dissipation 

increases Nusselt number for the reason previously explained. For the full slip case, Nusselt number is 

independent of Brinkman number because both shear stress and velocity gradient tend to zero and as a 

b 

c 
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result viscous dissipation will be negligible. Figure 6 shows influences of slip parameters on 

dimensionless temperature distribution. Since the heat generation by viscous dissipation is reduced 

when slip is increased and since the effect of viscous dissipation is prominent at wall therefore the 

difference between the wall temperature and the fluid temperature decreases by increasing slip effect. 
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Fig.6. Dimensionless temperature profile with variation of a- dimensionless slip number (B) at s=1 and Bc=0.5   b- power law 

index of slip (s) at B=6 and Bc=1   c- dimensionless slip critical shear stress number (Bc) at B=5 and s=1 in the case of in the case 

of fluid heating (Br>0) for =0.1, De=1 and Br=1. 

 

4.2 Wall cooling 

 Wall cooling ( 0wq ) is applied to reduce the bulk temperature of fluid which is necessary in many 

industries. In these processes when viscous dissipation is low (small Brinkman number) the fluid 

temperature along the pipe decreases ( 0 zT ). By increasing Brinkman number the internal heat 

generation grows until a critical value for whom this generated heat overcomes the effect of wall 

cooling and fluid starts to warm up itself. This aforesaid critical Brinkman is called the first critical 

Brinkman number (Br1), and is determined by equating the dimensionless form of the bulk temperature 

gradient equation (Eq.25-a) to zero. 

 






1

0

*

*

*
**

1

2

1

dr
r

u
r

Br



          (35) 

Detail regarding Br1 is presented in the Appendix A. 

From Fig. 7 we remark that by increasing slip effect (decreasing B and Bc or increasing s), Br1 increases, 

corresponding to the extension of the fluid cooling range. Since the increasing slip effect reduces inside 

heat generation by viscous dissipation thus the cooling process can be occurred in the broader range of 

qw. Another investigations about elasticity effect on critical Brinkman number [24, 34] show that 

reduction of viscous dissipation by increasing elasticity has a similar influence with increasing slip effect 

on this critical Brinkman number (Br1) .   
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Fig.7. Variation of first critical Brinkman number (Br1) versus dimensionless slip number (B) in the case of fluid cooling (Br<0) for 

=0.1, De=1 and   a- power law index of slip (s) at Bc=0.2    b- dimensionless slip critical shear stress number (Bc) at s=1. 

 

Effects of Brinkman number and slip parameters on Nusselt number are shown in Fig.8 for the case of 

wall cooling. It is seen that Nusselt number is positive at low Brinkman numbers and shows a singularity 

in a Brinkman number larger than the first critical Brinkman which is called second critical Brinkman 

number (Br2). Eventually Nusselt number can be negative at high Brinkman numbers. In the case of wall 

cooling because of negative heat flux in the wall, the wall temperature is lower than the bulk 

temperature and since the flux sign is also negative according to the dimensionless temperature and 

Nusselt number expressions (Eqs. 26 and 34), Nusselt becomes positive. The growth of Brinkman 

number increases the heat generated by viscous dissipation. Since the heat generation is stronger near 

the wall, the difference between the bulk temperature and the wall temperature decreases and 

b 

a 
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subsequently Nusselt number increases. At the second critical Brinkman number the wall temperature 

will be equal to the bulk temperature and as a result Nusselt number approaches infinity. For 

|Br|>|Br2|, the wall temperature becomes higher than the bulk temperature and thus Nusselt becomes 

negative. Also if the Brinkman number increases even more, the difference between the wall 

temperature and the bulk temperature increases and Nusselt number approaches to zero. The second 

critical Brinkman number increases by increasing slip effect (increasing s or decreasing B and Bc) which 

means that the singularity in Nusselt curve occurs at higher Brinkman number. Because increasing slip 

effect decreases heat generated by viscous dissipation therefore, reduction of the difference between 

the bulk temperature and the wall temperature will be occur at higher Brinkman number. Also, 

