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ABSTRACT
This paper proposes a �xed-time di�erentiator running in parallel with a feedback
linearization-based controller, which allows quadrotors to track a given trajectory.
The �xed-time di�erentiator estimates outputs' derivatives in a prede�ned conver-
gence time, largely compensating for initial condition problems and solving the delay
problem. Combined with a state reconstruction step, a whole observer-estimator-
controller scheme for trajectory tracking problem of quadrotors can be constructed.
Also, an LMI optimization-based algorithm to tune parameters of the di�erentiator
is also developed here. The high performance of the proposed model is illustrated
by simulation results.

KEYWORDS
Fixed-time di�erentiator, LMI optimization, Feedback linearization, Trajectory
tracking.

1. Introduction

Compared with �xed-wing aircrafts and helicopters, quadrotors are easier to use in the
case of speci�c tasks with good performance and a high level of autonomy, see Austin
(2010) and Quan (2017). A quadrotor is a nonlinear under-actuated dynamic system
with four control inputs and six degrees of freedom, as is explained in Mahony, Kumar,
and Corke (2012), Balas (2007), and Quan (2017). Therefore, the control problem of
trajectory tracking for a quadrotor is highly demanding not only for the nonlinearity
but also for the stability, the robustness, and dynamic properties.

In order to guarantee the agility and the controllability of quadrotors, the 
ight con-
trol system should be able to track given trajectories with high accuracy. Numerous
kinds of research have been conducted to study tracking control problem of quadro-
tors. Bouabdallah (2006) applied some generally used control methods to quadrotors,
such as the PID technique, the LQR control method, etc. Then, Bouabdallah and
Siegwart (2007) proposed a combination of PID and back-stepping approach Then a
combination of has been proposed for attitude, altitude and position control respec-
tively, aiming to solve tracking control problem of quadrotors. In the paper of Adigbli,
Grand, Mouret, and Doncieux (2007), three control approaches { back-stepping con-
troller, sliding mode controller, and feedback controller { were designed for quadrotor
to track set-points. Also, their performances were compared. A discrete PID controller
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for quadrotors was developed by Khan and Kadri (2014), permitting the quadrotor to
move in space. And the results have been validated by a hardware-in-loop simulation.

Most of these studies employ a hierarchical control scheme consisting of attitude
control, altitude control and position control to realize an autonomous trajectory track-
ing, as is shown in Fig.1. Since the quadrotor dynamic system is nonlinear and under-
actuated, the central issue of the trajectory tracking control problem is the decoupling
problem.

Position 
controller

Altitude 
controller

Attitude 
planner

Attitude 
controller

dX

dY

dZ

dy

1 2,u u

4u

3u

Quadrotor 
dynamics

X, Y

y Z

Figure 1. A hierarchical control scheme for autonomous trajectory tracking

However, the hierarchical control scheme is based on an approximate linear model,
which decouples the control problem by approximation around given set-points. This
approximation results in limits for the pitch and roll angles of quadrotors. To avoid
problems caused by the small-angle approximation, researchers proposed numerous
advanced control methods, such as the feedback linearization method mentioned in
the book of Isidori (1989), the �xed-time stabilization studied by Polyakov (2012),
etc. The feedback linearization method is an exact linearization from the point of
view of global input-output linearization, see Nijmeijer and van der Schaft (1990).
The feedback linearization-based controller can render the quadrotor dynamic system
linear and controllable. Moreover, in the paper of Mistler, Benallegue, and M'Sirdi
(2001), simulations were also carried out to con�rm the stability and the robustness of
the vehicle in the presence of environmental disturbances and parametric uncertainties.
However, this approach requires full information of the system states, including the
third derivatives of the output signals. Thus an e�cient di�erentiator design for the
output signals becomes indispensable.

The real-time di�erentiation has always been an interesting and highly demanding
problem, regarding the combination between robustness and exactness with respect
to noises and measurement errors. Various kinds of research have been conducted to
design a robust exact di�erentiator for both linear and nonlinear systems. In the paper
of Cruz-Zavala, Moreno, and Fridman (2010), a super-twisting algorithm-based uni-
form robust exact di�erentiator was studied, which provides exact derivatives of the
input in a �nite convergence time. Another commonly used approach is the high order
sliding mode di�erentiator (HOSM), see Levant (1998), etc. The high order sliding
mode di�erentiator is a classical approach for its insensitivity to unknown inputs and
its �nite-time convergence1 property, as in Levant (2003). The convergence time of

1A system is called �nite-time stable means that the system reaches in the steady state and remains there in

2



this type of di�erentiators varies with di�erent initial conditions. Slow response times,
however, may lead to severe problems in practical applications. Therefore, more and
more researchers began to focus on �xed-time di�erentiators2, of which the conver-
gence time is bounded by a �xed value independent of initial conditions, see Polyakov,
E�mov, and Perruquetti (2015a). Moreover, hybrid �xed-time di�erentiators have also
become a focus recently. Angulo, Moreno, and Fridman (2013) propose an arbitrary-
order di�erentiator which provides the uniform convergence property within a �nite
settling time. This kind of di�erentiator design guarantees the exactness of the deriva-
tives' estimation in a �nite time and the independence to various initial di�erentiation
errors. Similarly, in the paper of Rio and Teel (2016), a hybrid �xed-time observer for
single output linear system was studied, which also combines the exactness property
after a �xed time and the uniform convergence property.

