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Rémi Watrigant1,e,∗

aCNRS, LRI, Université Paris Sud.
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Abstract

For a (possibly infinite) fixed family of graphs F , we say that a graph G
overlays F on a hypergraph H if V (H) is equal to V (G) and the subgraph of
G induced by every hyperedge of H contains some member of F as a span-
ning subgraph. While it is easy to see that the complete graph on |V (H)|
overlays F on a hypergraph H whenever the problem admits a solution,
the Minimum F-Overlay problem asks for such a graph with at most k
edges, for some given k ∈ N. This problem allows to generalize some nat-
ural problems which may arise in practice. For instance, if the family F
contains all connected graphs, then Minimum F-Overlay corresponds to
the Minimum Connectivity Inference problem (also known as Subset
Interconnection Design problem) introduced for the low-resolution re-
construction of macro-molecular assembly in structural biology, or for the
design of networks.
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Our main contribution is a strong dichotomy result regarding the poly-
nomial vs. NP-complete status with respect to the considered family F .
Roughly speaking, we show that the easy cases one can think of (e.g. when
edgeless graphs of the right sizes are in F , or if F contains only cliques)
are the only families giving rise to a polynomial problem: all others are NP-
complete. We then investigate the parameterized complexity of the problem
and give similar sufficient conditions on F that give rise to W[1]-hard, W[2]-
hard or FPT problems when the parameter is the size of the solution. This
yields an FPT/W[1]-hard dichotomy for a relaxed problem, where every hy-
peredge of H must contain some member of F as a (non necessarily spanning)
subgraph.

Keywords:
Hypergraph, Minimum F -Overlay Problem, NP-completeness,
Fixed-parameter tractability

1. Introduction

1.1. Notation

Most notations of this paper are standard. We now recall some of them,
and we refer the reader to [1] for any undefined terminology. For a graph G,
we denote by V (G) and E(G) its respective sets of vertices and edges. The
order of a graph G is |V (G)|, while its size is |E(G)|. By extension, for a
hypergraph H, we denote by V (H) and E(H) its respective sets of vertices
and hyperedges. For p ∈ N, a p-uniform hypergraph H is a hypergraph such
that |S| = p for every S ∈ E(H). Given a graph G, we say that a graph G′

is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). We say that G′ is
a spanning subgraph of G if it is a subgraph of G such that V (G′) = V (G).
Given X ⊆ V (G), we denote by G[X] the graph with vertex set X and edge
set {uv ∈ E(G) | u, v ∈ X}. In that case, we say that G[X] is an induced
subgraph of G. Given X ⊆ V (G), we say that an edge uv ∈ E(G) is covered
by X if u ∈ X or v ∈ X, and we say that uv ∈ E(G) is induced by X if
{u, v} ⊆ X. An isolated vertex of a graph is a vertex of degree 0. Finally,
for a positive integer p, let [p] = {1, . . . , p}.

1.2. Definition of the Minimum F-Overlay problem

Let us define the problem investigated in this paper: Minimum F-
Overlay. Given a fixed family of graphs F and an input hypergraph H, we
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say that a graph G overlays F on H if V (G) = V (H) and for every hyperedge
S ∈ E(H), the subgraph of G induced by S, G[S], has a spanning subgraph
in F .

Observe that if a graph G overlays F on H, then the graph G with any
additional edges overlays F on H. Thus, there exists a graph G overlaying
F on H if and only if the complete graph on |V (H)| vertices overlays F on
H. Note that the complete graph on |V (H)| vertices overlays F on H if
and only if for every hyperedge S ∈ E(H), there exists a graph in F with
exactly |S| vertices. It implies that deciding whether there exists a graph G
overlaying F on H can be done in polynomial time. Hence, otherwise stated,
we will always assume that there exists a graph overlaying F on our input
hypergraph H. We thus focus on minimizing the number of edges of a graph
overlaying F on H.

The F-overlay number of a hypergraph H, denoted overF(H), is the
smallest size (i.e., number of edges) of a graph overlaying F on H.

Minimum F-Overlay

Input: A hypergraph H, and an integer k.
Question: overF(H) ≤ k?

We also investigate a relaxed version of the problem, called Minimum
F-Encompass where we ask for a graph G such that for every hyperedge
S ∈ E(H), the graph G[S] contains a (non necessarily spanning) subgraph
in F . In an analogous way, we define the F-encompass number, denoted
encompF(H), of a hypergraph H.

Minimum F-Encompass
Input: A hypergraph H, and an integer k.
Question: encompF(H) ≤ k?

Observe that the Minimum Encompass problems are particular cases
of Minimum Overlay problems. Indeed, for a family F of graphs, let F̃
be the family of graphs containing an element of F as a subgraph. Then
Minimum F-Encompass is exactly Minimum F̃-Overlay.

Throughout the paper, we will only consider graph families F for which
the following problem is in NP:

F-Recognition

Input: A graph G
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Question: Does G belong to F?

This assumption implies that Minimum F-Overlay and Minimum F-
Encompass are in NP as well (indeed, a certificate for both problems is
simply a certificate of the recognition problem for every hyperedge). In par-
ticular, it is not necessary for the recognition problem to be in P as it can be
observed from the family FHam of Hamiltonian graphs: the F-Recognition
problem is NP-hard, but providing a spanning cycle for every hyperedge is a
polynomial certificate and thus belongs to NP.

