
HAL Id: hal-01948971
https://inria.hal.science/hal-01948971

Submitted on 9 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ledger Design Language: Designing and Deploying
Formally Verified Public Ledgers

Nadim Kobeissi, Natalia Kulatova

To cite this version:
Nadim Kobeissi, Natalia Kulatova. Ledger Design Language: Designing and Deploying Formally
Verified Public Ledgers. Workshop on Security Protocol Implementations: Development and Analysis,
Apr 2018, London, United Kingdom. �hal-01948971�

https://inria.hal.science/hal-01948971
https://hal.archives-ouvertes.fr

Ledger Design Language:
Designing and Deploying Formally Verified Public Ledgers

Nadim Kobeissi
INRIA Paris, Symbolic Software

Natalia Kulatova
INRIA Paris

Abstract—Cryptocurrencies have popularized pub-
lic ledgers, known colloquially as “blockchains”.
While the Bitcoin blockchain is relatively simple
to reason about as, effectively, a hash chain, more
complex public ledgers are largely designed without
any formalization of desired cryptographic prop-
erties such as authentication or integrity. These
designs are then implemented without assurances
against real-world bugs leading to little assurance
with regards to practical, real-world security.

Ledger Design Language (LDL) is a modeling
language for describing public ledgers. The LDL
compiler produces two outputs. The first output is a
an applied-pi calculus symbolic model representing
the public ledger as a protocol. Using ProVerif, the
protocol can be played against an active attacker,
whereupon we can query for block integrity, au-
thenticity and other properties. The second output
is a formally verified read/write API for interacting
with the public ledger in the real world, written in
the F⋆ programming language. F⋆ features such as
dependent types allow us to validate a block on the
public ledger, for example, by type-checking it so
that its signing public key be a point on a curve.
Using LDL’s outputs, public ledger designers obtain
automated assurances on the theoretical coherence
and the real-world security of their designs with a
single framework based on a single modeling lan-
guage.

1. Introduction

Blockchain technology, pioneered by Bitcoin [1],
provides a globally-consistent append-only ledger that
does not rely on a central trusted authority. This
underlying public ledger technology has led to the rise
of more advanced cryptocurrencies with diverse and
innovative use-cases. Ethereum [2], for example, de-
ploys an entire state machine on top of a public ledger,
which can then run programs called “smart contracts”
in a globally shared namespace. Zerocash [3], on the
other hand, focuses on making cryptocurrency trading
and exchange more anonymous by employing zero-
knowledge proofs. All of these technologies utilize the
same underlying public ledger concept, where a se-
ries of append operations, each constituting a block,
create a chain of blocks each cryptographically au-
thenticating itself and the last block, hence the name
“blockchain”.

LDL
Public
Ledger
Model

LDL Compiler

ProVerif Model
Verify as Protocol

F* API
Safe Read-Write

Operations

Queries:
Block Integrity
Block Authenticity
Block Privacy

High Assurance:
Functional Correctness
Verified Primitives
Runtime Safety

Figure 1. LDL Architecture Outline

All of these public ledgers are based on decades-
old concepts in computer science, namely binary hash
chains and Merkle trees [4]. The Bitcoin blockchain is,
in essence, an extended binary hash chain capable of
supporting more complex data types and with certain
rules regarding append and read operations. More
complex designs such as Ripple [5], for example, uses
a Merkle tree-shaped public ledger.

1.1. A Language for Designing Public
Ledgers

Given what we know about the concepts underly-
ing all public ledgers, and the fact that they currently
shoulder currencies of significant value, we propose
Ledger Design Language (LDL), which combines two
different aspects of formal verification in order to bol-
ster the security of new public ledger designs in two
distinct ways. LDL is composed of three components,
illustrated in Figure 1:

1) Input: A Modeling Language for Public
Ledgers. The LDL language describes public
ledgers as a series of block types. As seen in
Figure 3, each block type contains:
• Block Data Structure. A listing of the el-

ements this block contains. Each element can
have a simple type, such as string or integer,
or a type that carries security connotations,
such as signature (a cryptographic signature
which must be validated according to certain
rules) or nonce (an identifier which must never
be reused across the public ledger’s existence.)