As the feedback linearization approach transforms the nonlinear quadrotor dynamic
system into a linear form where the controller requires the third derivatives of the sys-
tem states, it is instrumental to introduce a real-time di�erentiator as an observer
and an estimator in the control loop. A high order sliding mode di�erentiator is an
appropriate approach for its insensitivity to disturbances and �nite-time transient. In
the paper of Benallegue, Mokhtari, and Fridman (2007), a high-order sliding mode
observer was designed for quadrotors which provides satisfying control performance in
the case of external disturbances and parametric uncertainties. To guarantee a faster
response time with respect to signi�cant deviations from equilibrium, a �xed-time dif-
ferentiator is more suitable for practical applications, such as the quadrotor dynamics.
A primary di�culty of the �xed-time di�erentiator applications is the parameter tun-
ing problem, which is directly related to the �xed settling time. In the paper of Basin,
Yu, and Shtessel (2016), non-recursive higher order sliding mode di�erentiators with
�nite and �xed convergence time were studied. The settling time, however, is implicit
and the time estimation is slightly complicated.

The main contribution of this paper is to apply a �xed-time di�erentiator for quadro-
tor model to estimate outputs' derivatives, running in parallel with a dynamic feedback
linearization-based controller. The convergence time of di�erentiators is bounded by
a �xed value independent of the initial di�erentiation error. Furthermore, using an
LMI optimization-based parameter tuning algorithm, the gain matrix of di�erentia-
tors as well as the convergence time can be quickly settled. A control strategy com-
parison to the commonly used PID technique has been given to illustrate the perfor-
mance of the feedback linearization-based controller. Numerical simulations have been
conducted at the end to present the computation of the whole observer-estimator-
controller model and the e�ectiveness of the proposed scheme for trajectory tracking
problems of quadrotors.

The remainder of this paper is organized as follows: Section 2 introduces the quadro-
tor dynamics. In section 3, the dynamic feedback control approach is presented based
on the nonlinear model of the vehicle. Feedback linearization-based controllers are de-
termined in a disturbance-free case as well as in the presence of unknown but bounded
aerodynamic disturbances and measurement noises. Section 4 focuses on the �xed-time
di�erentiator design in the two cases. Then, numerical simulations are carried out to
illustrate the e�ciency of the whole observer-estimator-controller model.

a �nite time T (x0 ). The settling time T (x0 ) is a �nite value variant with initial conditions.
2A system is called �xed-time stable means that the system reaches in the steady state and remains there in

a �xed time T . The settling time T is a uniform value for a set of admissible initial states within the attraction
domain.
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2. Quadrotor dynamics

The quadrotor is a nonlinear under-actuated dynamic system with four inputs and six
degrees of freedom. It is composed of four individual rotors and a rigid cross airframe.
Di�erent motions are accomplished by changing the angular speed of propellers, which
further change the thrust and moments.

Thrust
Reaction torque

iy
iz

ix

bz
by

bx

y

q

f

[ ] T
X Y Z

Figure 2. Quadcopter's dynamic scheme

In order to derive kinematic and dynamic equations of the quadrotor, two frames of
reference should be introduced �rst. The inertial frame is associated with the ground,
as is shown in Fig. 2, with gravity pointing in the negative z direction3. The vector
P =

�
X Y Z

� T denotes the position of the center of mass of the vehicle. And the

vector V =
�
Vx Vy Vz

� T denotes the linear velocity of the vehicle. The body �xed
frame is associated with the vehicle and de�ned by the orientation of the quadrotor.

Here Euler angles � =
�
 � �

� T are used to model the attitude of the quadrotor.
These angles are denoted by yaw angle (� � �  < � ), pitch angle � (� �

2 < � < �
2 ),

and roll angle � (� �
2 < � < �

2 ) respectively. And the vector ! =
�
p q r

� T denotes the
angular velocity, which is derivatives of Euler angles with respect to time, expressed
in the body frame. The rotation order from the inertial frame to the body frame is the
yaw angle  about the z, then the pitch angle � about y , and the roll angle � about
x . Thus the rotation matrix is as follows4:

R =

2

4
C C� C S�S� � S C C S�C� + S�S 
C�S S S�S� + C C� S S�C� � C S�
� S� C�S� C�C�

3

5

3 In this paper, x ; y ; z in lower-case letters denote the three directions associated with the earth coordinate
system.

4 In this paper, S, C, T and Se denote respectively sin , cos, tan and sec.

4



J denotes the inertia matrix:

J =

2

4
I x 0 0
0 I y 0
0 0 I z

3

5

The rigid body equations of motion are:

_P = V

m _V =
X

Fext

_� = W!

J _! = � ! � (J! ) +
X

� ext

(1)

where

W =

2

4
0 S�S e� C�S e�
0 C� � S�
1 S�T � C�T �

3

5

Let m denote the mass of the quadrotor,l is the characteristic distance of the
vehicle, and g is the gravity constant. u =

�
u1 u2 u3 u4

� T is control input, with
u1 = F1 + F2 + F3 + F4, u2 = l(F4 � F2), u3 = l(F3 � F1), u4 = c(F1 � F2 + F3 � F4),
where F1, F2, F3, F4 are thrusts of each rotor, and c is the force-to-moment scaling
factor.