1.3. Related work and applications

Minimum F-Overlay allows us to model lots of interesting combinato-
rial optimization problems of practical interest, as we proceed to discuss.

Common graph families F are the following: connected graphs (and more
generally, `-connected graphs), Hamiltonian graphs, graphs having a univer-
sal vertex (i.e., having a vertex adjacent to every other vertex). When the
family is the set of all connected graphs, then the problem is known as Sub-
set Interconnection Design, Minimum Topic-Connected Overlay
or Interconnection Graph Problem. As pointed in [2], it has been
studied by several communities in the context of designing vacuum systems
[3, 4], scalable overlay networks [5, 6, 7], reconfigurable interconnection net-
works [8, 9], and, in variants, in the context of inferring a most likely social
network [10], determining winners of combinatorial auctions [11], as well as
drawing hypergraphs [12, 13, 14, 15].

As an illustration, we explain in detail the importance of such inference
problems for fundamental questions on structural biology [16]. A major prob-
lem is the characterization of low resolution structures of macro-molecular
assemblies. To attack this very difficult question, one has to determine the
plausible contacts between the subunits of an assembly, given the lists of
subunits involved in all the complexes. We assume that the composition, in
terms of individual subunits, of selected complexes is known. Indeed, a given
assembly can be chemically split into complexes by manipulating chemical
conditions. This problem can be formulated as a Minimum F-Overlay
problem, where vertices represent the subunits and hyperedges are the com-
plexes. In this setting, an edge between two vertices represents a contact
between two subunits.
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Hence, the considered family F is the family
of all trees: we want the complexes to be con-
nected. Note that the minimal connectivity
assumption avoids speculating on the exact
(unknown) number of contacts. Indeed, due
to volume exclusion constraints, a given sub-
unit cannot contact many others. The figure
depicts a simple assembly composed of four
complexes (hyperedges) and an optimal solu-
tion. We can also add some other constraints
to the family such as ‘bounded maximum de-
gree’: a subunit (e.g. a protein) cannot be
connected to many other subunits (vertices).
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1.4. Our contributions

In Section 2, we prove a strong dichotomy result regarding the polynomial
vs. NP-complete status with respect to the considered family F . Roughly
speaking, we show that the easy cases one can think of (e.g. containing only
edgeless and complete graphs) are the only families giving rise to a poly-
nomial problem: all others are NP-complete. In particular, it implies that
the Minimum Connectivity Inference problem is NP-hard in p-uniform
hypergraphs, which generalizes previous results. In Section 3, we then inves-
tigate the parameterized complexity of the problem and give similar sufficient
conditions on F that gives rise to W[1]-hard, W[2]-hard or FPT problems.
This yields an FPT/W[1]-hard dichotomy for Minimum F-Encompass.

2. Complexity dichotomy

In this section, we prove a dichotomy between families of graphs F such
that Minimum F-Overlay is polynomial-time solvable, and families of
graphs F such that Minimum F-Overlay is NP-complete.

Given a family of graphs F and a positive integer p, let Fp = {F ∈ F :
|V (F )| = p}. We denote by Kp the complete graph on p vertices, and by Kp

the edgeless graph on p vertices.

Theorem 1. Let F be a family of graphs. If, for every p > 0, either Fp = ∅,
or Fp = {Kp}, or Kp ∈ Fp, then Minimum F-Overlay is polynomial-time
solvable. Otherwise, it is NP-complete.
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Let us first prove the first part of this theorem.

Theorem 2. Let F be a set of graphs. If, for every p > 0, either Fp = ∅,
or Fp = {Kp}, or Kp ∈ Fp, then Minimum F-Overlay is polynomial-time
solvable.

Proof. Let I0, I1, and I2 be the sets of positive integers p such that, respec-
tively, Fp = ∅, Kp ∈ Fp, and Fp = {Kp}. The following trivial algorithm
solves Minimum F-Overlay in polynomial time. Let H be a hypergraph.
If it contains a hyperedge whose size is in I0, return ‘No’. If not, then for
every hyperedge S whose size is in I2, add the

(|S|
2

)
edges with endvertices

in S. If the number of edges of the resulting graph (which is a minimum
solution) is at most k, return ‘Yes’. Otherwise return ‘No’. 2

The NP-complete part requires more work. We need to prove that if there
exists p > 0 such that Fp 6= ∅, Fp 6= {Kp}, and Kp /∈ Fp, then Minimum
F-Overlay is NP-complete. Actually, it is sufficient to prove the following:

Theorem 3. Let p > 0, and Fp be a non-empty set of graphs with p vertices
such that Fp 6= {Kp} and Kp /∈ Fp. Then Minimum Fp-Overlay is NP-
complete (when restricted to p-uniform hypergraphs).

2.1. Prescribing some edges

A natural generalization of Minimum F-Overlay is to prescribe a set E
of edges to be in the graph overlaying F on H. We denote by overF(H;E) the
minimum number of edges of a graph G overlaying F on H with E ⊆ E(G).

Prescribed Minimum F-Overlay

Input: A hypergraph H, an integer k, and a set E ⊆
(
V (H)

2

)
.

Question: overF(H;E) ≤ k?

In fact, in terms of computational complexity, the two problems Mini-
mum F-Overlay and Prescribed Minimum F-Overlay are equivalent.

