
HAL Id: hal-01950006
https://hal.inria.fr/hal-01950006

Submitted on 10 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Conceptual Navigation for Polyadic Formal Concept
Analysis

Sebastian Rudolph, Christian Săcărea, Diana Troancă

To cite this version:
Sebastian Rudolph, Christian Săcărea, Diana Troancă. Conceptual Navigation for Polyadic Formal
Concept Analysis. 4th IFIP International Workshop on Artificial Intelligence for Knowledge Manage-
ment (AI4KM), Jul 2016, New York, NY, United States. pp.50-70, �10.1007/978-3-319-92928-6_4�.
�hal-01950006�

https://hal.inria.fr/hal-01950006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Conceptual Navigation for
Polyadic Formal Concept Analysis

Sebastian Rudolph1, Christian Săcărea2, and Diana Troancă2

1sebastian.rudolph@tu-dresden.de, Technische Universität Dresden
2{csacarea,dianat}@cs.ubbcluj.ro, Babeş-Bolyai Cluj Napoca

Abstract. Formal Concept Analysis (FCA) is a mathematically inspired field
of knowledge representation with wide applications in knowledge discovery and
decision support. Polyadic FCA is a generalization of classical FCA that instead
of a binary uses an arbitrary, n-ary incidence relation to define formal concepts,
i.e., data clusters in which all elements are interrelated. We discuss a paradigm
for navigating the space of such (formal) concepts, based on so-called member-
ship constraints. We present an implementation for the cases n ∈ {2, 3, 4} using
an encoding into answer-set programming (ASP) allowing us to exploit highly
efficient strategies offered by optimized ASP solvers. For the case n = 3, we
compare this implementation to a second strategy that uses exhaustive search in
the concept set, which is precomputed by an existing tool. We evaluate the imple-
mentation strategies in terms of performance. Finally, we discuss the limitations
of each approach and the possibility of generalizations to n-ary datasets.

1 Introduction

Conceptual knowledge is closely related to a deeper understanding of existing facts and
relationships, but also to the process of arguing and communicating why something
happens in a particular way. Formal Concept Analysis (FCA) [6] is a mathematical
theory introduced by Wille, being the core of Conceptual Knowledge Processing [24].
It emerged from applied mathematics and quickly developed into a powerful framework
for knowledge representation. It is based on a set-theoretical semantics and provides a
rich amount of mathematical instruments for the representation, acquisition, retrieval,
discovery and further processing of knowledge.
FCA defines concepts as maximal clusters of data in which all elements are mutually in-
terrelated. In FCA, data is represented in a basic data structure, called formal context. A
dyadic formal context consists of two sets, one of objects and another of attributes and
a binary relation between them, expressing which objects have which attributes. From
such dyadic formal contexts, formal concepts can be extracted using concept forming
operators, obtaining a mathematical structure called concept lattice. Thereby, the en-
tire information contained in the formal context is preserved. The concept lattice and
its graphical representation as an order diagram can then serve as the basis for com-
munication and further data analysis. Navigation in concept lattices enables exploring,
searching, recognizing, identifying, analyzing, and investigating; this exemplifies the
fruitfulness of this approach for knowledge management.

In subsequent work, Lehmann and Wille extended dyadic FCA to a triadic setting
(3FCA) [16], where objects are related to attributes under certain conditions. The tri-
adic concepts (short: triconcepts) arising from such data, can be arranged in mathemat-
ical structures called trilattices. Trilattices can be, up to some conditions, graphically
represented as a triangular diagram, yet, this kind of knowledge representation is much
less useful and intuitive than its dyadic counterpart, because of the difficulties of reading
and navigating in such triadic diagrams. Even if the theoretical foundations of trilattices
and that of 3FCA have been intensely studied, there is still a need for a valuable navi-
gation paradigm in triadic concept sets. To overcome these difficulties, we proposed in
2015 a navigation method for triadic conceptual landscapes based on a neighborhood
notion arising from dyadic concept lattices obtained by projecting along a dimension
[20]. This method enables exploration and navigation in triconcept sets by locally dis-
playing a smaller part of the space of triconcepts, instead of displaying all of them at
once.
Voutsadakis [22] further generalized the idea from dyadic and triadic to n-adic data
sets, introducing the term Polyadic Concept Analysis. He describes concept forming
operators in the n-dimensional setting as well as the basic theorem of polyadic concept
analysis, a generalization of earlier results by Wille [23].
FCA was successfully used on triadic or tetradic (n = 4) datasets such as folksonomies
[14], data logs of rental services [2] or data about mobile operators [12]. However, a
common problem for n-ary concept sets is their size and complexity. Even for n = 2
and for relatively small data sets, the number of formal concepts tends to be quite large
(it can be of exponential size in the worst case), which makes the graphical representa-
tion of these sets in their entirety unusable for practical purposes. Several strategies have
been proposed to overcome this problem. For instance, Dragoş et al. [5, 4] are using a
circular representation for triadic data while investigating users’ behavioral patterns in
e-learning environments. Săcărea [21] uses a graph theoretical approach to represent
triadic concept sets obtained from medical data. For n-adic concept sets with n ≥ 4, no
navigation strategies have been presented yet.
In 2015, we introduced membership constraints for n-adic concepts in order to narrow
down the set of user-relevant n-concepts and to focus on a certain data subset one is
interested to explore or start exploration from [19]. As opposed to classical navigation
tools, conceptual navigation has at its core a formal concept, i.e. a complete cluster
of knowledge. We discussed the problem of satisfiability of membership constraints,
determining if a formal concept exists whose object and attribute sets include certain
elements and exclude others.
In the current paper, we consider a general navigation paradigm for the space of polyadic
concepts and implement this paradigm for the dyadic, triadic and tetradic case. For the
triadic case, we try two different implementations. The first one uses the capabilities of
Answer Set Programming (ASP) for computing concepts and solving the corresponding
membership constraint satisfaction problem. By using this strategy, the implementation
also explores optimization strategies offered by ASP. The second strategy is based on an
exhaustive search of the set of polyadic concepts. The concept set is no longer computed
using the ASP encoding but by one of the existing 3FCA tools. Finally, we evaluate the
performance of these two strategies in terms of implementation and computation speed

and we discuss the limitations of each approach and show that the ASP approach can
be extended to any n-ary dataset.