⟨ldl⟩ ::= ⟨ledger⟩ | ⟨option⟩

⟨ledger⟩ ::= ‘ledger ’ @identifier ‘{’ (⟨st⟩)*‘}’

⟨option⟩ ::= ‘option ’ ⟨opt⟩

⟨opt⟩ ::= ‘vrf’

⟨st⟩ ::= ⟨block⟩ | ⟨actor⟩ | ⟨struct⟩

⟨block⟩ ::= ‘block ’ @identifier ‘[’ (⟨type⟩ @identifier ‘;’)* ‘]’
‘(’ (‘before’ @identifier ‘;’ ‘branch’ ⟨branchType⟩) ‘)’

⟨actor⟩ ::= ‘actor ’ @identifier ‘[’‘]’ ‘(’ (‘ownsChain’ @identi-
fier ‘;’ ‘ownership’ ⟨ownershipType⟩) ‘)’

⟨struct⟩ ::= ‘struct ’ @identifier ‘[’ (⟨type⟩ @identifier ‘;’)*
‘]’ ‘()’

⟨type⟩ ::= ‘string’ | ‘address’ | ‘nonce’ | ‘integer’ | ‘signature’
| ‘date’ | ‘reference’ | ‘struct’ | ‘signpub’

⟨branchType⟩ ::= ‘single’ | ‘multiple’ | ‘binary’

⟨ownershipType⟩ ::= ‘single’ | ‘multiple’

Figure 2. LDL syntax.

• Block Properties. Two mandatory proper-
ties, before and branchType, describe the ad-
mitted directly preceding blocks, and whether
it is followed by multiple branches (like a
branching hash chain) or whether it is followed
by a single branch (like a hash chain resembling
the main Bitcoin blockchain). If the binary
qualifier is used to describe the branchType of
all block types on the ledger, then the LDL
compiler types the ledger as a Merkle binary
prefix tree. Once these two properties are de-
scribed for each block, we can obtain a full map
of the public ledger’s structure.

2) Output: A Symbolic Model Representation
of the Public Ledger. A model, written in the
applied-pi calculus represents the public ledger as
a protocol being played across a network with
parallel processes. This model is adapted for anal-
ysis using the ProVerif [6] protocol verifier, which
then analyzes it against an active attacker in the
Dolev-Yao modeland attempts the validation of
whether specific cryptographic properties, such as
authenticity, are obtained.

3) Output: An API Implementing the Public
Ledger. F⋆ [7] is an ML-like language aimed at
program verification. Using its advanced features,
such as dependent types and refinements, we can
obtain a real-world API implementing the public
ledger in a way that allows immediate use in
production systems, while maintaining runtime
safety, type safety and employing formally verified
cryptographic primitives.

LDL’s architecture aims at simplifying the design
process of public ledgers, allowing designers to imme-
diately obtain a way in which to rationalize regarding
the effective security goals of their public ledger and
to test it in a practical setting. Modifying the resulting
ProVerif model allows live prototyping on a protocol
logic level, while the F⋆ API allows for performance-
related and other kinds of practical testing.

1.2. Related Work

Despite the unified and well-understood nature of
the concepts underlying public ledgers, there appears
to be, to the best of our knowledge, little to no
prior work on applying formal verification to public
ledgers. The Solid Ether project [8] targets Solidity,
the language in which Ethereum “smart contracts”
are written, and includes translation to F⋆ from both
Solidity and its underlying bytecode which is what is
stored on the Ethereum public ledger. Simplicity [9]

follows another route by introducing an alternative to
Solidity that lends itself more easily to writing correct
programs. However, the structure of the ledger itself
is not within the scope of these project’s verification
or correctness efforts.

2. The LDL Language

LDL prioritizes simplicity, aiming to construct a
modeling language with the least amount of top-level
components. In this section, we describe minimal LDL
syntax and give a practical use-case example.

2.1. Language Semantics

LDL syntax (described in Figure 2) offers only
three possible kinds of top-level declarations:

• Block Declarations. As demonstrated in Fig-
ure 3, block declarations allow the block types of
a public ledger to be defined, first as a data struc-
ture and then with properties. The mandatory
before and branch properties, specified for each
block, are sufficient to obtain the full topology of
the public ledger being described, be it a Merkle
tree or a hash chain.