Theorem 4. Let F be a (possibly infinite) class of graphs. Then Mini-
mum F-Overlay and Prescribed Minimum F-Overlay are polynomi-
ally equivalent.
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Proof. An instance (H, k) of Minimum F-Overlay is clearly equivalent
to the instance (H, k, ∅) of Prescribed Minimum F-Overlay. This gives
an easy polynomial reduction from Minimum F-Overlay to Prescribed
Minimum F-Overlay.

We now give a polynomial reduction from Prescribed Minimum F-
Overlay to Minimum F-Overlay. Let us denote by Fp the set of graphs
of F with order p. Clearly, if Fp = ∅ or Kp ∈ Fp for every positive integer p,
then both Minimum F-Overlay and Prescribed Minimum F-Overlay
are polynomial-time solvable.

We may assume henceforth that there exists p such that Fp 6= ∅ and
Kp /∈ Fp. Let F be an element of Fp with the minimum number of edges.
Observe that |E(F )| ≥ 1.

Let (H, k,E) be an instance of Prescribed Minimum F-Overlay.
For every edge e = ueve ∈ E, we add a set Xe of |V (F )| − 2 new vertices
and the hyperedge Se = Xe ∪ {ue, ve}. Let H ′ be the hypergraph defined by
V (H ′) = V (H)∪

⋃
e∈E Xe and E(H ′) = E(H)∪{Se | e ∈ E}. We shall prove

that overF(H ′) = overF(H;E) + |E|(|F | − 1).

Suppose first that there is a graph G overlaying F on H with E ⊆ E(G)
and |E(G)| ≤ k. For any edge ∈ E, let Fe be a copy of F with vertex set Se
such that e ∈ E(Fe). Such a Fe exists because F is non-empty. Let G′ be
the graph with vertex set V (H ′) and edge set E(G) ∪

⋃
e∈E E(Fe). Clearly,

G′ is a graph overlaying F on H ′ with k + |E|(|F | − 1) edges.

Reciprocally, assume that overF(H ′) ≤ k + |E|(|F | − 1). Let G′ be a
graph overlaying F on H ′ of size at most k + |E|(|F | − 1) whose number of
edges in E is maximum.

We claim that E ⊆ E(G′). Suppose not. Then there is an edge e ∈
E \E(G′). Let Fe be be a copy of F with vertex set Se such that e ∈ E(Fe).
Since the vertices of Xe are only in the hyperedge Se of H ′, replacing the
edges of G′[Se] by E(Fe) in G′ results in a graph overlaying F on H ′ of size
k+ |E|(|F |− 1) containing one more edge in E, a contradiction. This proves
the claim.

Let G be the graph with vertex set V (H) and edge set E(H ′) ∩
(
V (H)

2

)
.

Clearly, G is a graph overlaying F on H, and by the above claim E ⊆ E(G).
Now for every e ∈ E, G′[Se] contains (at least) |F | edges and only one of
them is in E(G). Therefore, |E(G)| ≤ |E(G′)| − |E|(|F | − 1) ≤ k. 2
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2.2. Hard sets

A set Fp of graphs of order p is hard if there is a graph J of order p and
two distinct non-edges e1, e2 of J such that

• no subgraph of J is in Fp (including J itself) and

• J ∪ e1 has a subgraph in Fp and J ∪ e2 has a subgraph in Fp.

The graph J is called the hyperedge graph of Fp and e1 and e2 are its two
shifting non-edges.

Lemma 5. Let p ≥ 3 and Fp be a set of graphs of order p. If Fp is hard,
then Prescribed Minimum Fp-Overlay is NP-complete.

Proof. We present a reduction from Vertex Cover. Let J be the hyper-
edge graph of Fp and e1, e2 its shifting non-edges. We distinguish two cases
depending on whether e1 and e2 are disjoint or not. The proofs of both cases
are very similar.

Case 1: e1 and e2 intersect. Let G be a graph. Let HG be the hypergraph
constructed as follows.

• For every vertex v ∈ V (G) add two vertices xv, yv.

• For every edge e = uv, add a vertex ze and three disjoint sets Ze, Y
e
u ,

and Y e
v of size p− 3.

• For every edge e = uv, create three hyperedges Ze ∪ {ze, yu, yv}, Y e
u ∪

{xu, yu, ze}, and Y e
v ∪ {xv, yv, ze}.

We select forced edges as follows: for every edge e = uv ∈ E(G), we
force the edges of a copy of J on Ze ∪ {ze, yu, yv} with shifting non-edges
zeyu and zeyv, we force the edges of a copy of J on Y e

u ∪ {ze, yu, xu} with
shifting non-edges yuze and yuxu, and we force the edges of a copy of J on
Y e
v ∪ {ze, yv, xv} with shifting non-edges yvze and yvxv.

We shall prove that overFp(HG) = |E|+ vc(G) + |E(G)|, which yields the
result. Here, vc(G) denotes the size of a minimum vertex cover of G.

Consider first a minimum vertex cover C of G. For every edge e ∈ E(G),
let se be an endvertex of e that is not in C if such vertex exists, or any
endvertex of e otherwise. Set EG = E ∪ {xvyv | v ∈ C} ∪ {zeyse | e ∈ E(G)}.
One can easily check that (VG, EG) overlays Fp on HG. Indeed, for every
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hyperedge S of HG, at least one of the shifting non-edges of its forced copy
of J is an edge of EG. Therefore overFp(HG) ≤ |EG| = |E|+ vc(G) + |E(G)|.

