G. Cook, Catalysing an energy revolution, p.11, 2012.

M. Webb, Smart 2020: Enabling the low carbon economy in the information age, The Climate Group. London, vol.1, issue.1, pp.1-1, 2008.

A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin et al., United states data center energy usage report, 2016.

M. J. Scaramella and M. Eastwood, Solutions for the datacenter's thermal challenges, IDC, 2007.

S. , A survey of techniques for improving energy efficiency in embedded computing systems, International Journal of Computer Aided Engineering and Technology, vol.6, issue.4, pp.440-459, 2014.

K. Liu, G. Pinto, and Y. D. Liu, Data-oriented characterization of application-level energy optimization, International Conference FASE'15

I. Manotas, L. Pollock, and J. Clause, Seeds: a software engineer's energy-optimization decision support framework, Proceedings of the 36th International Conference on Software Engineering, pp.503-514, 2014.

C. Pang, A. Hindle, B. Adams, and A. E. Hassan, What do programmers know about software energy consumption?, IEEE Software, vol.33, issue.3, pp.83-89, 2016.

J. Bézivin, On the unification power of models, Software & Systems Modeling, vol.4, issue.2, pp.171-188, 2005.

H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, Modisco: a generic and extensible framework for model driven reverse engineering, Proceedings of the IEEE/ACM International Conference ASE'10
URL : https://hal.archives-ouvertes.fr/hal-00534450

H. Zhang and H. Hoffman, A quantitative evaluation of the rapl power control system, Feedback Computing, 2015.

A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, Powerapi: A software library to monitor the energy consumed at the process-level, ERCIM News, vol.2013, issue.92, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00772454

M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy et al., Process-level power estimation in vm-based systems, Proceedings of EuroSys'15
URL : https://hal.archives-ouvertes.fr/hal-01132495

A. Noureddine, R. Rouvoy, and L. Seinturier, Unit testing of energy consumption of software libraries, Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp.1200-1205, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00912613

S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis, Joulesort: a balanced energy-efficiency benchmark, Proceedings of the, 2007.

, ACM SIGMOD international conference on Management of data, pp.365-376, 2007.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: improving the design of existing code, 1999.

R. Pereira, M. Couto, J. Saraiva, J. Cunha, and J. P. Fernandes, The influence of the java collection framework on overall energy consumption, GREENS'16, 2016.

G. Procaccianti, H. Fernández, and P. Lago, Empirical evaluation of two best practices for energy-efficient software development, Journal of Systems and Software, vol.117, pp.185-198, 2016.

A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze et al., Enerj: Approximate data types for safe and general lowpower computation, ACM SIGPLAN Notices, vol.46, issue.6, pp.164-174, 2011.

W. G. Silva, L. Brisolara, U. B. Correa, and L. Carro, Evaluation of the impact of code refactoring on embedded software efficiency, Proceedings of the 1st Workshop de Sistemas Embarcados, pp.145-150, 2010.

G. Pinto, F. Soares-neto, and F. Castor, Refactoring for energy efficiency: a reflection on the state of the art, Proceedings of the Fourth International Workshop on Green and Sustainable Software, pp.29-35, 2015.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, Atl: A model transformation tool, Science of computer programming, vol.72, issue.1-2, pp.31-39, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00483363

D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse modeling framework, 2008.

V. Viyovi´cviyovi´c, M. Maksimovi´cmaksimovi´c, and B. Perisi´cperisi´c, Sirius: A rapid development of dsm graphical editor, Intelligent Engineering Systems (INES), pp.233-238, 2014.

J. E. Pagán, J. S. Cuadrado, and J. G. Molina, Morsa: A scalable approach for persisting and accessing large models, International Conference on Model Driven Engineering Languages and Systems, pp.77-92, 2011.

G. Daniel, G. Sunyé, A. Benelallam, M. Tisi, Y. Vernageau et al., Neoemf: a multi-database model persistence framework for very large models, Science of Computer Programming, vol.149, pp.9-14, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01436047