2 Preliminaries

2.1 Formal Concept Analysis

In this section, we briefly present the necessary basic notions and definitions. For a
more detailed introduction, please refer to [6].
A dyadic context is defined to be a triple (G,M, I), where G and M are sets and
I ⊆ G ×M is a binary relation. The set G is called set of objects, M is the set of at-
tributes and I is the incidence relation. Concepts are extracted herefrom using deriva-
tion operators. For A ⊆ G we define A′ = {m ∈ M | ∀g ∈ A, gIm}, i.e. A′ consists
of all common attributes of all object from A. Dually, for a set B ⊆ M of attributes,
we define B′ to be the set of objects sharing all attributes from B. The derivation op-
erators are a Galois connection on the power sets of G and M , respectively. A formal
concept is a pair (A,B) of objects and attributes, respectively, with A′ = B,B′ = A.
The set of all formal concepts is ordered by the subconcept-superconcept relationship:
If (A,B), (C,D) are concepts, then (A,B) ≤ (C,D) if and only if A ⊆ C (which is
equivalent to the conditionD ⊆ B). By this, the set of all concepts becomes a complete
lattice, called concept lattice.
The triadic case has been studied by Lehmann and Wille ([16]). The fundamental struc-
tures used by triadic FCA are those of a triadic formal context and a triadic formal
concept, also referred to as triadic concept or short triconcept. For a better understand-
ing, we define the triadic context first, and then explain the notion of formal concept for
the general case.

Definition 1. A triadic formal context K = (K1,K2,K3, Y) is defined as a quadruple
consisting of three sets and a ternary relation Y ⊆ K1 ×K2 ×K3. K1 represents the
set of objects, K2 the set of attributes and K3 the set of conditions. The notation for an
element of the incidence relation is (g,m, b) ∈ Y or b(g,m) and it is read object g has
attribute m under condition b.

Polyadic FCA is a direct generalization of the dyadic or triadic case, where n (not
necessarily different) non-empty sets are related via an n-ary relation. An n-concept is
a maximal cluster of n sets, with every element being interrelated with all the others.

Definition 2. Let n ≥ 2 be a natural number. An n-context is an (n + 1)-tuple K :=
(K1,K2, . . . ,Kn, Y), where K1,K2, . . . ,Kn are sets and Y is an n-ary relation Y ⊆
K1 ×K2 × · · · ×Kn.

Definition 3. The n-concepts of an n-context (K1, . . . ,Kn, Y) are exactly the n-tuples
(A1, . . . , An) that satisfy A1 × · · · × An ⊆ Y and which are maximal with respect to
component-wise set inclusion. (A1, . . . , An) is called a proper n-concept ifA1, . . . , An
are all non-empty.

Example 1. Finite dyadic contexts can be represented as cross-tables, rows being la-
beled with object names, columns with attribute names. In the triadic case, objects are
related to attributes and conditions via a ternary relation and the corresponding triadic
context can be thought of as a 3D cuboid, the ternary relation being marked by filled
cells. Triadic contexts are usually unfolded into a series of dyadic ”slices”, like in the
following example, where we consider a triadic context (K1,K2,K3, Y) where the
object set K1 consists of authors of scientific papers, the attribute set K2 contains con-
ference names/journal names while the conditions K3 are the publication years. For
this small selection we obtain a 2× 4× 2 triadic context, the ”slices” being labeled by
condition names.

2014 Corr ICC PIMRC HICSS

Rumpe ×
Alouni × × ×

2015 Corr ICC PIMRC HICSS

Rumpe × ×
Alouni × ×

Fig. 1: DBLP data: author, conference/journal, year

There are exactly six triconcepts of this context, i.e., maximal 3D cuboids full of inci-
dences:

– ({Rumpe,Alouni}, {Corr}, {2014, 2015}),
– ({Alouni}, {Corr, ICC ,PIMRC}, {2014}),
– ({Alouni}, {Corr, ICC}, {2014, 2015}),
– ({Rumpe}, {Corr,HICSS}, {2015}),
– (∅, {Corr, ICC ,PIMRC ,HICSS}, {2014, 2015}) and
– ({Rumpe,Alouni},{Corr,ICC ,PIMRC ,HICSS},∅).

The first four of these triconcepts are called proper.

If K = (K1, . . . ,Kn, Y) is an n-context, membership constraints are indicating re-
stricting conditions by specifying which specific elements aj ∈ Kj must be included in
the jth component of an n-concept, respectively which elements bj ∈ Kj , j = 1, . . . , n
must be excluded therefrom. We investigated the question of satisfiability of such mem-
bership constraints, i.e., to determine if there are any formal n-concepts which are sat-
isfying the inclusion and exclusion requirements [19].

Definition 4. An n-adic membership constraint on an n-context K = (K1, . . . ,Kn, R)
is a 2n-tuple C = (K+

1 ,K
−
1 , . . . ,K

+
n ,K

−
n) with K+

i ⊆ Ki called required sets and
K−i ⊆ Ki called forbidden sets.
An n-concept (A1, . . . , An) of K is said to satisfy such a membership constraint if
K+
i ⊆ Ai and K−i ∩Ai = ∅ hold for all i ∈ {1, . . . , n}.