increasing slip effect increases Nusselt number at negligible Brinkman number because slip effect causes 

to fluid flow rate increase adjacent to the wall and therefore, resistance to heat transfer between wall 

and fluid decreases. In this case viscous dissipation does not have a role in the variation of the Nusselt 

number. Viscous dissipation effect will be important at larger Brinkman number but leading to opposite 

behaviors when |Br|<|Br2| and |Br|>|Br2|. For |Br|<|Br2|, the wall temperature is lower than the bulk 

temperature. Since the slip effect reduces the heat generation by viscous dissipation therefore the 

difference between the bulk temperature and the wall temperature increases and consequently Nusselt 

number decreases. Reversely, when |Br|>|Br2| the wall temperature is higher than the bulk 

temperature and by increasing slip effect the difference between the wall temperature and the bulk 

temperature decreases and hence, Nusselt number increases. 
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Fig.8. Variation of Nuw versus Br in the case of fluid cooling (Br<0) for =0.1, De=1 and  a- dimensionless slip number (B) at s=1 

and Bc=0.2  b- power law index of slip (s) at B=3 and Bc=0.5  c- dimensionless slip critical shear stress number (Bc) at B=2 and 

s=1. 
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Fig.9. Dimensionless temperature profile with variation of a- Deborah number (De) at s=0.5, B=7, Bc=0.3,and Br=-0.4    

b- mobility factor () at s=1, B=5, Bc=0.5, De=1 and Br=-0.5     in the case of in the case of fluid cooling (Br<0). 

Fig.9 shows the effect of fluid elasticity (Deborah number and mobility factor) on dimensionless 

temperature distribution for fluid cooling case. As can be seen from the trend of temperature profile 

changes by increasing elasticity because the first critical Brinkman number (Br1) increases with the 

elasticity. This means that for higher values of elasticity (De=2 in Fig.9-a and 3.0  in Fig.9-b), |Br| is 

smaller than|Br1|and the fluid is cooling. For lower values of elasticity, |Br| is larger than|Br1|and the 

fluid is heating. For the cooling case the minimum temperature is at the wall. This is not the case for the  

heating case where the effect of viscous dissipation is strengthened due to decreasing elasticity. Since 

the effect of viscous dissipation is prominent at wall therefore the internal heat generated increases the 

wall temperature so that at small value of elasticity (De=0.1) the wall temperature will be higher than 

the bulk temperature. 

5. Conclusions 

Analytical solutions for hydrodynamics and convective heat transfer of viscoelastic fluid obeying 

Giesekus model was obtained in pipes under steady, laminar, thermal and hydrodynamical fully 

developed conditions. The nonlinear Navier slip law was employed at wall when the wall shear stress 

reaches a critical value which is known as slip critical shear stress. Thermal boundary condition was 

peripherally and axially constant heat flux at wall. Analysis was performed for both cases of fluid heating 

(Br > 0) and fluid cooling (Br < 0). Effects of slip parameters (B, Bc and s), viscous dissipation (Br) and 

fluid elasticity (De and ) were investigated on Nusselt number and dimensionless temperature profile. 

For the heating case, the Nusselt number increases when increasing the slip effect and decreases by 

increasing the Brinkman number. For the cooling case, when |Br|>|Br1| the heat generated internally 

by viscous dissipation overcomes the effect of wall cooling and fluid starts to warm up. Also the Nusselt 

curve showed a singularity in a second critical Brinkman number (Br2) and then change of sign. Slip 

effect reduces viscous dissipation, thus increasing the cooling range. 
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By using Eq.15, the bulk temperature becomes: 


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0

***2 TdrurTb
           (B-2) 

By substituting temperature (T) from Eq. 26 into Eq. B-2, the following expressions for the bulk 

temperature is obtained: 
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(B-3) 

Using Eq.15, we can write: 
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Consequently 
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(B-5) 

Since the wall temperature is not radial function (Θw=f(R)≠f(r)), we can write as follows: 
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*** 22 drurdrur www

         

(B-6) 

 

Finally Eq.B-7 is obtained by subtraction of Eq. B-6 from B-5. 
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