Now, consider a minimum-size graph (VG, EG) overlaying Fp on HG and
maximizing the edges of the form xuyu. Let e = uv ∈ E(G). Observe that
the edge yuyv is contained in a unique hyperedge, namely Ze ∪ {ze, yu, yv}.
Therefore, free to replace it (if it is not in E) by zeyv, we may assume that
yuyv /∈ EG. Similarly, we may assume that the edges xuze and xvze are not in
EG, and that no edge with an endvertex in Y e

u ∪Y e
v ∪Ze is in EG. Furthermore,

one of xuyu and xvyv is in EG. Indeed, if {xuyu, xvyv} ∩ EG = ∅, then
{yuze, yvze} ⊆ EG because EG contains an edge included in every hyperedge.
Thus replacing yuze by xuyu results in another graph overlaying Fp on HG

with one more edge of type xuyu than the chosen one, a contradiction.
Let C = {u | xuyu ∈ EG}. By the above property, C is a vertex cover

of G, so |C| ≥ vc(G). Moreover, EG contains an edge in every hyperedge
Ze ∪ {ze, yu, yv}, and those |E(G)| edges are not in {xuyu | u ∈ V (G)}.
Therefore |EG| ≥ |E|+ |C|+ |E(G)| ≥ vc(G) + |E(G)|.
Case 2: e1 and e2 are disjoint, say e1 = x1y1 and e2 = x2y2 (thus p ≥ 4). Let
G be a graph. Let HG be the hypergraph constructed as follows.

• For every vertex v ∈ V (G), add two vertices xv, yv.

• For every edge e = uv, add four vertices xeu, y
e
u, x

e
v, y

e
v and three disjoint

sets Ze, Y
e
u and Y e

v of size p− 4.

• For every edge e = uv, create three hyperedges Ze ∪ {xeu, yeu, xev, yev},
Y e
u ∪ {xu, yu, xeu, yeu}, and Y e

v ∪ {xv, yv, xev, yev}.

We select forced edges as follows: for every edge e = uv ∈ E(G), we force
the edges of a copy of J on Ze∪{xeu, yeu, xev, yev} with shifting non-edges xeu, y

e
u

and xev, y
e
v, we force the edges of a copy of J on Y e

u ∪ {xu, yu, xeu, yeu} with
shifting non-edges xuyu and xeu, y

e
u, and we force the edges of a copy of J on

Y e
v ∪ {xv, yv, xev, yev} with shifting non-edges xvyv and xev, y

e
v.

We shall prove that overFp(HG) = |E|+ vc(G) + |E(G)|, which yields the
result.

Consider first a minimum vertex cover C of G. For every edge e ∈ E(G),
let se be an endvertex of e that is not in C if one such vertex exists, or any
endvertex of e otherwise. Set EG = E∪{xvyv | v ∈ C}∪{xesey

e
se | e ∈ E(G)}.

One can easily check that (VG, EG) overlays Fp on HG. Indeed, for every
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hyperedge S of HG, at least one of the shifting non-edges of its forced copy
of J is an edge of EG. Therefore overFp(HG) ≤ |EG| = |E|+ vc(G) + |E(G)|.

Now, consider a minimum-size graph (VG, EG) overlaying Fp on HG and
maximizing the edges of the form xuyu. Let e = uv ∈ E(G). Observe that the
edge xux

e
u is contained in a unique hyperedge, namely Y e

u ∪ {xu, yu, xeu, yeu}.
Therefore, free to replace it (if it is not in E) by xuyu, we may assume that
xux

e
u /∈ EG. Similarly, we may assume that the edges xuy

e
u, yux

e
u, yuy

e
u, xvx

e
v

xvy
e
v, yvx

e
v, yvy

e
v, x

e
ux

e
v x

e
uy

e
v, y

e
ux

e
v, and yeuy

e
v are not in EG, and that no edge

with an endvertex in Y e
u ∪ Y e

v ∪ Ze is in EG. Furthermore, one of xuyu and
xvyv is in EG. Indeed, if {xuyu, xvyv} ∩ EG = ∅, then {xeuyeu, xevyev} ⊆ EG
because EG contains an edge included in every hyperedge. Thus replacing
xeuy

e
u by xuyu results in another graph overlaying Fp on HG with one more

edge of type xuyu than the chosen one, a contradiction.
Let C = {u | xuyu ∈ EG}. By the above property, C is a vertex cover

of G, so |C| ≥ vc(G). Moreover, EG contains an edge in every hyperedge
Ze ∪ {xeu, yeu, xev, yev}, and those |E(G)| edges are not in {xuyu | u ∈ V (G)}.
Therefore |EG| ≥ |E|+ |C|+ |E(G)| ≥ vc(G) + |E(G)|. 2

Let Fp be a set of graphs of order p. It is free if there are no two distinct
elements of Fp such that one is a subgraph of the other. The core of Fp is
the free set of graphs F having no proper subgraphs in Fp. It is easy to see
that Fp is overlayed by a hypergraph if and only if its core does. Henceforth,
we may restrict our attention to free sets of graphs.