We let Mod(K,C) (Modp(K,C)) denote the set of all (proper) n-concepts of K that
satisfy C.
An n-adic membership constraint C is said to be (properly) satisfiable with respect
to K, if it is satisfied by one of its (proper) n-concepts, that is, if Mod(K,C) 6= ∅
(Modp(K,C) 6= ∅).

We have shown that the problem of deciding satisfiability of a membership constraint
w.r.t. an n-context is NP-complete in general [19]. The intractability easily carries over
to proper satisfiability.

2.2 Answer Set Programming

Answer Set Programming (ASP) [7] is a logic programming formalism and hence uses
a declarative approach to solve NP-hard problems. As opposed to the imperative ap-
proach, where the programmer tells the computer what steps to follow in order to solve
a problem, declarative approaches merely describe the problem while the process of
solving is delegated to generic strategies applied by highly optimized ASP engines.
Mainly, in ASP one has to express the problem in a logic programming format consist-
ing of facts and rules, so that the solutions of the problem correspond to models of the
logic program.
In what follows, we briefly introduce the syntax and semantics of normal logic programs
under the stable model semantics [7, 10]. We will present directly the syntax used in the
source code in order to avoid a translation phase from one syntax to the other.
Let D denote the domain, i.e. a countable set of elements, also called constants. Next,
we define an atom as an expression of the type p(t1, . . . , tn), where p is a predicate of
arity n ≥ 0 and every ti is an element from the domain or a variable, denoted by an
upper case letter. An atom is called ground if it is variable-free. The set of all ground
atoms over D is denoted by GD. A (normal) rule ρ is defined as:

a1 ← b1 ∧ . . . ∧ bk ∧ ∼bk+1 ∧ . . . ∧ ∼bm,

where a1, b1, . . . , bm are atoms m ≥ k ≥ 0 with the observation that the left or the
right part of the rule might be missing, but not both at the same time. The left part
of the rule, i.e. the part before “←” is called head, denoted H(ρ) = {a1}, while the
right part is the body of the rule, denoted B(ρ) = {b1, . . . bk,∼bk+1, . . . ,∼bm}. As
mentioned previously, a rule does not necessarily contain a non-empty head and body,
namely, when the head of the rule is empty, we call the rule a constraint and, when
the body of the rule is missing and a1 is ground, it is called a fact. In case the rule
is a fact, we usually omit the sign “←” and write just the atom in the head of the
rule. In the definition of the rule, “∼” denotes default negation, which refers to the
absence of information as opposed to classical negation “¬” which implies that the
negated information is present. Intuitively, “∼a” means that a /∈ I , while ¬a implies
¬a ∈ I , for an interpretation I , where I ⊆ GD can be understood as the set of ground
atoms which are true. Furthermore, we denote B+(ρ) = {b1, . . . , bk} and B−(ρ) =
{bk+1, . . . , bm}. A rule ρ is called safe if each variable in ρ occurs in B+(ρ). Finally,
we define a propositional normal logic program as a finite set of normal rules.

In order to define when a program Π is satisfied by an interpretation I , let UΠ denote
the subset of constants from the domain that appear in the program Π and Gr(Π) the
grounded program, i.e. the set of grounded rules obtained by applying all the possible
substitutions from the variables to the constants in UΠ , for all the rules ρ ∈ Π . We say
that an interpretation I ⊆ GD satisfies a normal ground rule ρ ∈ Π if and only if the
following implication holds:

B+(ρ) ⊆ I,B−(ρ) ∩ I = ∅ ⇒ H(ρ) ⊆ I.

Then the interpretation I satisfies a non-groud rule if it satisfies all the possible ground-
ings of the rule. Finally, the interpretation I satisfies a program Π if it satisfies all its
rules, i.e. it satisfies the grounded program Gr(Π).
An interpretation I ∈ GD is called an answer set or a stable model [10] of the pro-
gram Π if and only if it is the ⊆-minimal model satisfying the reduct ΠI defined by
ΠI = {H(ρ) : −B+(ρ) | I ∩ B−(ρ), ρ ∈ Gr(Π)}. Furthermore, we define the set of
cautiously entailed ground atoms as the intersection of all answer sets.
ASP solving is split in two phases. In the first phase, a grounder has to be used in order to
process the logic program into a finite variable-free propositional representation of the
problem encoding. In the next phase, a solver uses as input the output of the grounder
and computes the solutions, i.e. the answer sets of the problem.
Researchers from the University of Potsdam developed a tool suite called Potassco1,
which is a collection of answer set solving software. In our research we used the solving
tools from the this collection [8], since it is currently the most prominent solver leading
in the latest competitions [1]. In what follows, we will describe these tools in more
details.
The first tool, Gringo is a grounder that can be used in the first phase in order to trans-
form the initial encoding into an equivalent variable-free, i.e. ground, program. Gringo
has a simple, but comprehensive syntax that can express different types of rules (normal,
choice, cardinality, etc.), constraints (integrity, cardinality, etc.), but also optimization
statements. Intuitively, a constraint expresses a “forbidden” behavior of the models,
i.e. if the body of the constraint is true then the model is not a stable model. The output
of Gringo is in the smodels format, which is an intermediate format used for the ASP
solver input.
The second tool, Clasp, is a solver that uses the smodels format for the input and com-
putes the answer sets of the program. The output of Clasp can be configured by the user
and shows all or some of the following details: the number of solutions and whether
the problem is satisfiable (i.e. if it has at least one stable model) or unsatisfiable, the
solutions, and the detailed time of the execution. The format of the answer sets is also
configurable by specifying in the encoding which predicates shall be printed in the out-
put.
Both tools, Gringo and Clasp, were combined into one tool, called Clingo, in order to
avoid processing the ASP program with Gringo and then further process the output with
Clasp. Avoiding the intermediate step is particularly useful if the grounded program is
not of interest and the only results needed are the answer sets of the program. Fur-
thermore, in case one needs to compute the execution time of the whole ASP solving

1 http://potassco.sourceforge.net/

process, the integrated tool shows the cumulative duration of the two phases, grounding
and solving.