Let Fx , Fy and Fz denote the resulting aerodynamic forces acting on the vehicle
in the direction x , y , z respectively. Similarly, M p, M q and M r denote the resulting
aerodynamic moments.

P
Fext and

P
� ext represent respectively the external forces

and torques:

X
Fext =

2

4
Fx � (C S�C� + S�S )u1
Fy � (S S�C� � C S� )u1

Fz + mg � C�C�u 1

3

5 ;
X

� ext =

2

4
M p + u2l
M q + u3l
M r + u4l

3

5

Remark 1. In fact, the aerodynamic forces and moments have not been taken into
account in various kinds of literature, i.e., Fx = Fy = Fz = M p = M q = M r = 0. To be
more realistic, this paper regards those forces and moments as unknown, but bounded
disturbances, which will be analyzed in section 3.2.2.

3. Feedback Linearization

As mentioned in the introduction, the feedback linearization is a common method used
in nonlinear system control of the following form:

_x = f (x) + g(x)u

y = h(x)

5



where x 2 Rn is the state vector, y 2 Rm is the output vector and u 2 Rp is the
input vector. The objective of this approach is to design a suitable control input with
u = � (x) + � (x)v that renders a linear input-output map between the new control
input v and the system output y.

The essence of the feedback linearization is a transformation from the original non-
linear system to an equivalent linear system by a change of variables and a proper
control input. To ensure that the transformed system is equivalent to the original
one, the transformation must be a di�eomorphism. That is, the transformation should
not only be invertible, i.e., bijective, but both the transformation and its inverse are
smooth enough so that the di�erentiability in the original coordinate system can be
preserved in the new coordinate system.

3.1. Reformulation of quadrotors' dynamics

The quadrotors' dynamics have been given in section 2. As we can notice from the
second equation of system (1), linear accelerations•X , •Y and •Z are a�ected only by
the control input u1, which may make this control problem unsolvable. A practical
approach is to introduce a chain of double integrators to delay the appearance ofu1
in derivatives of X , Y and Z , which is the so-called dynamic feedback control law, as
is proved in Mistler et al. (2001).

Introduce a chain of integrators to the dynamic system and de�ne a new control
input �u instead of u:

u1 = � ; _� = � ; _� = �u1

u2 = �u2; u3 = �u3; u4 = �u4

The system state x = [ X Y Z  � � V x Vy Vz � � p q r ]T , and the out-

put y =
�
y1 y2 y3 y4

� T = Cx =
�
X Y Z  

� T with C =
�
I 4 04� 8

�
. Let

� =
�
� 1 � 2 � 3 � 4

� T be a bounded measurement noise and�d denote a bounded
aerodynamic disturbance. The quadrotor dynamics can be reformulated as follows:

_x = f (x) +
4X

i =1

gi (x)�ui + �d

y = h(x) = Cx + �

(2)
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where

f (x) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

Vx
Vy
Vz

S�
C� q + C�

C� r
C�q � S�r

p + qT �S� + rC�T �
� 1

m (C�C S� + S�S )�
� 1

m (C�S S� � S�C )�
g � 1

m (C�C� )�
�
0

(I y � I z )
I x

qr
(I z � I x )

I y
pr

(I x � I y )
I z

pq

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

g1(x) = [0 0 0 0 0 0 0 0 0 0 1 0 0 0]T

g2(x) = [0 0 0 0 0 0 0 0 0 0 0
d
I x

0 0]T

g3(x) = [0 0 0 0 0 0 0 0 0 0 0 0
d
I y

0]T

g4(x) = [0 0 0 0 0 0 0 0 0 0 1 0 0
d
I z

]T

�d(t) = [0 0 0 0 0 0
Fx

m
Fy

m
Fz

m
0 0

M p

I x

M q

I y

M r

I z
]T

3.2. Feedback linearization-based controller

In this section, we �rst investigate the dynamics (2) of quadrotors without disturbance
�d ni measurement noise� , and then discuss the robustness for the obtained results
when exogenous disturbance and measurement noise are involved.

3.2.1. An ideal situation without disturbance ni noise

In the disturbance- and noise-free case, the dynamic system (2) can be simpli�ed as
follows:

_x = f (x) +
4X

i =1

gi (x)�ui

y = h(x) = Cx

(3)

For the given outputs of system (3), it is easy to verify that its relative degree5
�
r1 r2 r3 r4

�
is given by:

r1 = r2 = r3 = 4 ; r4 = 2

5The relative degree of a system is the number of times of di�erentiations of the output y before the control
input u appears explicitly. This is a notion that derives from Lie derivative.
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As we can notice, the dimension of system (3) is equal to 14, and its relative degrees
satis�es

4X

i =1

r i = n = 14

According to Isidori (1989), the above equality implies that system (3) can be fully
linearized without internal dynamics (i.e., the zero dynamics of the transformed system
has zero dimension) by using the following di�eomorphism

z = �( x) =
�
h1; L f h1; � � � ; L 3

f h1; � � � ; h3; L f h3; � � � ; L 3
f h3; h4; L f h4

� T
(4)

yielding

_z = Az + B (b(z) + �( z)�u)

y = Cz
(5)

where b(z) and �( z) are determined by Lie derivative6:

�( z) =

2

6
4

L g1 L r 1 � 1
f h1 � � � L g4 L r 1 � 1

f h1
...

. . .
...