Lemma 6. Let Fp be a free set of graphs of order p. If a graph F in Fp has
an isolated vertex and a vertex of degree 1, then Fp is hard.

Proof. Let z be an isolated vertex of F , y a vertex of degree 1, and x
the neighbor of y in F . The graph J = F \ xy contains no element of Fp
because Fp is free. Moreover J ∪ xy and J ∪ xz are isomorphic to F . Hence
J is a hyperedge graph of Fp. Thus, by Lemma 5, Prescribed Minimum
Fp-Overlay is NP-complete. 2

The star of order p, denoted by Sp, is the graph of order p with p − 1
edges incident to a same vertex.

Lemma 7. Let p ≥ 3 and let Fp be a free set of graphs of order p containing
a subgraph of the star Sp different from Kp. Then Fp is hard.
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Proof. Let S be the non-empty subgraph of Sp in Fp. If S 6= Sp, then S has
an isolated vertex and a vertex of degree 1, and so Fp is hard by Lemma 6.
We may assume henceforth that Sp ∈ Fp.

Let Qp be the graph with p vertices {a1, a2, b, c1, . . . , cp−3} and edge set
{a1a2} ∪ {aicj | 1 ≤ i ≤ 2, 1 ≤ j ≤ p− 3}. Observe that Qp does not contain
Sp but Qp ∪ a1b and Qp ∪ a2b do. If Fp contains no subgraph of Qp, then Fp
is hard. So we may assume that Fp contains a subgraph of Qp.

Let Q be the subgraph of Qp in Fp that has the minimum number of trian-
gles. If Q has a degree 1 vertex, then Fp is hard by Lemma 6. Henceforth we
may assume that Q has no vertex of degree 1. So, without loss of generality,
there exists q such that E(Q) = {a1a2} ∪ {aicj | 1 ≤ i ≤ 2, 1 ≤ j ≤ q}.

Let R = (Q \ a1c1) ∪ a2b. Observe that R ∪ a1c1 and R ∪ a1b contain Q.
If Fp contains no subgraph of R, then Fp is hard. So we may assume that
Fp contains a subgraph R′ of R. But Fp contains no subgraph of Q because
it is free, so both a2c1 and a2b are in R′. In particular, c1 and b have degree
1 in R′.

Let T = (Q \ a1c1). It is a proper subgraph of Q, so Fp contains no
subgraph of T , because Fp is free. Moreover T ∪ a1c1 = Q is in Fp and
T ∪ a2b = R contains R′ ∈ Fp. Hence Fp is hard. 2

2.3. Proof of Theorem 3

For convenience, instead of proving Theorem 3, we prove the following
statement, which is equivalent by Theorem 4.

Theorem 8. Let Fp be a non-empty set of graphs of order p > 0. Pre-
scribed Minimum Fp-Overlay is NP-complete if Kp /∈ Fp and Fp 6=
{Kp}.

Proof. We proceed by induction on p, the result holding trivially when
p = 1 and p = 2. Assume now that p ≥ 3. Without loss of generality, we
may assume that Fp is a free set of graphs.
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A hypograph of a graph G is an induced subgraph of G of order |G| − 1.
In other words, it is a subgraph obtained by removing a vertex from G. Let
F− be the set of hypographs of elements of Fp.

If F− = {Kp−1}, then necessarily Fp = {Kp}, and Prescribed Mini-
mum Fp-Overlay is trivially polynomial-time solvable.

If F− 6= {Kp−1} and Kp−1 /∈ F−, then Prescribed Minimum F−-
Overlay is NP-complete by the induction hypothesis. We shall now reduce
this problem to Prescribed Minimum Fp-Overlay. Let (H−, k−, E−) be
an instance of Prescribed Minimum F−-Overlay. For every hyperedge
S of H−, we create a new vertex xS and the hyperedge XS = S ∪ {xS}.
Let H be the hypergraph defined by V (H) = V (H−) ∪

⋃
S∈E(H−) xS and

E(H) = {XS | S ∈ E(H−)}. We set E = E− ∪
⋃
S∈E(H−){xSv | v ∈ S}.

Let us prove that overFp(H;E) = overF−(H−;E−) + (p−1) · |S|. Clearly,
if G− = (V (H−), F−) overlays F−, then G = (V (H), F− ∪

⋃
S∈E(H−){xSv |

v ∈ S}) overlays Fp. Hence overFp(H;E) ≤ overF−(H−;E−) + (p− 1) · |S|.
Reciprocally, assume that G overlays Fp. Then for each hyperedge S of H−,
the graph G[XS] ∈ Fp, and so G[S] ∈ F−. Therefore, setting the graph
G− = G[V (H−)] overlays F−. Moreover E(G) \ E(G−) =

⋃
S∈E(H−){xSv |

v ∈ S}. Hence overFp(H;E) ≥ overF−(H−;E−) + (p− 1) · |S|.