3 Encoding Membership Constraints in Answer Set Programming

Given that satisfiability of membership constraints can in general be NP-complete, it is
nontrivial to find efficient algorithms for computing membership-constraint-satisfying
concepts. We note here that the problem can be nicely expressed in answer set pro-
gramming using an encoding introduced in a previous paper [19]. We will consider the
n-adic case. Given an n-adic membership constraint C = (K+

1 ,K
−
1 , . . . ,K

+
n ,K

−
n) on

an n-context K = (K1, . . . ,Kn, R), we represent the specific problem by the following
set of ground facts FK,C:

– seti(a) for all a ∈ Ki,
– rel(a1, . . . , an) for all (a1, . . . , an) ∈ R,
– requiredi(a) for all a ∈ K+

i , and
– forbiddeni(a) for all a ∈ K−i .

Now we let P denote the following fixed answer set program (with rules for every
i ∈ {1, . . . , n}):

ini(x)← seti(x) ∧ ∼outi(x)
outi(x)← seti(x) ∧ ∼ini(x)

←
∧
j∈{1,...,n} inj(xj) ∧ ∼rel(x1, . . . , xn)

exci(xi)←
∧
j∈{1,...,n}\{i} inj(xj) ∧ ∼rel(x1, . . . , xn)

← outi(x) ∧ ∼exci(x)
← outi(x) ∧ requiredi(x)
← ini(x) ∧ forbiddeni(x)

Intuitively, the first two lines “guess” an n-concept candidate by stipulating for each
element of each Ki if they are in or out. The third rule eliminates a candidate if it
violates the condition A1 × . . . × An ⊆ R, while the fourth and fifth rule ensure the
maximality condition for n-concepts. Finally, the sixth and the seventh rule eliminate
n-concepts violating the given membership constraint.
There is a one-to-one correspondence between the answer sets X of FK,C ∪ P and the
n-concepts of K satisfying C obtained as ({a | in1(a) ∈ X}, . . . , {a | inn(a) ∈ X}).
Consequently, optimized off-the-shelf ASP tools can be used for checking satisfiability
but also for enumerating all satisfying n-concepts.

4 Navigation

In this section, we describe a strategy for navigating the space of proper n-concepts of
an n-context.2 The basic idea is to use intuitive representations of “subspaces” of the
overall space by specifying which elements must be included in or excluded from a
certain proper n-concept component Ai. Obviously, such a subspace is identified by a
membership constraint C = (K+

1 ,K
−
1 , . . . ,K

+
n ,K

−
n) specifying exactly the included

and excluded elements for each component of the n-concepts. The n-concepts in the
“subspace” associated with C are then the n-concepts from Modp(K,C). Visually, C
can be represented by displayingK1, . . . ,Kn as n lists and indicating for every element
if it is included, excluded, or none of the two (undetermined). The user can then choose
to restrict the space further by indicating for an undetermined element of some Ki, if
it should be included or excluded. What should, however be avoided is that by doing
so, the user arrives at an empty “subspace”, i.e., a membership constraint that is not
satisfied by any proper n-concept (i.e., Modp(K,C) = ∅). To this end, we will update
the membership constraint directly after the user interaction in order to reflect all neces-
sary inclusions and exclusions automatically following from the user’s choice. Assume
C = (K+

1 ,K
−
1 , . . . ,K

+
n ,K

−
n) is the membership constraint after the user interaction.

The updated constraint can be described by C′ = (L+
1 , L

−
1 , . . . , L

+
n , L

−
n), where

L+
i =

⋂
(A1,...,An)∈Modp(K,C)

Ai

and
L−i =

⋂
(A1,...,An)∈Modp(K,C)

Ki \Ai.

It is then clear that after such an update, for every element e of some Ki which is still
undetermined by C′, there exist proper n-concepts (E1, . . . , En) and (F1, . . . , Fn) in
Modp(K,C′) with e ∈ Ei but e 6∈ Fi. Consequently, whatever undetermined element
the user chooses to include or exclude, the resulting membership constraint will be
properly satisfiable. If the updated constraint C′ = (L+

1 , L
−
1 , . . . , L

+
n , L

−
n) determines

for every element if it is included or excluded (i.e., if L+
i ∪ L

−
i = Ki holds for ev-

ery i), the user’s navigation has narrowed down the space to the one proper n-concept
(L+

1 , . . . , L
+
n).

Considering the example from the previous section, assume the user has specified the
inclusion of the attribute Corr in K2 and the exclusion of the attribute ICC from K2,
i.e.,

C = (∅, ∅, {Corr}, {ICC}, ∅, ∅).

The proper 3-concepts of K satisfying C are

C1 = ({Rumpe,Alouni}, {Corr}, {2014, 2015}) and
C2 = ({Rumpe}, {Corr,HICSS}, {2015}),

2 Non-proper concepts are considered out of scope for knowledge exploration, thus we exclude
them from our consideration. The described navigation would, however, also work if these
concepts were taken into account.

therefore, we would obtain the updated constraint

C′ = ({Rumpe}, ∅, {Corr}, {ICC ,PIMRC}, {2015}, ∅).

If the user now decided to additionally exclude 2014 from K3, leading to the constraint

C′′ = ({Rumpe}, ∅, {Corr}, {ICC ,PIMRC}, {2015}, {2014}),

the only proper 3-concept satisfying it is C2. Consequently, C′′ will be updated to

C′′′ = ({Rumpe}, {Alouni}, {Corr ,HICSS}, {ICC ,PIMRC}, {2015}, {2014}),

which then represents the final state of the navigation.

