, Table B.8, this corresponds to all fluxes to bacteria

, Parameters govern the growth rate, pp.23-24

, ? Decomposition of particulate organic matter (orange)

B. , 8, this corresponds to all fluxes from particulate organic matter 666 (C 11 or C 12 ) to dissolved organic nitrogen (C 10 ). Parameters are de-667 composition rates, pp.69-70

, In Table B.8, this corresponds to the flux 669 from ammonium (C 2 ) to nitrate (C 1 ). The parameter is the nitrification 670 rate

G. Archer, A. Saltelli, and I. Sobol, Sensitivity measures, ANOVA-like tech-676 niques and the use of bootstrap, Journal of Statistical Computation, p.677

, Simulation, vol.58, issue.2, pp.99-120, 1997.

M. Baklouti, V. Faure, L. Pawlowski, and A. Sciandra, Investigation and 679 sensitivity analysis of a mechanistic phytoplankton model implemented 680 in a new modular numerical tool (eco3m) dedicated to biogeochemical 681 modelling, Progress in Oceanography, vol.71, issue.1, pp.34-58, 2006.

M. Dowd, E. Jones, and J. Parslow, A statistical overview and perspectives 683 on data assimilation for marine biogeochemical models, Environmetrics, vol.684, issue.4, pp.203-213, 2014.

J. Druon and J. Le-fèvre, Sensitivity of a pelagic ecosystem model to 686 variations of process parameters within a realistic range, Journal of Marine 687 Systems, vol.19, issue.1-3, pp.1-26, 1999.

B. Efron and C. Stein, The jackknife estimate of variance. The Annals of 689

, Statistics, vol.9, issue.3, pp.586-596, 1981.

B. Faugeras, M. Lévy, L. Mémery, J. Verron, J. Blum et al.,

, Can biogeochemical fluxes be recovered from nitrate and chlorophyll data? 692 a case study assimilating data in the northwestern Mediterranean sea at 693 the JGOFS-DYFAMED station, Journal of Marine Systems, vol.40, pp.99-125, 2003.

K. Fennel, M. Losch, J. Schröter, and M. Wenzel, Testing a marine ecosystem 696 model: sensitivity analysis and parameter optimization, Journal of Marine 697 Systems, vol.28, issue.1-2, pp.45-63, 2001.

F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur, Statistical 699 inference for Sobol pick freeze Monte Carlo method, Statistics, vol.50, issue.4, pp.881-700, 2016.

L. Gilquin, E. Arnaud, C. Prieur, and A. Janon, Making best use of permuta-702 tions to compute sensitivity indices with replicated designs, 2017.

W. F. Hoeffding, A class of statistics with asymptotically normal distribu-705 tions, Annals of Mathematical Statistics, vol.19, pp.293-325, 1948.

T. Homma and A. Saltelli, Importance measures in global sensitivity analysis 707 of nonlinear models, Reliability Engineering & System Safety, vol.52, issue.1, pp.1-17, 1996.

A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur, Asymptotic 710 normality and efficiency of two Sobol index estimators, ESAIM: Probability 711 and Statistics, vol.18, pp.342-364, 2014.

K. Kishen, On latin and hyper-graeco-latin cubes and hyper-cubes, Current 713 Science, vol.11, issue.3, pp.98-99, 1942.

I. Kriest, A. Oschlies, and S. Khatiwala, Sensitivity analysis of simple global 715 marine biogeochemical models, Global Biogeochemical Cycles, vol.26, issue.2, 2012.

G. Lacroix, Simulation de l'écosystème pélagique de la mer Ligureà, p.717

, Etude du bilan de matière et de la variabilité 718

M. Curie, , 1998.

G. Lacroix and M. Grégoire, Revisited ecosystem model (MODECOGeL) of

, the Ligurian sea: seasonal and interannual variability due to atmospheric 722 forcing, J. Marine Syst, vol.37, issue.4, pp.229-258, 2002.

G. Lacroix and P. , Influence of meteorological variability on primary 724 production dynamics in the Ligurian Sea (NW Mediterranean sea) with a 725 1D hydrodynamic/biological model, J. Marine Syst, vol.16, issue.1-2, pp.23-50, 1998.

C. Lemieux, Monte Carlo and quasi-Monte Carlo sampling, 2009.

T. Mara, O. , and R. Joseph, Comparison of some efficient methods to 729 evaluate the main effect of computer model factors, Journal of Statistical 730 Computation and Simulation, vol.78, issue.2, pp.167-178, 2008.