L g1 L r 4 � 1
f h4 � � � L g4 L r 4 � 1

f h4

3

7
5

jx =� � 1 ( z )

b(z) =

2

6
4

L r 1

f h1
...

L r 4

f h4

3

7
5

jx =� � 1 ( z )

(6)

and

A =

2

6
6
4

A1 0 0 0
0 A1 0 0
0 0 A1 0
0 0 0 A2

3

7
7
5 B =

2

6
6
4

B1
B2
B3
B4

3

7
7
5 C =

2

6
6
4

C1 0 0 0
0 C1 0 0
0 0 C1 0
0 0 0 C2

3

7
7
5

with

A1 =

2

6
6
4

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

7
7
5 A2 =

�
0 1
0 0

�

B1 =

2

6
6
4

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

3

7
7
5 B2 =

2

6
6
4

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

3

7
7
5 B3 =

2

6
6
4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

3

7
7
5 B4 =

�
0 0 0 0
0 0 0 1

�

C1 =
�
1 0 0 0

�
C2 =

�
1 0

�

6By de�nition, L f h(x) =
P n

i =1
@h
@xi

f i (x); L k
f h(x) = L f (L k � 1

f h(x))
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It can be checked that the matrix �( z) de�ned in (6) is non-singular everywhere 7

in the zone � 6= 0, � �
2 < � < �

2 and � �
2 < � < �

2 , which means that technically, there
is no more limit for the pitch and roll angles.

The dynamic feedback approach transforms the original 12-dimensional system (1)
into a 14-dimensional system (5) by introducing a chain of integrators. Thus, the goal
is to design a proper controller to stabilize the outputs of the system (5).

Since �( z) is non-singular, by applying the following control law:

�u = � (z) + � (z)v (7)

where � (z) and � (z) are given by

� (z) = � � � 1(z)b(z)

� (z) = � � 1(z)

then system (5) can be rewritten as

_z = Az + Bv

y = Cz
(8)

for which di�erent types of controllers can be easily designed.

3.2.2. In the presence of external disturbance and measurement noise

This subsection analyzes the disturbed dynamics of quadrotors.
By applying the same di�eomorphism (4), the system (2) can be transformed into

_z = Az + B (b(z) + �( z)�u) + d(t)

y = Cz + � (t)
(9)

where A, B , C, b(z) and �( z) are the same as those de�ned in subsection 3.2.1, and

d(t) =
@�( x)

@x jx =� � 1 ( z )

�d(t) (10)

As �d(t) and �( x) is a di�eomorphism, d(t) is also bounded. In the bounded distur-
bance case, the objective is to design a proper controller such that the quadrotor can
practically track the desired trajectory, i.e., converge into an acceptable neighborhood
of the desired trajectory.

In the next section, a �xed-time di�erentiator will be designed for each subsystem in
order to estimate z of the disturbed system (9) with bounded errors and to reconstruct
necessary information for the controller. The e�ciency of this control strategy has been
proved by a simulation comparison with the PID control strategy in the subsequent
section.

7The non-singularity of �( x) has been proved in the paper of Mistler et al. (2001), we use directly the
conclusion here.
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4. Fixed-time di�erentiators with parameter tuning algorithm

Real-time di�erentiation with convergence time constraints is a widely studied ap-
proach based on weighted homogeneity and implicit Lyapunov function, see Polyakov
et al. (2015a). Due to the adjustability of the convergence time and the insensitivity to
unknown inputs, the �xed-time di�erentiator is more attractive to be developed. Pa-
rameter tuning of the �xed-time di�erentiator, however, is still the toughest problem
for implementation. In the paper of Lopez-Ramirez, Polyakov, E�mov, and Perru-
quetti (2016), an iteration algorithm with high e�ciency has been proposed to tune
the gain matrix of observation by using a Linear Matrix Inequality (LMI) optimization
method. In the case of the quadrotor model, a simpli�ed LMI-based parameter tuning
algorithm can be developed for the �xed-time di�erentiators of each subsystem. The
prede�ned �xed convergence time can be quickly settled via this algorithm.

4.1. Fixed-time di�erentiators

As presented in the previous section, the system has been transformed into four linear
subsystems ofz1, z2, z3 and z4, which correspond to the four channelsX , Y , Z and  
respectively. Each subsystem consists of one output signal and its derivatives. Thus,
four �xed-time di�erentiators should be designed separately to observe the states of
each subsystem. The �xed-time di�erentiator design and algorithms are identical for
X , Y , Z , and are also similar for  , due to the similarity of these subsystems, as in
(5). So in this section, both the theoretical method and computational approach are
presented only for the �rst subsystem of z1.

Consider the subsystem ofz1 =
�
X _X •X

...
X

� T
:

_z1 = A1z1 + B1(b(z) + �( z)�u) + d1(t)

y1 = C1z1 + � 1
(11)

where A1, B1 and C1 are the �rst matrix blocks of A, B , C de�ned in (5), and d1(t)
is the �rst 4 rows of d(t) de�ned in (10).