5 Implementation

Following the general scheme described in the previous section, we implemented a
navigation tool for the cases n ∈ {2, 3, 4}, using different strategies for n = 3. The
two fundamentally different approaches differ in the method of computing the concepts
(ASP vs different tool), as well as in which navigation step the concepts are computed.
In 2015, we proposed the ASP encoding for the membership constraint satisfiability
problem presented in Section 3 and discussed how it could be deployed in an interactive
search scenario [19]. For the first approach presented in this paper3, we extended and
implemented this scenario using diverse ASP optimization techniques. For grounding
and solving in the ASP navigation tool, we used Clingo from the Potassco collection
[8] for the reasons mentioned in Section 2.2.
Recall that ASP solves a search problem by computing answer sets, which represent
the models of a given answer set program (the so-called stable models) [7, 9, 11, 17,
18]. Our encoding, as presented in Section 3, is such that given K and C, an answer set
program is created, such that there is a one-to-one correspondence between the answer
sets and the n-concepts of K satisfying C.
The known facts in a membership constraint satisfiability problem are the elements
of the context Ki, i ∈ {1, . . . , n}, the n-adic relation Y and the sets of required and
forbidden elements. The answer set program can be conceived as a declarative imple-
mentation of the following “guess & check” strategy:

– start from an empty constraint C
– decide for each element a ∈ Ki, i ∈ {1, . . . , n}, if a ∈ K+

i , i.e. included, or
a ∈ K−i , i.e. excluded, hence reaching a membership constraint of the form C =
(K+

1 ,K
−
1 , . . . ,K

+
n ,K

−
n) with K+

i ∪K
−
i = Ki for every i

– check if (K+
1 , . . . ,K

+
n) is component-wise maximal w.r.t.K+

1 ×K
+
2 ×. . .×K+

n ⊆
Y

– check if the required and forbidden elements are assigned correspondingly in the
obtained membership constraint C, i.e. required elements belong to K+

i , forbidden
elements belong to K−j , for some i, j ∈ {1, . . . , n}

3 https://sourceforge.net/projects/asp-concept-navigation

At any step, if one of the conditions is violated, the membership constraint is eliminated
from the set of models. Hence, in the end we obtain all the membership constraints
that correspond to n-concepts satisfying the given restrictions. The ASP encoding can
be easily extended to retrieve only the proper n-concepts satisfying C, by adding an
additional check that ensures |K+

i | > 0 for every i.
Recall that the cautious option of ASP iteratively computes the intersection over all
answer sets, in the order in which they are computed by the ASP solver. However,
regardless of the ASP solver, the last outputted solution when using the cautious option
is always the intersection of all answer sets of the program. Later in this section, we
show how this option can be utilized to optimize the propagation phase of the navigation
and, in the evaluation section, we present statistics showing that it has a great impact on
the execution time of the tool we developed.
The propagation algorithm tests for all elements that are still in an undetermined state,
which of the possible decisions on that element (in or out) give rise to a satisfiable
answer set program. In case one of the decisions generates an unsatisfiable problem,
the complementary choice is automatically made. Remember that, as discussed in the
previous section, when starting from a satisfiable setting, it cannot be the case that both
choices generate an unsatisfiable program.
The alternative to explicitly testing all the possible choices for every element in an un-
determined state is to compute all the answer sets for the already added constraints and
to obtain their intersection. This intersection contains the in and out choices that need
to be propagated, since their complementary constraints are not included in any an-
swer set and hence, would generate an unsatisfiable program. This approach is formally
described in Algorithm 1.

Algorithm 1 propagation of user decisions optimized
function PROPAGATEOPTIMIZED(K,C)
Input: n-context K, membership constraint C
Output: updated membership constraint
Data: membership constraint C=(K+

1 ,K
−
1 ,. . .,K

+
n,K

−
n)

for all i ∈ {1, . . . , n} do
L+

i =
⋂

(A1,...,An)∈Modp(K,C)
Ai

L−i =
⋂

(A1,...,An)∈Modp(K,C)
Ki \Ai.

end for
C = (L+

1 , L
−
1 , . . . , L

+
n , L

−
n)

return C
end function

Algorithm 1 was implemented in the ASP navigation tool using the cautious option de-
scribed previously. The implementation requires a single call to the ASP solver which
computes the intersection of the models in the answer set. This intersection actually
corresponds to the membership constraint containing all the inclusions and exclusions

Fig. 2: Screenshot navigation tool: intermediate state

that need to be propagated. In comparison, for the simple propagation algorithm, mul-
tiple calls to the ASP solver are necessary: For each element that is in an undeter-
mined state, two membership constraint satisfiability problems are generated, checking
whether adding the element to the required objects, respectively to the forbidden ob-
jects, generates an unsatisfiable program. The cautious-based optimized propagation
algorithm proved to drastically decrease the computation time as well as the memory
usage, hence improving the performance of the interactive navigation tool. The experi-
mental results are described in more detail in the evaluation section.
The optimized ASP approach was implemented and evaluated for triadic data. Further-
more, to show that it is easily extended to any n-adic context, we also implemented the
dyadic and tetradic case, however, without evaluating their performance on real data
sets. In fact, the only modifications that need to be made when updating the context’s
dimension are to add the new sets to the ASP encoding and to update the graphical
interface and the context loader to the new context dimension.
The second approach for the navigation is a brute force implementation4 and uses an
exhaustive search in the whole space of n-concepts. Hence, a prerequisite for this tool
is to previously compute all n-concepts using an existing tool. We implemented the
triadic case (n = 3) and used Trias [13] to compute the triadic formal concepts. For that
reason, the input for the navigation tool is adapted to Trias’ output format.
This approach follows the same steps described in Algorithm 1, however it uses dif-
ferent methods for implementing them. The first main difference lies in the method of
computing the triconcepts. Instead of computing them at each step using a declarative
approach, in the brute force approach, all triconcepts are computed in the preprocessing
phase using an existing algorithm. In a navigation step an exhaustive search is necessary