• Actor Declarations. Actors, defined using a
minimal syntax (as demonstrated in Figure 4)
represent “entities” which are specified to “own”
a particular chain or branch that is part of the
ledger. This is useful when translating to a sym-
bolic protocol model and when generating the F⋆

API, as described in §3.
• Structures. A simple syntax exists for defin-

ing data structures, which can then be used as
shorthand within blocks (for example, a userInfo
structure can contain three strings describing a
user’s name, email and phone number.)

Block data types such as signature and nonce
carry connotations of cryptographic security, which
are translated in a special way by the LDL compiler.

2.2. LDL Features

LDL can be used to express some advanced fea-
tures that do not usually appear in simpler public
ledger designs (such as a ledger that tracks banking
transactions). Nevertheless, these features do appear
in more complex ledgers that are the basis for our case
study in §4:

• Verifiable Random Functions. VRFs [10] are
essentially a type of hash function with public

key elements. The owner of an asymmetric key
pair (sk, pk) for V RF can compute V RFsk(x) =
(p, y), where x is an input value and y is a pseudo-
random output value with uniform distribution.
Meanwhile, p is a “proof value” that can be used
by any public observer that possesses (pk, x, p, y)
to verify that y is indeed a correct pseudorandom
mapping of x under a VRF keyed with secret key
sk. VRFs are important for many advanced public
ledger designs: they are used to encrypt all block
contents by generating encryption keys that can
be authenticated by the public ledger owner. In
events where the public ledger is structured as
a Merkle binary prefix tree, VRFs are used to
randomize the indices to which blocks are allo-
cated on the tree. The public ledger owner can
then selectively reveal Bip , the proof value for
any block Bi, allowing the correct index to be
confirmed.

• Cross-Referencing. LDL also allows for cross-
referencing, wherein blocks may include index
references to other blocks on the chain.

• Standard Cryptographic Functions. In LDL,
all encryption operations are translated into
ProVerif and F⋆ as operating under the AES-
GCM AEAD cipher. All public key operations
are translated as using Curve25519, and all sign-
ing operations use ED25519. This design ensures
that safe primitives are used always, lessening the
degree to which LDL model designers can make
low-level cryptographic mistakes. We accept the
expense this decision has on cipher suite flexibil-
ity.

• Key Rotation. Using the signpub datatype, a
public ledger user can append a block that de-
termines their identity’s future signing public key
for all blocks coming after this block, achiev-
ing a form of key rotation that is essential for
implementing some of the public ledger designs
discussed in §4.

2.3. Current Security Queries

We are currently able to query for the following
basic security properties:

• Block Integrity. Any internal, non-leaf block
delivered to the reader process must have been
written as-is by the writer process.

• Block Authenticity. Any block delivered to the
reader process must be cryptographically vali-
dated by a signature belonging to a certain actor
if and only if it was sent by the writer process
under that actor’s identity.

• Block Privacy. Specifying option vrf; in the
LDL model enables “VRF mode”, in which the
usage of a VRF is assumed for encryption across
the entire ledger. In the event that the ledger
describe is shaped as a Merkle binary prefix tree,
the LDL compiler output will also assume the
randomized, privacy-preserving distribution of in-
dices. This latter property is important for public
ledgers such as CONIKS (as discussed in §4.)

• Reference Integrity. A block on the ledger can
contain references to other block indices. We want
LDL output to model and give assurances on
whether these pointers will always point to the
correct blocks as intended. In some structures,
this is impossible to guarantee: we want the com-
piler output to reflect this and to give useful
insight to the designer.

2.4. Additional Work on Security Queries

In addition to the scope of this paper, we plan to
include additional security queries which will allow us
to reason on the security of the following events:

• Chains with Shared Ownership. Examples
given in this paper show chains owned by a sin-
gle actor. We want to expand our formalisms
to include scenarios where Alice and Bob both
contribute to the same chain, but with a specific
logic governing which signatures are expected for
which block. At this stage, inferences can be made
based on block address references and hierarchy
which allow LDL to determine which signatures
to expect at which time.