The observer of this subsystem is in this form:

_̂z1 = A1ẑ1 + B1 (b(ẑ) + �(^ z)�u) + G(y1 � C1ẑ1) (12)

where

G(� ) = (
1
2

(D ~r (j� j � 1) + D ~r (j� j))L )�

with L the gain matrix to be tuned, and D ~r the diagonal dilatation matrix in the form
(m = 4 for the subsystem (11)):

D ~r (� ) =

2

6
6
4

� ~r 1 0 ::: 0
0 � ~r 2 ::: 0
::: ::: ::: :::
0 0 ::: � ~r m

3

7
7
5

with ~r =
h

�
1+( m� 1)�

2�
1+( m� 1)� ::: m�

1+( m� 1)�

i T
.
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The error equation for e1 = �( z1 � ẑ1) has the form:

_e1 = ( A1 +
1
2

f D ~r (jjC1e1 + � 1jj � 1) + D ~r (jjC1e1 + � 1jj )gL ~C1)e1 + � � 1

where � � 1 = B1(b(z) � b(ẑ) + (�( z) � �(^z))�u) + d1(t) is bounded. It should be noted
that in the disturbance free-case the error equation of the �xed-time di�erentiator (12)
is a system homogeneous in the bi-limit for � � 1 = 0, � 1 = 0 (see Andrieu, Praly, and
Astol� (2008) for more details about local homogeneity).

Let us denote

r i = ( � 1)i ~r + [1 +
(� 1)i +1 �

1 + ( m � 1)�
](1; :::; 1)T

H i = diag(( r i )1; (r i )2; :::; (r i )m )

�� i (�; 
 ) =
�
2

�
D ~r (


 i � 1

�
) + D ~r (

�

 i � 2 ) � 2I m

�

� > 0; 
 > 0; i = 1 ; 2

With m = 4, ~r =
h

�
1+3 �

2�
1+3 �

3�
1+3 �

4�
1+3 �

i T
, then r i and H i (i 2 f 1; 2g) can be

determined

r1 = (1 +
�

1 + 3�
)
�
1 1 1 1

� T � ~r ; r2 = (1 �
�

1 + 3�
)
�
1 1 1 1

� T + ~r

H i = diag(r i )

Theorem 4.1. (Lopez-Ramirez et al. (2016))
Let � 1 = 0 ; � � 1 = 0 of the �rst subsystem in system (5) and for some� 2 (0; 1),

� > 0 the system of matrix inequalities

P > 0 ; Z i > 0 ; for i = 1 ; 2:
�
PA1 + A1P + ~CT Y + Y T ~C + � (P + PH i + H i P) P

P � Z i

�
� 0 (13)

�
�I k Y
Y T P

�
� 0 (14)

PH i + H i P > 0 ; P � � ~CT ~C ~CT ~C ; 0 < � < 1 (15)

�� i (�; 
 )Z i �� i (�; 
 ) � P ; 8� 2 (0; � � 1
2 ] ; 8
 2 (0; 1] (16)

be feasible withP, Z1,Z2 2 Rn� n , Y 2 Rn1 � n , then the error equation with L = Y P� 1

is globally �xed-time stable with Tmax � 21+( m� 1)�
�� .

This theorem ensures the stability of the observer and provides a possibility to adjust
convergence time independently of initial conditions. In particular, � is the parameter
for tuning of Tmax . To avoid some unstable behavior of the closed-loop system during
the convergence phase some output based (e.g. PI controller) can be utilized on the
time interval [0 ; Tmax ]. The proof of Theorem 4.1 is based on the weighted homogeneity
and the implicit Lyapunov function method, as in Polyakov, E�mov, and Perruquetti
(2015b).
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As mentioned LMIs should be checked for all� 2 [0; � � 1
2 ], the inequality (16) is too

complicated to implement in practice. In order to simplify this inequality, a proposition
is taken as:

Proposition 4.2. (Lopez-Ramirez et al. (2016))
Let 0 = � 0 < � 1 < ::: < � N 1 = � � 1

2 and 0 = 
 0 < 
 1 < ::: < 
 N 2 = 1 for some �xed
� 2 (0; 1). If the matrices Si , Z i , Ri , M i , Ui 2 Rn� n and the number� > 0 satisfy the
following LMIs

Si > 0; Z i > 0; Ri > 0; M i > 0; Ui > 0

Si H ~r + H ~r Si > 0 (17)
�

2Z i � Z i H ~r � H ~r Z i 2Z i + Z i H ~r � H ~r Z i 2Z i � H ~r Z i
2Z i � Z i H ~r + H ~r Z i 2Z i + Z i H ~r + H ~r Z i + Si 2Z i + H ~r Z i

2Z i � Z i H ~r 2Z i + Z i H ~r 2Z i + R i

�
� 0 (18)

�
Z i H ~r + H ~r Z i � �Z i H ~r Z i � �Z i

Z i H ~r � �Z i M i � �Z i

�
� 0 (19)

�
2M i + ( � 1)i (H ~r M i + M i H ~r ) 2M i + ( � 1)i H ~r M i

2M i + ( � 1)i M i H ~r Ui

�
� 0 (20)

�� i (� j ; 
 s)Z i �� i (� j ; 
 s) + ( � j � � j � 1)Ri +
� j � � j � 1

4
D ~r (

� j


 i � 2
s

)Si D ~r (
� j


 i � 2
s

)

+

 �

s � 
 �
s� 1

�
 �
s

( �� i (� j ; 0)M i �� i (� j ; 0) + ( � j � � j � 1)Ui ) � P

(21)

i = 1 ; 2; j = 1 ; 2; :::; N1; s = 1 ; 2;:::; N2

then the inequality (16) holds.