4 https://sourceforge.net/projects/brute-force-concept-navigation

Fig. 3: Screenshot navigation tool: final state

in order to select the subset of triconcepts that satisfy the constraints and compute the
intersection. This subset of triconcepts is successively pruned in each navigation step
until it contains a single triconcept, which represents the final state of the navigation.
The graphical interface is the same for all implementations. The first column includes
possible actions and information about the state of the navigation process (intermediate
or final). The next columns each correspond to one dimension of the context and con-
tain a list of the elements, each having two options next to it in or out. Figure 2 depicts
a screenshot of the navigation example described in Section 4. It corresponds to the
post propagation constraint C′ = ({Rumpe}, ∅, {Corr}, {ICC ,PIMRC}, {2015},
∅). This is an intermediate state, where required elements are marked with green, for-
bidden elements with red, while elements in an undetermined state are unmarked. Fur-
thermore, required and forbidden elements have the in, respectively the out column
checked. Figure 3 shows the final state of the navigation, that corresponds to the mem-
bership constraint C′′′ = ({Rumpe}, {Alouni}, {Corr ,HICSS}, {ICC ,PIMRC},
{2015}, {2014}).

6 Evaluation

In order to evaluate the implemented tools, we ran experiments on the dblp database5.
The dblp database indexes conference and journal publications and contains informa-
tion such as author, title, year, volume, and journal/conference name. In order to com-
pare the ASP-based approach to the implemented brute force navigation, triadic datasets
are needed. The triadic structure that we chose for the experiments contains the author’s
name, conference/journal name and year of the publication. We extracted the described

5 http://dblp.uni-trier.de/

Table 1: ASP Navigator experiments

number of
objects

number of
attributes

number of
conditions

number of
triples

ASP navigation
data loading

time (s)

ASP navigation
average step

time (s)
2 15 2 28 0.015 0.1873

14 62 5 680 0.109 0.2315
41 67 7 2514 0.374 0.3278
68 67 8 4478 0.546 0.5930
83 67 9 5987 0.660 0.6350

108 67 10 8133 1.070 1.1940

Table 2: Brute Force Navigator experiments

number of
objects

number of
attributes

number of
conditions

number of
triples

Trias pre-
processing
time (s)

brute force
data loading

time (s)

brute force
average step

time (s)
2 15 2 28 0.27 0.016 0.0060

14 62 5 680 1.04 0.421 0.0047
41 67 7 2514 23.24 1.950 0.0219
68 67 8 4478 644.758 4.384 0.0530
83 67 9 5987 2152.839 6.992 0.1600

108 67 10 8133 > 2h

triadic dataset from the dblp mysql dump and selected subsets of different dimensions.
The subsets were selected by imposing restrictions on the number of publications per
journal/conference, publication year and number of publications per author. For exam-
ple, the dataset with 28 triples was obtained by the following steps:

– eliminate all journals/conferences having less than 15000 publications
– eliminate all publications before the year 2014
– eliminate all entries for authors that published less than 150 papers

After selecting a triadic data subset, no preprocessing phase for the ASP navigation
tool is needed, since its input must contain only the triadic relation. However, the brute
force navigation tool requires a preprocessing phase. First the triconcept set needs to
be computed with the Trias algorithm, hence the Trias tool6 needs to be installed sep-
arately. If using the Trias algorithm without a database connection, the standard input
file requires numeric data. Hence, in order to format the data according to the Trias
tool input format, the elements of the dataset need to be indexed. After running Trias
to obtain the triconcepts, the output needs to be formatted again before using the brute
force navigation tool. Mainly the dimensions and encodings of the object, attribute and
condition sets need to be added, so that the navigation tool can output the names of
the elements and not their indexes. Only after these preprocessing steps can a user in-
teractively navigate in the tricontext using the brute force navigation tool. Obviously,

6 https://github.com/rjoberon/trias-algorithm

Fig. 4: Average step time for ASP navigation with simple propagation vs optimized propagation

different formats for the input of the navigation tool can be implemented, but for the
purpose of comparing the two tools we implemented one single input format based on
the standard Trias output.
For measuring the runtimes of the two navigation tools, we have evaluated their perfor-
mance on six different datasets containing between 28 and 8133 triples. The datasets are
described in Table 1 and Table 2 (we ran both tools on the same datasets), where objects
are identified with author names, attributes with conferences/journal names and condi-
tions with the publication years. For each dataset, we chose some random navigation
paths through the data, which contain between 4 and 13 navigation steps and end when
a final state, i.e., a triconcept, is reached. By navigation step we understand not only the
action of a user choosing an element as in or out, but also the subsequent propagation
phase. In order to compare the two approaches we computed the average navigation
step time for each dataset and measured the time used for loading the data. This in-
formation can be obtained from the file statistics.log which is created as an output by
the navigation tools. Furthermore, for the brute force navigation we also measured the
preprocessing time, i.e. the time that Trias needs to compute the triconcepts. Note that
the time needed to index the dataset for the Trias input, as well as to add the encod-
ings to the Trias output to obtain the input for the navigation tool, were excluded from
this analysis, since this processing phase can be avoided by implementing different in-
put/output formats for the Trias tool or for the brute force navigation tool. We denote