• Block Ordering Reliability. Our current rea-
soning on the constructed ProVerif output as-
sumes a perfectly ordered sequence of messages
between the writer and accumulator processes.
We want to expand this model to include security
queries with regards to unreliable communication
between these to processes, so that we can ask
whether this can lead to invalid or unintended
public ledger architectures being constructed.

3. From LDL Model to Formal Verifica-
tion

In this paper, we give a high-level description of the
reasoning and strategy behind LDL’s outputs. Future
work will discuss details such as translation rules and
the logic of underlying security goals.

3.1. Verifying Public Ledgers as Symbolic
Protocols

ProVerif models are composed of a set of process
descriptions, functions, reductions and constructors in
the symbolic model. In this model, all cryptographic
primitives are perfect “black boxes”. Then, a top-level
process execution is described, which could include
a parallel conjunction of processes. These processes
send and receive information over a set of channels.
On public channels, an active Dolev-Yao attacker can
monitor and tamper with messages. In this context,
events and queries are defined with respect to the
exposure (or lack thereof) of certain secret variables.

An LDL model is translated into this setting by
specifying three main processes:

• Writer Process. This process issues the blocks
in the order mandated by the structure of the
public ledger, using the identities defined by
actor declarations.

• Accumulator Process. This process accumu-
lates the blocks as received over the network from
the writer process, producing a structure that acts
as the record for the public ledger.

• Reader Process. This process then reads blocks
from the ledger. Read operations are sent to the
accumulator process, which then delivers block in-
formation over the network to the reader process.
This allows ProVerif a chance to expose this block
information to the active attacker.

3.2. Generating a Verified Public Ledger
API in F⋆

In F⋆, we want to obtain an API implementing
the public ledger in a way that allows for safe, high-
assurance read-write operations and with a formally
verified cryptographic context. We expose an API
with top-level access functions generated through LDL
actor declarations:

3.2.1. Blocks as Dependent Types
Using dependent types in F⋆, we can describe

blocks as a collection of simple datatypes and also
algebraically validated types. This allows us to type-
check a block as valid within the context of a valid
signature (which authenticates to a particular identity
and is well-formed as two points on the curve, in the
case of Ed25519) and a hash that is coherent within
the hash chain of the branch in which it belongs.

3.2.2. Functional Correctness and Runtime
Safety

The F⋆ API will also be able to guarantee that all
operations on the public ledger target a ledger that
is well-formed, according to spec, with no room, for
example, for misdirected block references.

3.2.3. Verified Primitives with HACL⋆

HACL⋆ [11] is a formally verified cryptographic
library in F⋆. Primitives within HACL⋆ are verified
for functional correctness, memory safety and against
side-channel attacks. These guarantees carry when
HACL⋆ is translated to C code. The LDL compiler calls
HACL⋆ primitives for all cryptographic operations and
thereby benefits from these security guarantees.

4. Case Study: an LDLChain Implemen-
tation

We present a case study that uses LDL to im-
plement and verify “LDLChain”, a full public ledger
design that can be used for managing public key
information. In order to understand how to best
shape LDLChain, we based ourselves on an exten-
sive literature review of existing public ledger sys-
tems. LDLChain is based on CONIKS [12], a pub-
lic ledger approach to certificate transparency by
Melara, Blankstein, Bonneau, Felten and Freedman.
LDLChain is also is inspired by ClaimChain [13], a
recent design by Kulynych, Isaakidis, Troncoso and
Danezis, which proposes a public ledger that lends

block Root[
date currentDate;
nonce merkleRoot;
string ledgerName;

](
before UserChain;
branch multiple;

)
block UserChain[

string name;
signpub initialKey;

](
before Claim;
branch single;

)
block Claim[

date timestap;
struct claimData;
signpub nextKey;

](
before Claim;
branch single;

)

Figure 3. A partial LDL model showing two block declarations.
A UserChain describes the root block of an append-only Merkle
branch and indicates that it can occur only before the Root block
for the entire public ledger. Meanwhile, the Claim describes a
check which can only have a single, non-branching chain of Claim
blocks as children. The full model describes the ledger discussed
in §4.

actor ChainOwner[] (
ownsChain Root;
ownership single;

)
actor Alice[](

ownsChain UserChain;
ownership single;

)

Figure 4. LDL actors that are part of LDLChain, discussed in
§4.

itself towards storing claims made by users regarding
their long-term identity keys for various cryptographic
systems that employ public-key encryption.