This proposition provides su�cient feasibility of the inequality (16), which allows
developing an iteration parameter tuning algorithm with �xed � and � . Based on the
theorem and the proposition, a simple computational algorithm to tune the gain matrix
L for a quadrotor is developed in this paper, which largely reduces the computational
complexity.

The basic idea of the algorithm is straightforward, which is based on the smooth-
ness of the function � with respect to � : to execute the LMI optimization with a
small size of grid constructed over� 2 [0; � � 1

2 ] and 
 2 (0; 1), and then to check the
obtained solution with the tightest parametric matrix condition. It can be mathemat-
ically proved that when � tends to be small enough, and� tends to be large enough,
the optimization with the parametric conditions mentioned above is nearly feasible.

First, use a small number of � and 
 to execute the optimization with the LMI
conditions (14) � (16) and (18) � (22). As the inequality (17) is a tighter condition
than the inequalities in the proposition 4.2, then the obtained results are required
to be examined by the inequality (17) with a more compact grid of � and 
 . If the
inequality (17) is satis�ed, then the obtained matrix L is applicable for the �xed-time
di�erentiators. If not, it is necessary to re-execute the �rst step with a larger size grid
of � and 
 . By means of this algorithm, the computation complexity can be largely
reduced. And the desired convergence time can also be clearly settled by adjusting the
two parameters � and � .
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Algorithm 1 Parameter tuning algorithm for �xed-time di�erentiators
Require: � , �
Ensure: the optimal gain matrix L

function DifferentiatorParameter (� , � )
N  10
while Cond ! = right do

L  LMIoptimization (N , � , � )
M  10� N
Cond  LMIcheck (M , � , � )
N  N + 10

end while
return L

end function

function LMIoptimization (N , � , � )
L  LMIs ((14), (15), (16), (18), (19), (20), (21), (22))
return L

end function

function LMIcheck (M , � , � )
Cond  LMIs ((17))
return Cond

end function

As the �xed-time di�erentiator designs for X , Y and Z are identical, the gain matrix
L is also the same for these three subsystems. In terms of the estimation, another
two-dimensional gain matrix should be computed with the same algorithm.

Corollary 4.3. (Lopez-Ramirez, Polyakov, E�mov, and Perruquetti (2018))
Let conditions of Theorem 4.1 hold, but � 1 6= 0 and � � 1 6= 0 . Then the observer

error dynamics is input-to-state stable with respect to� � 1 and � 1.

For more details about input-to-state stability (ISS), readers can refer to Sontag
and Wang (1996). Robustness analysis of homogeneous (in the bi-limit) systems is
presented in Andrieu et al. (2008). In our case, it implies that kz(t) � ẑ(t)k � 
 (c)
for t � Tmax , where c � maxfk � k; k� � kg and 
 : [0; + 1 ) ! [0; + 1 ) is a continuous
strictly monotone function such that 
 (0) = 0, 
 (s) > 0 if s > 0.

4.2. State reconstruction

Fixed-time di�erentiators presented above work as an observer for the output signal�
X Y Z  

�
and its derivatives. However, the observed values do not involve all

variables of the original system. In order to obtain the full state information, the
missed variables� , � , p, q and r should be reconstructed from observed values and
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nonlinear dynamic system (2). So�̂ and �̂ can be deduced as follows:

�̂ = arcsin (
� m( •̂XS � •̂Y C )

�
)

�̂ =
1

C�̂
arcsin (

� m( •̂XC + •̂Y S )
�

)

From the third equation of system (1), we know that the variables
�
p̂ q̂ r̂

�
can be

determined from angular velocity via the transformation matrix W . Therefore, _̂� and
_̂� should be deduced �rst.

_̂� = �
1

C�̂C �̂ 2�
f m

...
X̂ (S�̂S �̂S + C C �̂ ) + m

...
Ŷ (C�̂S � S�̂C S �̂ ) + _̂ �C �̂S �̂C �̂ 2 � �S �̂ g

_̂� =
1

�C �̂
f� m

...
X̂S + m

...
Ŷ C +  �C �̂S �̂ + �S �̂ g

Then the variables
�
p̂ q̂ r̂

�
can be calculated by the following formula:

2

4
p̂
q̂
r̂

3

5 =

2

4
1 T �̂S �̂ T �̂C �̂
0 C�̂ � S�̂
0 S�̂S e�̂ C �̂S e�̂

3

5

� 1 2

6
4

_̂�
_̂�
_̂ 

3

7
5

By means of the state reconstruction step, the full system states have been obtained
based on the values estimated by the �xed-time di�erentiators. All necessary informa-
tion acquired by the feedback linearization-based controller is available for the whole
closed loop.

4.3. Outer loop design

As we have mentioned previously, an outer-loop strategy can be applied to the linear
control system after the input-output feedback linearization.

Di�erent types of control laws can be used for the outer loop of the system, whether
linear or nonlinear controllers, such as the polynomial controller, �xed-time controller,
etc.