Fig. 5: Offline time for ASP vs brute force navigation tool with respect to the number of triples in
the relation

the data loading time plus the preprocessing time as offline time. In case of the ASP
navigation tool, the offline time equals the data loading time, since no preprocessing is
needed. The experiments were run on an Intel(R) Core(TM) I7-3630QM CPU @ 2.40
GHz machine with 4 GB RAM and 6M Cache.
First, we compared the different propagation implementations for the ASP approach:
simple propagation vs. optimized propagation. The results are shown in Figure 4, where
the y-axis depicts the logarithmically scaled time of execution, while the x-axis corre-
sponds to the size of the relation. Besides the big difference in the execution time of
each step, the ASP navigation tool with simple propagation uses a lot of memory. For
the context with 8133 triples after a few navigation steps the execution was stopped
by the system because it reached the limit memory of 4 GB RAM. In comparison, this
problem does not occur for the navigation tool with optimized propagation.
Next, we ran experiments on the same dataset to compare the ASP navigation tool with
optimized propagation to the brute force navigation tool. Figure 5 shows the offline time
of the ASP navigation tool vs. the brute force navigation tool on the logarithmically
scaled y-axis in relation to the number of triples represented on the x-axis. As the chart
shows, the offline time for the brute force navigation has a massive growth compared to
the size of the triadic relation, while the offline time for the ASP navigation tool has a
more linear growth. When comparing the average step time, the brute force navigation
tool has slightly better results than the ASP navigation tool, but, as shown in Figure 6,
for subsets with less than 6000 triples the average step time is under 1 second for both

Fig. 6: Average step time for ASP vs brute force navigation tool with respect to the number of
triples in the relation

approaches. Furthermore, from the experiments run on the larger data subset, containing
8133 triples, it followed that the ASP navigation tool is still usable, with an average step
time of 1.194 seconds, as opposed to the brute force navigation tool, which turned out
to have a very time consuming preprocessing phase: the Trias algorithm did not manage
to compute the triconcept set in two hours.
The experiments lead us to believe that for larger datasets, the ASP navigation tool
should be the preferred one, since it has a small execution time for loading the data,
as well as for each navigation step, both of which are important for an interactive tool.
Furthermore, in case of dynamic datasets that change frequently, it makes sense to use
the ASP navigation tool which requires no preprocessing of the data.

7 Tool Extension

Having practical applications of FCA as a main motivation, we developed an extended
tool, FCA Tools Bundle (for more details please refer to [15]), containing, besides
basic FCA operations, the navigation method described in this paper as well as a dif-
ferent navigation method based on dyadic projections described in a previous paper
[20]. From the different implementation approaches described in Section 5 we chose

Fig. 7: Screenshot FCA Tools Bundle: intermediate state

to include only the ASP based implementation in the new tool, since this method was
evaluated as being more useful for large datasets.
The FCA Tools Bundle7 currently implements features for dyadic and triadic for-
mal concept analysis. The dyadic part contains features for lattice building and lattice
visualization, while the triadic part focuses on navigation paradigms for tricontexts.
The main purpose of the tool is to enable the user to visualize datasets of different di-
mensions as formal contexts and to interact with them. For this purpose, FCA Tools
Bundle integrates different visualization formats offered by the formal contexts: con-
cept list, concept lattice, local projections, particular formal concepts.
The graphical interface is similar to the one in the previous ASP navigation tool. For
example, the same intermediate state represented in Figure 2, can be seen in Figure 7.
In a similar manner, some of the elements are selected as being included or excluded,
while the inclusions/exclusions of others (“Alouni”,“HICSS”,“2014”) remains to be
determined in the next steps of the navigation. This fact is highlighted using the message
box which assists the user during the navigation: “A concept was not yet pin-pointed
but the constraints have been updated to prevent reaching an invalid state.”.
In the final step of the navigation, the message shown to the user is updated accordingly:
“A concept was found using the provided constraints.”. This can be observed in Fig-
ure 8, which is the equivalent of Figure 3 from the previous navigation tool. Moreover,
the formal concept that was reached is represented separately on its three components:
extent, intent and modus.
FCA Tools Bundle usefully integrates different navigation methods proposed for
triadic formal contexts. Therefore, one can use the ASP-based navigation in order to
pin-point a single formal concept and then continue using the navigation based on
dyadic projections for further exploration of the tricontext. This can be seen in Fig-
ure 8, where before each component of the formal concept, there is a button “lock”.
This gives the user the possibility to project the context on that particular component
and look at the corresponding dyadic concept lattice. Therefore, users can easily com-
bine navigation methods to extensively explore a large dataset.

7 https://fca-tools-bundle.com

Fig. 8: Screenshot FCA Tools Bundle: final state

Another very important advantage of FCA Tools Bundle is the usability and acces-
sibility of the tool. While one needs prior ASP and FCA knowledge in order to use the
ASP navigation tool described in Section 5, there is no need for prior knowledge what-
soever in order to use FCA Tools Bundle. The user can simply import datasets in
several formats and then explore them using the FCA- and ASP-enhanced methods.

8 Conclusion

This paper presents a navigation paradigm for polyadic FCA using different implemen-
tation strategies. For higher-adic FCA, this is, to the best of our knowledge, the first
navigation tool which allows to explore, search, recognize, identify, analyze, and inves-
tigate polyadic concept sets by using membership constraints, in line with the Concep-
tual Knowledge Processing paradigm. Experiments on 3-dimensional datasets strongly
suggest that the ASP navigation approach with optimized propagation is, in general, the
better choice since it has low execution times, even for larger contexts. Furthermore, in
case one needs to adapt the navigation tool to an n-dimensional context for n ≥ 5,
the ASP approach is easier generalized, by following the example of the already im-
plemented cases n ∈ {2, 3, 4}, whereas for the brute force navigation approach, which
was implemented only for n = 3 using Trias, one would first need to find an algorithm
for computing the n-concepts. Moreover, we have presented a new tool, FCA tools
Bundle, which allows users who are not familiar with FCA or ASP to analyze multi-
dimensional datasets and browse through maximal clusters of data.
For future work, we intend to compare the ASP approach of the n-adic case with the
naive approach that uses tools such as Data-Peeler [3] or Fenster [2] which claim to be
able to compute closed patterns for n-adic datasets. Also, some new features or new
implementations for existing features will be integrated in the FCA tools Bundle.

Furthermore, are planning to further investigate exploration strategies and rule mining
in polyadic datasets.