Assume now that Kp−1 ∈ F−. Then Fp contains a subgraph of the star
Sp. If Fp contains Kp, then Prescribed Minimum Fp-Overlay is triv-
ially polynomial-time solvable. Henceforth, we may assume that Fp contains
a non-empty subgraph of Sp. Thus, by Lemma 7, Fp is hard, and so by
Lemma 5, Prescribed Minimum Fp-Overlay is NP-complete. 2

3. Parameterized analysis

We now focus on the parameterized complexity of our problems. A param-
eterization of a decision problem Q is a computable function κ that assigns
an integer κ(I) to every instance I of the problem. We say that (Q, κ) is
fixed-parameter tractable (FPT) if every instance I can be solved in time
O(f(κ(I))|I|c), where f is some computable function, |I| is the encoding size
of I, and c is some constant independent of I (we will sometimes use the
O∗(·) notation that removes polynomial factors and additive terms). Finally,
the W[i]-hierarchy of parameterized problems is typically used to rule out
the existence of FPT algorithms, under the widely believed assumption that
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FPT 6= W[1]. For more details about fixed-parameter tractability, we refer
the reader to the monograph of Downey and Fellows [17].

Since Minimum F-Overlay is NP-hard for most non-trivial cases, it is
natural to ask for the existence of FPT algorithms. In this paper, we consider
the so-called standard parameterization of an optimization problem: the size
of a solution. In the setting of our problems, this parameter corresponds to
the number k of edges in a solution. Hence, the considered parameter will
always be k in the remainder of this paper.

Similarly to our dichotomy result stated in Theorem 1, we would like
to obtain necessary and sufficient conditions on the family F giving rise to
either an FPT or a W[1]-hard problem. One step towards such a result is the
following FPT-analogue of Theorem 2.

Theorem 9. Let F be a family of graphs whose recognition problem is in NP.
If there is a non-decreasing function f : N → N such that limn→+∞ f(n) =
+∞ and |E(F )| ≥ f(|V (F )|) for all F ∈ F , then Minimum F-Overlay is
FPT.

Proof. Let g : N → N be the function that maps every k ∈ N to the
smallest integer ` such that f(`) ≥ k. Since limn→+∞ f(n) = +∞, g is well-
defined. If a hyperedge S of a hypergraph H is of size at least g(k + 1),
then since f is non-decreasing, overF(H) > k and so the instance is negative.
Therefore, we may assume that every hyperedge of H has size at most g(k).
Given that the F -recognition problem is in NP, we denote by r(k) the time
it takes to solve this problem on an instance of order ≤ k. We can thus
apply a simple branching algorithm (see [17]) to solve our problem in time
O∗(r(g(k))× g(k)O(k)). 2

Observe that if F is finite, setting N = max{|E(F )| | F ∈ F}, the func-
tion f , defined by f(n) = 0 for n ≤ N and f(n) = n otherwise, satisfies the
condition of Theorem 9, and so Minimum F-Overlay is FPT. Moreover,
Theorem 9 encompasses some interesting graph families. Indeed, if F is the
family of connected graphs (resp. Hamiltonian graphs), then f(n) = n − 1
(resp. f(n) = n) satisfies the required property. Other graph families include
c-vertex-connected graphs or c-edge-connected graphs for any fixed c ≥ 1,
graphs of minimum degree at least d for any fixed d ≥ 1. In sharp contrast,
we shall see in the next subsection (Theorem 10) that if, for instance, F is
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the family of graphs containing a matching of size at least c, for any fixed
c ≥ 1, then the problem becomes W[1]-hard (note that such a graph might
have an arbitrary number of isolated vertices).

3.1. Negative result

In view of Theorem 9, a natural question is to know what happens for
graph families not satisfying the conditions of the theorem. Although we
were not able to obtain an exact dichotomy as in the previous section, we
give sufficient conditions on F giving rise to problems that are unlikely to be
FPT (by proving W[1]-hardness or W[2]-hardness).

An interesting situation is when F is closed by addition of isolated vertices,
i.e., for every F ∈ F , the graph obtained from F by adding an isolated vertex
is also in F . Observe that for such a family, Minimum F-Overlay and
Minimum F-Encompass are equivalent, which is the reason that motivated
us defining this relaxed version. We have the following result, which implies
an FPT/W[1]-hard dichotomy for Minimum F-Encompass.

Theorem 10. Let F be a fixed family of graphs closed by addition of isolated
vertices whose recognition problem is in NP. If Kp ∈ F for some p ∈ N, then
Minimum F-Overlay is FPT. Otherwise, it is W[1]-hard parameterized by
k.

Proof. To prove the positive result, let p be the minimum integer such
that Kp ∈ F . Observe that no matter the graph G, for every hyperedge
S ∈ E(H), G[S] will contain K |S| as a spanning subgraph, which is in F
whenever |S| ≥ p (recall that F is closed by addition of isolated vertices).
As was done in Theorem 9, we denote by r(k) the time it takes to solve the
F -recognition problem on an instance of order ≤ k. Then, a simple branching
algorithm allows us to enumerate all graphs (with at least one edge) induced
by hyperedges of size at most p− 1 in O∗(r(k)× pO(k)) time.

To prove the negative result, we use a recent result of Chen and Lin [18]
stating that any constant-approximation of the parameterized Dominating
Set is W[1]-hard, which directly transfers to Hitting Set1. For an input
of Hitting Set, namely a finite set U (called the universe), and a family
S of subsets of U , let τ(U,S) be the minimum size of a set K ⊆ U such that

1Roughly speaking, each element of the universe represents a vertex of the graph, and
for each vertex, create a set with the elements corresponding to its closed neighborhood.
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K ∩ S 6= ∅ for all S ∈ S (such a set is called a hitting set). The result of
Chen and Lin implies that the following problem is W[1]-hard parameterized
by k.