Given the space constraints within this paper, we
have found it impossible to describe our case study
implementation in detail, including vital information
such as the full LDL model, its translation into the
applied-pi calculus and its F⋆ API. A longer version of
the paper will contain a complete version of the case
study.

type claimData = |InitClaimData:
screen_name: option string →
real_name: option string →
identifiers: list indentifier →
keys: list keyEnt →
hashMetadata: bytes → claimData

type claim = |InitClaim:
timeStamp : (k : time { k> 0}) →
claimData: claimData →
signpub: bytes →
signature : bytes {

verify signature (
concat (toBytes claimData) (

toBytes key
)

)} → claim

Figure 5. Target F⋆ code representing the datatypes generated
from Figure 3 by the LDL compiler. Signatures are dependently
typed so as to be verified as valid and authentic.

4.1. LDLChain Design and Security Goals

LDLChain blocks (described in Figure 3) can con-
tain self-identifying information, such as usernames,
and endorsements of claims made by other users
(by referencing the block index on which they were
made). LDLChain blocks can also contain key infor-
mation: LDL allows for key rotation using the signpub
datatype.

LDLChain is largely based on ClaimChain, and its
security properties are exactly that of ClaimChain.1

• Authenticity. The information stored in a
ClaimChain has been input by the owner of the
chain.

• Integrity. The information stored in a Claim-
Chain has not been modified since it was added
to the chain.

• Privacy. Only readers authorized by the Claim-
Chain owner to access a claim at a particular
point in time can read the content of that claim,
at that point in time.

• Non-equivocation. At a particular point in
time, a ClaimChain owner cannot provide two au-
thorized readers of a claim with different content
for that claim.

These properties can be described in LDL, with
the exception of non-equivocation, which is currently
slated for future work.

4.2. The LDLChain API in F⋆

We briefly describe LDLChain’s F⋆ API.2 LDL’s
F⋆ library comes with implementations for standard
data structures such as Merkle trees and Skip lists.
Depending on the LDL model, these libraries are used
in the generation of an F⋆ Spec. In it, blocks are
represented as complex types with dependent subtypes
depending on the structures described in LDL, as seen
in Figure 5. For that F⋆ type, an API is generated,
including, for example, a function addClaim, which
uses lemmas and logic contained in the LDL Merkle
tree F⋆ library in order to manage the secure insertion
of the claim into the public ledger.

5. Conclusion

In this paper, we introduce LDL as a domain-
specific modeling language that can be used to de-
scribe public ledgers. The LDL compiler validates
these descriptions and generates two distinct outputs
that allow users to reason about the security of pub-
lic ledgers, obtain meaningful conclusions and deploy
them with practical, verified implementations.

1. The main reason why we implement LDLChain instead
of simply ClaimChain is that, to the best of our knowledge,
ClaimChain’s public ledger data structure is not currently fully
defined by its authors.

2. Due to space constraints, we cannot include a similar de-
scription of the ProVerif output in this version of the paper.

5.1. Future Work

Future work includes extending the LDL syntax to
capture more public ledger use-cases and continuously
improving the language’s functionality and expressive-
ness in accordance with modern public ledger design
norms.

Currently, there exists no formal proof guarantee-
ing that the LDL translation rules fully preserve all
security goals that are targeted by an LDL model as
it is translated to an applied pi calculus model or to
F⋆ code. Future work aims to remedy this.

Furthermore, different avenues could be explored
for LDL output. The CryptoVerif [14] verifier accepts
a similar syntax to ProVerif, but can be used to
describe computational models with algebraic prop-
erties. LDL’s F⋆ translations themselves could also be
expanded to capture more of the protocol logic which
we currently verify using ProVerif, creating a formal
relationship between the two representations.