Acknowledements

Diana Troancă’s research on this topic was supported by a scholarship from DAAD, the
German Academic Exchange Service. The authors also thank the anonymous review-
ers of an earlier version of this paper. We thank Lukas Schweizer for technical advice
regarding ASP. The FCA Tools Bundle was implemented by Lorand Kis.

References

1. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth answer set
programming competition. Artif. Intell. 231, 151–181 (2016)

2. Cerf, L., Besson, J., Nguyen, K., Boulicaut, J.: Closed and noise-tolerant patterns in n-ary
relations. Data Min. Knowl. Discov. 26(3), 574–619 (2013)

3. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Closed patterns meet n-ary relations. ACM
Trans. Knowl. Discov. Data 3(1), 3:1–3:36 (2009)

4. Dragoş, S., Haliţă, D., Săcărea, C.: Behavioral pattern mining in web based educational
systems. In: Rozic, N., Begusic, D., Saric, M., Solic, P. (eds.) Proceedings of the 23rd Inter-
national Conference on Software, Telecommunications and Computer Networks (SoftCOM
2015), Split, Croatia. pp. 215–219. IEEE (2015)

5. Dragoş, S., Haliţă, D., Săcărea, C., Troancă, D.: Applying triadic FCA in studying web usage
behaviors. In: Buchmann, R., Kifor, C.V., Yu, J. (eds.) Proceedings of the 7th Internetiontal
Conference on Knowledge Science, Engineering and Management (KSEM 2014), Sibiu,
Romania. Lecture Notes in Computer Science, vol. 8793, pp. 73–80. Springer (2014)

6. Ganter, B., Wille, R.: Formal concept analysis - mathematical foundations. Springer (1999)
7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Syn-

thesis Lectures on Artificial Intelligence and Machine Learning, Morgan and Claypool Pub-
lishers (2012)

8. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.:
Potassco: The potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowal-
ski, R.A., Bowen, K.A. (eds.) Logic Programming, Proceedings of the Fifth International
Conference and Symposium, Seattle, Washington (2 Volumes). pp. 1070–1080. MIT Press
(1988)

10. Gelfond, M., Lifschitz, V.: The Stable Model Semantics For Logic Programming. In: Kowal-
ski, R., Bowen, K.A. (eds.) Proceedings of the Joint International Logic Programming Con-
ference and Symposium, JICSLP 1988, Manchester, England. pp. 1070–1080. MIT Press
(1988)

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991)

12. Ignatov, D.I., Gnatyshak, D.V., Kuznetsov, S.O., Mirkin, B.G.: Triadic formal concept anal-
ysis and triclustering: searching for optimal patterns. Machine Learning 101(1-3), 271–302
(2015)

13. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS - an algorithm for
mining iceberg tri-lattices. In: Clifton, C.W., Zhong, N., Liu, J., Wah, B.W., Wu, X. (eds.)
Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), Hong
Kong, China. pp. 907–911. IEEE Computer Society Press (2006)

14. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Discovering shared conceptu-
alizations in folksonomies. Journal of Web Semantics 6(1), 38–53 (2008)

15. Kis, L.L., Sacarea, C., Troanca, D.: FCA tools bundle - A tool that enables dyadic and triadic
conceptual navigation. In: Kuznetsov, S.O., Napoli, A., Rudolph, S. (eds.) Proceedings of the
5th International Workshop ”What can FCA do for Artificial Intelligence?” co-located with
the European Conference on Artificial Intelligence, FCA4AI@ECAI 2016, The Hague, The
Netherlands. CEUR Workshop Proceedings, vol. 1703, pp. 42–50. CEUR-WS.org (2016)

16. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson,
R., Rich, W., Sowa, J.F. (eds.) Proceedings of the 3rd International Conference on Conceptual
Structures (ICCS 1995), Santa Cruz, California, USA. Lecture Notes in Computer Science,
vol. 954, pp. 32–43. Springer (1995)

17. Marek, V.W., Truszczyński, M.: The Logic Programming Paradigm: A 25-Year Perspec-
tive, chap. Stable Models and an Alternative Logic Programming Paradigm, pp. 375–398.
Springer, Berlin, Heidelberg (1999)

18. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999)

19. Rudolph, S., Săcărea, C., Troancă, D.: Membership constraints in formal concept analysis.
In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina. pp. 3186–
3192. AAAI Press (2015)

20. Rudolph, S., Săcărea, C., Troancă, D.: Towards a Navigation Paradigm for Triadic Concepts.
In: Baixeries, J., Săcărea, C., Ojeda-Aciego, M. (eds.) Proceedings of the 13th International
Conference on Formal Concept Analysis, ICFCA 2015, Nerja, Spania. Lecture Notes in
Computer Science, vol. 9113, pp. 232–248. Springer (2015)

21. Săcărea, C.: Investigating oncological databases using conceptual landscapes. In: Hernandez,
N., Jäschke, R., Croitoru, M. (eds.) Proceedings of the 21st Internation Conference on Con-
ceptual Structures: Graph-Based Representation and Reasoning (ICCS 2014), Iaşi, Romania.
Lecture Notes in Computer Science, vol. 8577, pp. 299–304. Springer (2014)

22. Voutsadakis, G.: Polyadic concept analysis. Order - A Journal on The Theory of Ordered
Sets and Its Applications 19(3), 295–304 (2002)

23. Wille, R.: The basic theorem of triadic concept analysis. Order - A Journal on The Theory of
Ordered Sets and Its Applications 12(2), 149–158 (1995)

24. Wille, R.: Methods of conceptual knowledge processing. In: Missaoui, R., Schmid, J. (eds.)
Proceedings of the 4th International Conference on Formal Concept Analysis (ICFCA 2006),
Dresden, Germany. Lecture Notes in Computer Science, vol. 3874, pp. 1–29. Springer (2006)

