, ) under the grant agreements n° 178 (FIORIBIO 2 project) and n° 264 (ECOLEGO project), and from DEPHY EXPE ECOPHYTO (OTELHO Project). This research has been integrated in the framework program of UMT FioriMed since 2015. The manuscript was proofread by a professional English Language Editing service, Program (FP7/2007-2013) under grant agreement n° 265865 (project PURE), from the European INTERREG ALCOTRA Programme, 2007.

. Hirotugu-akaike, Information theory and an extension of the maximum likelihood principle, Proceedings Second International Symposium on Information Theory, pp.267-281, 1973.

J. Allen and J. P. Syvertsen, The world of the citrus rust mite: a microclimate prediction problem, Proceedings of symposia: IX International Congress of Plant Protection, pp.138-140, 1981.

E. Adar, M. Inbar, S. Gal, S. Gan-mor, and E. Palevsky, Pollen on-twine for food provisioning and oviposition of predatory mites in protected crops, 2014.

, BioControl, vol.59, pp.307-317

A. A. Agrawal, R. Karban, and R. G. Colfer, How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance, Oikos, vol.89, pp.70-80, 2000.

T. Boulard, H. Fatnassi, J. C. Roy, J. Lagier, J. Fargues et al., Effect of greenhouse ventilation on humidity of inside air and in leaf boundary-layer, Agricultural and Forest Meteorology, vol.125, pp.225-239, 2004.

M. Castagnoli, S. Simoni, . Acari, M. Castagnoli, and S. Simoni, Influence of temperature on population increase of amblyseius californicus McGregor acari phytoseiidae, Redia, vol.74, pp.621-640, 1991.

M. A. Easterbrook, J. D. Fitzgerald, and M. G. Solomon, Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: hytoseiidae), Experimental & Applied Acarology, vol.25, pp.25-36, 2001.

G. English-loeb, P. N. Andrew, and M. A. Walker, Behavioral and population consequences od acarodomatia in grapes on phytoseiid mites (Mesostigmata) and implications for plant breeding, Entomologia Experimentalis Et Applicata, vol.104, pp.307-319, 2002.

F. Faraji, A. Janssen, and M. W. Sabelis, Oviposition patterns in a predatory mite reduce the risk of egg predation caused by prey, Ecological Entomology, vol.27, pp.660-664, 2002.

H. Fatnassi, T. Boulard, C. Poncet, T. Bartzanas, N. Katsoulas et al., , 2014.

, CFD modeling of microclimate in the leaf boundary layer. Ecological Niche of Pests, Acta Hort (ISHS), vol.1037, pp.1027-1034

J. A. Ferreira, A. Pallini, C. L. Oliveira, M. W. Sabelis, and A. Janssen, Leaf domatia do not affect population dynamics of the predatory mite Iphiseiodes zuluagai, Journal of Basic and Applied Ecology, vol.11, pp.144-152, 2010.

S. D. Frank, Biological control of arthropod pests using banker plant systems: past progress and future directions, Biological Control, vol.52, issue.1, pp.8-16, 2010.

F. García-marí and J. E. González-zamora, Biological control of Tetranychus urticae (Acari: Tetranychidae) with naturally occurring predators in strawberry plantings in Valencia, Spain. Experimental & Applied Acarology, vol.23, pp.487-495, 1999.

U. Gerson and P. Weintraub, Mites (Acari) as a factor in greenhouse management, Annual Review of Entomology, vol.57, pp.229-276, 2012.

P. Grostal and D. J. Dowd, Plants, mites and mutualism -leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae), 1994.

, Oecologia, vol.97, pp.308-315

N. Huang, A. Enkegaard, L. S. Osborne, P. M. Ramakers, G. J. Messelink et al., The banker plant method in biological control, Critical Reviews in Plant Sciences, vol.30, pp.259-278, 2011.

S. Ishimaru, Heat-Controllable Man-Made Fibers, High-Performance and Specialty Fibers, pp.261-269, 2016.

R. Karban, G. English-loeb, M. A. Walker, and J. Thaler, Abundance of Phytoseiid mites on Vitis species: effects of leaf hairs, domatia, prey abundance and plant phylogeny, Experimental and Applied Acarology, vol.19, pp.189-197, 1995.

M. Kawashima, I. Adachi, and M. Toyama, Artificial microstructure encouraging the colonization of the predacious mite, Neoseiulus californicus (McGregor) (Acari: Phytoseiidae), Applied Entomology and Zoology, vol.41, pp.633-639, 2006.

M. Kawashima and C. Jung, Effects of sheltered ground habitats on the overwintering potential of the predacious mite Neoseiulus californicus (Acari: Phytoseiidae) in apple orchards on mainland, Korea. Experimental and Applied Acarology, vol.55, pp.375-88, 2011.