J. C. Marty and J. Chiavérini, Hydrological changes in the ligurian sea (nw 732 mediterranean, dyfamed site) during 19952007 and biogeochemical conse-733 quences, Biogeosciences, vol.7, issue.7, pp.2117-2128, 2010.

H. Monod, C. Naud, and D. Makowski, Uncertainty and sensitivity analysis 735 for crop models, p.736

, Working with Dynamic Crop Models: Evaluation, Analysis, Parameteri-737 zation, and Applications, vol.4, pp.55-99, 2006.

D. J. Morris, D. C. Speirs, A. I. Cameron, and M. R. Heath, Global sensitivity 739 analysis of an end-to-end marine ecosystem model of the north sea: Factors 740 affecting the biomass of fish and benthos, Ecological Modelling, vol.273, pp.251-741, 2014.

M. D. Morris, Factorial sampling plans for preliminary computational exper-743 iments, Technometrics, vol.33, issue.2, pp.161-174, 1991.

J. C. Nihoul and S. Djenidi, Perspectives in three-dimensional modelling 745 of the marine system, p.746

, Dimensional Models of Marine and Estuarine Dynamics, pp.1-34, 1987.

M. Omlin, R. Brun, and P. Reichert, Biogeochemical model of lake Zürich: 749 sensitivity, identifiability and uncertainty analysis, Ecological Modelling, pp.105-123, 2001.

A. Oschlies, On the use of data assimilation in biogeochemical modelling, 752 Ocean Weather Forecasting, pp.525-547, 2006.

A. B. Owen, Orthogonal arrays for computer experiments, integration and 754 visualization, Statistica Sinica, pp.439-452, 1992.

G. Pujol, B. Iooss, A. Janon, P. Lemaitre, L. Gilquin et al., , p.756

T. Touati, B. Ramos, J. Fruth, and S. Veiga, Sensitivity: Global Sen-757 sitivity Analysis of Model Outputs, 2017.

A. Saltelli, Making best use of model evaluations to compute sensitivity 759 indices, Computer Physics Communications, vol.145, issue.2, pp.280-297, 2002.

A. Saltelli, K. Chan, and E. M. Scott, Sensitivity analysis. Wiley Series in 761 Probability and Statistics, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00386559

S. Sankar, L. Polimene, L. Marin, N. N. Menon, A. Samuelsen et al., , p.763

S. Ciavatta, Sensitivity of the simulated oxygen minimum zone to bio-764 geochemical processes at an oligotrophic site in the arabian sea, Ecological, vol.765, pp.12-23, 2018.

M. Schartau, P. Wallhead, J. Hemmings, U. Löptien, I. Kriest et al., , p.767

B. A. Ward, T. Slawig, and A. Oschlies, Reviews and syntheses: parameter 768 identification in marine planktonic ecosystem modelling, Biogeosciences, vol.769, issue.6, pp.1647-1701, 2017.

V. Scott, H. Kettle, and C. Merchant, Sensitivity analysis of an ocean carbon 771 cycle model in the north Atlantic: an investigation of parameters affecting 772 the air-sea CO2 flux, primary production and export of detritus, Science, vol.773, issue.3, pp.405-419, 2011.

I. Sobol, Sensitivity analysis for nonlinear mathematical models, Mathemat-775 ical Modeling and Computational Experiment, vol.1, pp.407-414, 1993.

J. Tissot and C. Prieur, A randomized orthogonal array-based procedure 777 for the estimation of first-and second-order Sobol' indices, Journal, p.778

, Statistical Computation and Simulation, vol.85, issue.7, pp.1358-1381, 2015.

J. F. Tjiputra, D. Polzin, and A. Winguth, Assimilation of seasonal chloro-780 phyll and nutrient data into an adjoint three-dimensional ocean carbon 781 cycle model: sensitivity analysis and ecosystem parameter optimization

, Global biogeochemical cycles, vol.21, issue.1, 2007.

S. Wang, N. Flipo, and T. Romary, Time-dependent global sensitivity anal-784 ysis of the c-rive biogeochemical model in contrasted hydrological and 785 trophic contexts, Water research, vol.144, pp.341-355, 2018.

N. A. Weiss, A course in probability, vol.787, 2006.