Gapρ Hitting Set

Input: A finite set U , a family S of subsets of U , and a positive integer k.
Question: Decide whether τ(U,S) ≤ k or τ(U,S) > ρk.

Let Fis be a graph from F minimizing the two following criteria (in this
order): number of non-isolated vertices, and minimum degree of non-isolated
vertices. Let ris and δis be the respective values of these criteria, nis =
|V (Fis)|, and mis = |E(Fis)|. We thus have δis ≤ ris. Let Fe be a graph in
F with the minimum number of edges, and ne = |V (Fe)|, me = |E(Fe)|.

Let U,S, k be an instance of Gap2δis Hitting Set, with U = {u1, . . . , un}.
We denote by H the hypergraph constructed as follows. Its vertex set is the
union of:

• a set Vis of ris − 1 vertices;

• a set VU =
⋃n
i=1 V

i, where V i = {vi1, . . . , vinis−ris+1}; and

• for every u, v ∈ Vis, u 6= v, a set Vu,v of ne − 2 vertices.

Then, for every u, v ∈ Vis, u 6= v, create a hyperedge hu,v = {u, v}∪Vu,v and,
for every set S ∈ S, create the hyperedge hS = Vis ∪

⋃
i:ui∈S V

i. Finally, let

k′ =
(
nis−1

2

)
me + kδis. Since F is fixed, k′ is a function of k only.

We shall prove that if τ(U,S) ≤ k, then overF(H) ≤ k′ and, conversely,
if overF(H) ≤ k′, then τ(U,S) ≤ 2δisk.

Assume first that U has a hitting set K of size at most k. For every u, v ∈
Vis, u 6= v, add to G the edges of a copy of Fe on hu,v with uv ∈ E(G). This
already adds

(
nis−1

2

)
me edges to G and, obviously, G[hu,v] contains Fe as a

subgraph. Now, for every ui ∈ K, add all edges between vi1 and δis arbitrarily
chosen vertices in Vis. Observe that for every S ∈ S, G[hS] contains Fis as a
subgraph, and also |E(G)| ≤ k′.

Conversely, let G be a solution for Minimum F-Overlay with at most
k′ edges. Clearly, for all u, v ∈ Vis, u 6= v, G[Vu,v] has at least me edges,
hence the subgraph of G induced by V (H) \ VU has at least

(
nis−1

2

)
me edges,

and thus the number of edges of G covered by Vu is at most kδis. Let K be
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the set of non-isolated vertices of VU in G, and K ′ = {ui | vij ∈ K for some
j ∈ {1, . . . , nis−ris+1}}. We claim that K ′ is a hitting set of (U,S): indeed,
for every S ∈ S, G[hS] must contain some F ∈ F as a subgraph, but since
Vis is composed of ris − 1 vertices, and since Fis is a graph from F with the
minimum number ris of non-isolated vertices, there must exist i ∈ {1, . . . , n}
such that ui ∈ S, and j ∈ {1, . . . , nis−ris+1} such that vij ∈ hS∩K, and thus
S ∩K ′ 6= ∅. Finally, observe that K is a set of non-isolated vertices covering
kδis edges, and thus |K| ≤ 2kδis (in the worst case, K induces a matching),
hence we have |K ′| ≤ |K| ≤ 2kδis, i.e., τ(U,S) ≤ 2δisk, concluding the proof.

2

It is worth pointing out that the idea of the proof of Theorem 10 applies to
broader families of graphs. Indeed, the required property ‘closed by addition
of isolated vertices’ forces F to contain all graphs Fis +Ki (where + denotes
the disjoint union of two graphs) for every i ∈ N. Actually, it would be
sufficient to require the existence of a polynomial p : N → N such that
for any i ∈ N, we have Fis + Kp(i) ∈ F (roughly speaking, for a set S of
the Hitting Set instance, we would construct a hyperedge with |V (Fis +
Kp(|S|))| vertices). Intuitively, most families of practical interest not satisfying
such a constraint will fall into the scope of Theorem 9. Unfortunately, we
were not able to obtain the dichotomy in a formal way.

Nevertheless, as explained before, this still yields an FPT/W[1]-hardness
dichotomy for the Minimum F-Encompass problem.

Corollary 1. Let F be a fixed family of graphs. If Kp ∈ F for some p ∈ N,
then Minimum F-Encompass is FPT. Otherwise, it is W[1]-hard parame-
terized by k.

We conclude this section with a stronger negative result than Theorem 10,
but concerning a restricted graph family (hence both results are incompara-
ble).

Theorem 11. Let F be a fixed graph family such that:

• F is closed by addition of isolated vertices;

• Kp /∈ F for every p ≥ 0; and

• all graphs in F have the same number of non-isolated vertices.
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Then Minimum F-Overlay is W[2]-hard parameterized by k.

Proof. Let Fδ be a graph from F minimizing the minimum degree of non-
isolated vertices. Let δ be such a minimum degree and let r be the number
of non-isolated vertices of any graph F of F . Let nδ = |V (Fδ)| and mδ =
|E(Fδ)|. Let Fe be a graph from F with the minimum number of edges, and
ne = |V (Fe)|, me = |E(Fe)|.