, Plants and leaf characteristics influencing the predaceous mite Kampimodromus aberrans (Acari: Phytoseiidae) in habitats surrounding vineyards, Environmental Entomology, vol.31, pp.648-660

V. Kumar, V. W. Wekesa, P. B. Avery, C. A. Powell, C. L. Mckenzie et al., Effect of pollens of various ornamental pepper cultivars on the development and reproduction of Amblyseius swirskii, 2014.

, Florida Entomologist, vol.97, pp.367-373

A. Lisovac and D. Shooter, Volatiles from sheep wool and the modification of wool odour, Small Ruminant Research, vol.49, pp.115-124, 2003.

M. López-mesas, F. Carrillo, M. C. Guttiérrez, and M. Crespio, Alternative methods for the wool wax extraction from wool scouring wastes. Grasas y aceites, vol.58, pp.402-407, 2007.

R. Loughner, K. Wentworth, G. Loeb, and J. Nyrop, Leaf trichomes influence predatory mite densities through dispersal behavior, Entomologia Experimentalis Et Applicata, vol.134, pp.78-88, 2010.

R. Loughner, J. Nyrop, K. Wentworth, and J. Sanderson, Towards enhancing biocontrol of thrips: effects of supplemental pollen and fibres on foliar abundance of Amblyseius swirskii, IOBC/WPRS Bulletin, vol.68, pp.105-109, 2011.

J. Mac-murtry and B. Croft, Life-styles of Phytoseiid mites and their roles in biological control, Annual Review of Entomology, vol.42, pp.291-321, 1997.

G. J. Messelink, J. Bennison, O. Alomar, B. L. Ingegno, L. Tavella et al.,

S. Nishida, A. Naiki, and T. Nishida, Morphological variation in leaf domatia enables coexistence of antagonistic mites in Cinnamomum camphora, Canadian Journal of Botany, vol.83, pp.93-101, 2005.

A. P. Norton, G. English-loeb, and E. Belden, Host plant manipulation of natural enemies: leaf domatia protect beneficial mites from insect predators, Oecologia, vol.126, pp.535-542, 2001.

S. Nundloll, L. Mailleret, and F. Grognard, The effect of partial crop harvest on biological pest control, The Rocky Mountain Journal of Mathematics, vol.38, pp.1633-1661, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01090316

D. J. O'dowd and M. F. Willson, Leaf domatia and mites on Australasian plants: ecological and evolutionary implications, Biological Journal of the Linnean Society, vol.37, pp.191-236, 1989.

P. Parolin, C. Bresch, L. Van-oudenhove, &. A. Errard, and C. Poncet, , 2015.

, Distribution of pest and predatory mites on plants with differing availability of acarodomatia, International Journal of Agricultural Policy and Research, vol.3, pp.267-278

P. Parolin, C. Bresch, G. Ruiz, N. Desneux, and C. Poncet, Testing banker plants for biological control of mites on roses, Phytoparasitica, vol.41, pp.249-262, 2013.

A. Pekas and F. L. Wäckers, Multiple resource supplements synergistically enhance predatory mite populations, Oecologia, vol.184, pp.479-484, 2017.

R. Pemberton and C. E. Turner, Occurrence of predatory and fungivorous mites in leaf domatia, American Journal of Botany, vol.76, pp.105-112, 1989.

. R-core-team, A language and environment for statistical computing. R Foundation for Statistical Computing, 2014.

A. Roda, J. Nyrop, M. Dicke, and G. English-loeb, Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation, Oecologia, vol.125, pp.428-435, 2000.

A. Roda, J. Nyrop, G. English-loeb, and M. Dicke, Leaf pubescence and twospotted spider mite webbing influence phytoseiid behavior and population density, Oecologia, vol.129, pp.551-560, 2001.

S. A. Rozario, Domatia and mites: effects of leaf morphology on beneficial mites, 1994.

E. Runkle, The boundary layer and its importance, GPNMAG.COM, 2016.

S. Situngu and N. Barker, Position, position, position: mites occupying leaf domatia are not uniformly distributed in the tree canopy, South African Journal of Botany, vol.108, pp.23-28, 2017.

F. Tachi and M. Osakabe, Vulnerability and behavioral response to ultraviolet radiation in the components of a foliar mite prey-predator system, 2012.

, Naturwissenschaften, vol.99, pp.1031-1038

D. E. Walter and J. R. O'dowd, Leaves with domatia have more mites, Ecology, vol.73, pp.1514-1518, 1992.

D. E. Walter, Living on leaves: mites, tomenta, and leaf domatia, Annual Review Of Entomology, vol.41, pp.101-114, 1996.

W. Zhao, W. Zheng, B. Zhang, G. Yu, S. Hu et al., Effect of different ground cover management on spider mites (Acari: Tetranychidae) and their phytoseiid (Acari: Phytoseiidae) enemies in citrus orchards, Biocontrol Science and Technology, vol.24, pp.705-709, 2014.