Following the formula (7) let us de�ne the control u as

u = � (ẑ) + � (ẑ)v

where

v1 = X (4)
d � K 4

...
e11 � K 3•e11 � K 2 _e11 � K 1e11

v2 = Y (4)
d � K 4

...
e12 � K 3•e12 � K 2 _e12 � K 1e12

v3 = Z (4)
d � K 4

...
e13 � K 3•e13 � K 2 _e13 � K 1e13

v4 = • d � K 6 _e2 � K 5e2
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where X d, Yd, Zd and  d represent the desired reference signals,e11 = X̂ � X d,
e12 = Ŷ � Yd, e13 = Ẑ � Zd, e2 =  ̂ �  d are the error signals, andK i with i 2 [1; 6]
are the coe�cients to be chosen to assign suitable eigenvalues. If ^z = z then the
closed-loop system has form (8). This means that the equation describing evolution
of the tracking error is linear and globally asymptotically stable. Consequently, it is
input-to-state stable with respect to additive bounded perturbations, due to state
estimation error kz � ẑk � 
 (c) and the unknown exogenous disturbance�d 6= 0.
Therefore, the practical stability of the error equation can be proved in the case of
noised measurement and exogenous disturbances. The detailed qualitative analysis of
the tracking error goes out of the scope of this paper and considered as an important
problem for future research.

The whole observer-estimator-controller closed-loop system is presented in Fig. 3.
By introducing a chain of double integrators, the feedback linearization approach
transforms the dynamic system into four linear and controllable subsystems which
correspond to the four output signalsX , Y , Z and  . The original nonlinear system
is transformed into a set of independent channels. A �xed-time di�erentiator has been
designed for each channel to observe and to estimate the output signals and its deriva-
tives. Based on the values estimated by the �xed-time di�erentiators, the full state
information required by the controller can be then deduced mathematically. Finally,
a linear or a nonlinear control law can be implemented to the outer loop to render
the system closed. The application of the �xed-time di�erentiator allows to realize the
separation principle in nonlinear system. Since it converges within a �xed timeTmax ,
the whole system state is known fort � Tmax . Therefore, the controller using the full
state estimation of the system can be e�ectively applied fort � Tmax .

Control law

Fixed-time 
differentiators

State 
reconstruction

dX

dY

dZ
dy

2u
x

Quadrotor 
dynamics

x

1v

2v

3v

4v

(x)u x va b= ( )+
1u

2u

3u

4u

ò ò X

Y

Z
y

1uh =

3u
4u

Figure 3. Observer-controller closed-loop system
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5. Simulation study

In this section, some simulations have been conducted to illustrate the theoretically
established model. Parameters of the quadrotor model used here are:

m = 2kg d = 0 :1m g = 9 :81m=s2

I x = I y = I z = 1 :2416N � m=rad=s2

In order to verify the e�ectiveness of the �xed-time di�erentiators in the following
study, the same trajectory has been imposed forX , Y , Z and  for all simulations,
which is a continuous trajectory from 0 to 1 in 30 seconds.

5.1. Control strategy comparison

Before further presenting the whole observer-estimator-controller model, a simple com-
parison between the feedback linearization-based control strategy and the PID control
strategy has been given.

The state vector is de�ned asx = [ p q r � �  V x Vy Vz X Y Z ]T . The PID control
approach is applicable on a linear zone where the angles� and � are small enough
(< 20� ). In this linear zone, the rotation matrix R, the matrix W , as well as the
quadrotor dynamic functions (1) can be simpli�ed. Thus, a linearized dynamic system
has been obtained as follows:

2

4
_x1
_x2
_x3

3

5 = J � 1(� �

2

4
0 � x3 x2
x3 0 � x1

� x2 x1 0

3

5 J

2

4
x1
x2
x3

3

5 )

2

4
_x4
_x5
_x6

3

5 =

2

4
1 tan(x5)sin (x4) tan(x5)cos(x4)
0 cos(x4) � sin (x4)
0 sin (x4)=cos(x5) cos(x4)=cos(x5)

3

5

2

4
x1
x2
x3

3

5

2

4
_x7
_x8
_x9

3

5 =

2

4
0
0
g

3

5 �
f
m

2

4
cos(x6)sin (x5)cos(x4) + sin (x4)sin (x6)
sin (x6)sin (x5)cos(x4) � cos(x6)sin (x4)

cos(x4)cos(x5)

3

5

2

4
_x10
_x11
_x12

3

5 =

2

4
x7
x8
x9

3

5

A hierarchical PID control approach, mentioned in the introduction, has been ap-
plied into this linearized system. Two PD controllers have been used in the position
controller to obtain •X and •Y , which further determine the desired angles� d and � d
in the attitude planner. A PD controller has been used in the altitude controller for
the channel of Z . Based on the angle errors �� , � � and �  , another PID controller
has been used in the attitude controller to guarantee an exponential stability and to
give the �nal commands to the dynamical system.

Simulation results of the PID control strategy and the feedback linearization control
strategy have been given in the Fig.4. It can be noticed that the feedback linearization
controller used for the trajectory tracking problem converges faster than the PID
controller. And more importantly, the trajectory is more smooth which will be more

16



compatible with the �xed-time di�erentiators.

Figure 4. Control strategies' comparison

5.2. Simulation study for the whole model

Simulation studies have been conducted in this part to illustrate the performance of
the whole observer-estimator-controller model.

Computational process has been presented in detail in the �rst part without con-
sidering the robustness of the di�erentiator. And simulation results with measurement
noises and exogenous disturbance have also been presented to prove the performance
of such a kind of design for quadrotor trajectory tracking problem.

Disturbance- and noise-free case

The gain matrix L of the �xed-time di�erentiator is tuned �rst by setting � = 0 :02.
According to the theorem, the maximum convergence timeTmax can be prede�ned by
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choosing a suitable convergence rate� . By setting � = 40, we can guarantee that the
observer is stable within Tmax = 2 :65s.