Let U,S, k be an instance of Hitting Set, with U = {u1, . . . , un}. We
denote by H the hypergraph constructed as follows. Its vertex set is the
union of:

• a set Vδ of r − 1 vertices;

• a set VU =
⋃n
i=1 V

i, where V i = {vi1, . . . , vinδ−r+1};

• for every u, v ∈ Vδ, u 6= v, a set Vu,v of ne − 2 vertices.

Then, for every u, v ∈ Vδ, u 6= v, create the hyperedge hu,v = {u, v} ∪ Vu,v,
and, for every set S ∈ S, create a hyperedge hS composed of Vδ ∪

⋃
i:ui∈S V

i.

Finally, let k′ =
(
r−1
2

)
me + kδ. Since F is fixed, k′ is a function of k only.

We shall prove that τ(U,S) ≤ k if and only if ovF(H) ≤ k′.

Assume first that U has a hitting set K of size at most k. For every
u, v ∈ Vδ, u 6= v, add to G the edges of a copy of Fe on hu,v with uv ∈ E(G).
This already adds

(
nδ−1
2

)
me edges to G, and, obviously, G[hu,v] contains Fe as

a subgraph. Now, for every ui ∈ K, add all edges between vi1 and δ vertices
in Vδ (arbitrarily chosen). Observe that for every S ∈ S, G[hS] contains Fδ
as a subgraph, and also |E(G)| ≤ k′.

Conversely, let G = (V,E) be a solution for Minimum F-Overlay with
at most k′ edges maximizing |E(G[Vδ])|. We claim that G[Vδ] is a clique. If
not, let u, v ∈ Vδ, u 6= v such that uv /∈ E(G). Since Fe is a graph from F
inducing the minimum number of edges, and since all vertices of Vu,v apart
from u and v only belong to the hyperedge hu,v, removing all edges from G[Vδ]
to form a graph isomorphic to Fe with uv being an edge leads to a graph
G′ with at most k′ edges and one more edge induced by Vδ, a contradiction.
Then, observe that for every hyperedge hS, there exists v ∈ hS ∩ VU such
that |N(v) ∩ hS| ≥ δ (recall that |Vδ| = r − 1). If N(v) ∩ VU ∩ hS 6= ∅,
then remove from G all edges between v and any vertex of hS, and add edges
between v and δ different arbitrarily chosen vertices form Vδ. Since G[Vδ] is
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a clique, all hyperedges hS′ containing the removed edges necessarily contain
v and thus contain Fδ as a subgraph. Hence this modification leads to a
graph G′ inducing at most k′ edges which overlays F on H and such that
N(v) ∩ Vu ∩ hS = ∅. We apply this rule whenever there exists v ∈ hS ∩ VU
such that N(v) ∩ VU ∩ hS 6= ∅ and obtain a solution G′ with at most k′

edges such that for every hyperedge hS, there exists viSjS ∈ hS ∩ VU such that

|N(viSjS) ∩ Vδ| = δ. Let X = {viSjS | S ∈ S}. We have the following:

• X is a hitting set of hyperedges {hS | S ∈ S} and, by construction, the
set X ′ = {uiS | S ∈ S} is a hitting set of (U,S, k);

• since G′ has at most k′ edges, and G′[V \ VU ] has
(
r−1
2

)
me edges, the

number of edges covered by X is at most kδ; and

• for every v ∈ X, |NG′(v) ∩ Vδ| ≥ δ.

Therefore, X ′ is a hitting set of (U,S) of size at most k, which concludes the
proof. 2

Observe that the proof above is very similar to the one of Theorem 10.
However, we could not reduce from the (non-approximated version of) Hit-
ting Set for families F having different numbers of non-isolated vertices,
for the following informal reasons:

• The set Vδ must contain no more than r − 1 vertices, where r is the
minimum number of non-isolated vertices of any graph from F (other-
wise, since Vδ is forced to be a clique in any solution, any hyperedge
hS would already contain some graph from F).

• The graph F ∗ chosen to be induced by hyperedges hS must be a graph
with r non-isolated vertices with a minimum degree.

• It might be the case that F contains a graph F ′ with more than r
non-isolated vertices but with a minimum degree smaller than the one
of F ∗. Thus, it would be possible to “cheat” and put F ′ in every
hyperedge hS: we would have more than one vertex of this graph in VU
for each hyperedge, but they would cover in total less than kδ edges
(hence we would be able to have a hitting set larger than k). However,
the number of additional vertices we may win in the hitting set would
only be of a linear factor of k. This is the reason why the reduction in
the proof of Theorem 10 is from the constant approximated version of
Hitting Set.
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4. Conclusion and future work

Naturally, the first open question is to close the gap between Theorems 9
and 10 in order to obtain a complete FPT/W[1]-hard dichotomy for any
family F .

As further work, we are also interested in a more constrained version
of the problem, in the sense that we may ask for a graph G such that for
every hyperedge S ∈ E(H), the graph G[S] belongs to F (hence, we forbid
additional edges). The main difference between Minimum F-Overlay and
this problem, called Minimum F-Enforcement, is that it is no longer
trivial to test for the existence of a feasible solution (actually, it is possible
to prove the NP-hardness of this existence test for very simple families, e.g.
when F only contains P3, the path on three vertices). We believe that a
dichotomy result similar to Theorem 1 for Minimum F-Enforcement is
an interesting challenging question, and will need a different approach than
the one used in the proof of Theorem 8.
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