5.2. Acknowledgments

We thank Karthikeyan Bhargavan, Bruno Blanchet
and Antoine Delignat-Lavaud for discussions regard-
ing translation to ProVerif and F⋆. We also thank
Hadi Kabalan and Russell O’Connor for discussions
regarding use-cases. We also acknowledge Diffie the
poodle for his profound insight and moral support.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic
cash system,” http://bitcoin.org/bitcoin.pdf. 1

[2] G. Wood, “Ethereum: A secure decentralised
generalised transaction ledger,” http://gavwood.
com/paper.pdf. 1

[3] E. B. Sasson, A. Chiesa, C. Garman, M. Green,
I. Miers, E. Tromer, and M. Virza, “Zerocash: De-
centralized anonymous payments from bitcoin,”
in Security and Privacy (SP), 2014 IEEE Sympo-
sium on. IEEE, 2014, pp. 459–474. 1

[4] R. C. Merkle, “A digital signature based on a
conventional encryption function,” in Conference
on the Theory and Application of Cryptographic
Techniques. Springer, 1987, pp. 369–378. 1

[5] D. Schwartz, N. Youngs, and A. Britto,
“The ripple protocol consensus algorithm,”
https://ripple.com/files/ripple_consensus_
whitepaper.pdf, 2014. 1

[6] B. Blanchet, “Automatic verification of security
protocols in the symbolic model: The verifier
proverif,” in Foundations of Security Analysis and
Design VII. Springer, 2014, pp. 54–87. 2

[7] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi,
A. Delignat-Lavaud, S. Forest, K. Bhargavan,
C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoué, and S. Zanella-Béguelin, “Depen-
dent types and multi-monadic effects in F*,” in
43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages,
POPL ’16. ACM, 2016, pp. 256–270. 2

http://bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf

[8] K. Bhargavan, A. Delignat-Lavaud, C. Four-
net, A. Gollamudi, G. Gonthier, N. Kobeissi,
A. Rastogi, T. Sibut-Pinote, N. Swamy, and
S. Zanella-Beguelin, “Formal verification of smart
contracts,” in Proceedings of the 2016 ACM Work-
shop on Programming Languages and Analysis for
Security-PLAS16, 2016, pp. 91–96. 2

[9] R. O’Connor, “Simplicity: A new language for
blockchains,” CoRR, vol. abs/1711.03028, 2017.
[Online]. Available: http://arxiv.org/abs/1711.
03028 2

[10] S. Micali, M. Rabin, and S. Vadhan, “Verifi-
able random functions,” in Foundations of Com-
puter Science, 1999. 40th Annual Symposium on.
IEEE, 1999, pp. 120–130. 2

[11] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko,
and B. Beurdouche, “Hacl*: A verified modern
cryptographic library,” in ACM Conference on
Computer and Communications Security (CCS),
2017. 4

[12] M. S. Melara, A. Blankstein, J. Bonneau, E. W.
Felten, and M. J. Freedman, “Coniks: Bringing
key transparency to end users.” in USENIX Secu-
rity Symposium, 2015, pp. 383–398. 4

[13] B. Kulynych, M. Isaakidis, C. Troncoso, and
G. Danezis, “Claimchain: Decentralized public
key infrastructure,” CoRR, vol. abs/1707.06279,
2017. [Online]. Available: http://arxiv.org/abs/
1707.06279 4

[14] B. Blanchet, “Cryptoverif: Computationally
sound mechanized prover for cryptographic
protocols,” in Dagstuhl seminar on Applied
Formal Protocol Verification, 2007, p. 117. 5

http://arxiv.org/abs/1711.03028
http://arxiv.org/abs/1711.03028
http://arxiv.org/abs/1707.06279
http://arxiv.org/abs/1707.06279

	Introduction
	A Language for Designing Public Ledgers
	Related Work

	The LDL Language
	Language Semantics
	LDL Features
	Current Security Queries
	Additional Work on Security Queries

	From LDL Model to Formal Verification
	Verifying Public Ledgers as Symbolic Protocols
	Generating a Verified Public Ledger API in F
	Blocks as Dependent Types
	Functional Correctness and Runtime Safety
	Verified Primitives with HACL

	Case Study: an LDLChain Implementation
	LDLChain Design and Security Goals
	The LDLChain API in F

	Conclusion
	Future Work
	Acknowledgments