Figure 5. Estimation errors with respect to various initial di�erentiation errors

As di�erentiator designs are exactly the same for the estimation ofX , Y and Z , the
compensation e�ect of initial di�erentiation errors can be proved by setting di�erent
initial values for these states. Fig. 5 depicts estimation errors of the �xed-time di�er-
entiators with respect to various initial di�erentiation errors (zoomed in 5 s). Initial
di�erentiation errors of X and Y have been settled to 1m, while initial di�erentiation
error of Z has been settled to 0m, and that of  have been settled to 0:1 rad. It can be
noticed that it is not necessary to give the di�erentiator the same initial values with
the system initial conditions, because the �xed-time di�erentiator can provide a global
stability independent of the initial conditions. And the system will stabilize after the
prede�ned �xed convergence time Tmax . Furthermore, thanks to the LMI-based pa-
rameter tuning algorithm, we can easily obtain suitable parameters for di�erentiators
and the convergence timeTmax is also explicitly determined by the two parameters�
and � , which largely reduces the complexity of the simulation.

The e�ectiveness of the observer-estimator-controller model is illustrated by the
output signals X , Y , Z and  , as shown in Fig. 6. The dotted line is the prede�ned
reference, while the full line represents the result of the closed loop. Di�erent ini-
tial values have been assigned to di�erent control channels in order to illustrate the
performance of the proposed method. It can be concluded that the proposed observer-
estimator-controller scheme has satisfying e�ciency in terms of accuracy and conver-
gence speed with respect to di�erent initial conditions. However, it appears that the
�xed-time observer is highly sensitive to the sampling time and value assignment of�
and � . The delicateness should be taken into account.

Moreover, the attitude of the quadrotor has also been examined. As it has been
mentioned in the introduction, the feedback linearization is a linearization method
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Figure 6. Output signals of the closed loop

from a global input-output point of view. Thus the classical limitations of small angles
for pitch and roll angles have been removed. It is not necessary to bound the pitch
and roll angles in a small interval. The pitch and roll angles should always stay in the
zone of � �

2 < � < �
2 and � �

2 < � < �
2 , which have been validated by the simulation

result shown in Fig. 7.

Figure 7. Pitch and roll angles
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With measurement noise and external disturbance

Considering input signals of the di�erentiator with random measurement noise of small
amplitude (0:001), here the simulation results in the condition that initial observation
errors equal zero:

Figure 8. Errors with measurement noise

Figure 9. Simulation results of the channel X with measurement noise
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Figure 10. Simulation results of the channel Y with measurement noise

Figure 11. Simulation results of the channel Z with measurement noise
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Figure 12. Simulation results of the channel  with measurement noise

Then considering that an impulsive exogenous perturbation occurs to the system,
which can be modeled as a short time constant perturbation with a very high ampli-
tude, the simulation results are as follow:

Figure 13. Simulation results in the presence of an impulsive perturbation
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In conclusion, the scheme proposed previously, a �xed-time di�erentiator running in
parallel with a feedback linearization-based controller, allows the quadrotor to track a
given trajectory. The �xed-time di�erentiator design guarantees a reliable estimation of
the outputs' derivatives within a prede�ned convergence time with respect to di�erent
initial di�erentiation errors. Moreover, the LMI optimization-based parameter tuning
algorithm provides the possibility to tune the settling time in an explicit form and
reduces the computational complexity to obtain the parameters of the di�erentiator.
The robustness of the �xed-time di�erentiator has been proved in the condition of
measurement noise and an impulsive perturbation. The e�ciency of the presented
method has been illustrated through the simulation results.

6. Conclusion

This paper proposes an observer-estimator-controller scheme for trajectory tracking
control of the quadrotor: a �xed-time di�erentiator running in parallel with a dynamic
feedback linearization-based controller, where the gain matrix of the di�erentiator is
tuned systematically by an LMI optimization-based algorithm.

The feedback linearization controller e�ciently overcomes the nonlinearity and the
decoupling problem of quadrotor dynamics, and compensates the limitations of small
angles for the attitude of the quadrotor. The �xed-time di�erentiator works as an
observer and an estimator in the closed-loop system, which provides exact estimated
values regarding the requirement of full state information and the successive deriva-
tives of the outputs. The LMI optimization-based parameter tuning algorithm provides
a more accessible and practical approach to settle the convergence time explicitly and
to obtain the gain matrix, largely reducing the computational complexity. As the con-
vergence time is bounded by a �xed value independent of initial di�erentiation errors,
the application of �xed-time di�erentiation and stabilization methods to quadrotors
allows improving the delay problem and compensate the initial di�eratiation errors.
Simulation results demonstrate the high performance of the proposed design for the
quadrotor in autonomous 
ight. It can be observed that the stabilization of the whole
system is bounded in a satisfying settling time with respect to di�erent initial condi-
tions. The robustness of the di�erentiator has been proved in the case of noise e�ects
and impulsive disturbances. Moreover, the e�ciency of the parameter tuning algorithm
has also been proved.

For future studies, a qualitative analysis of tracking errors in the presence of additive
bounded perturbations may be conducted. Also, a nonlinear controller, such as a �xed-
time controller, is expected to replace the linear polynomial controller used in this
paper.
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