C. Archambeau and M. Verleysen, Robust Bayesian clustering. Neural Networks, vol.20, pp.129-138, 2007.

H. Attias, Inferring Parameters and Structure of Latent Variable Models by Variational Bayes, UAI '99: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp.21-30, 1999.

H. Attias, A variational Bayesian framework for graphical models, Proc. Advances in Neural Information Processing Systems, vol.12, pp.209-215, 2000.

J. Banfield and A. E. Raftery, Model-Based Gaussian and Non-Gaussian Clustering, Biometrics, vol.49, issue.3, pp.803-821, 1993.

M. J. Beal, Variational algorithms for approximate Bayesian inference, 2003.

R. Browne and P. Mcnicholas, Orthogonal Stiefel manifold optimization for eigen-decomposed covariance parameter estimation in mixture models, Statistics and Computing, vol.24, 2014.

P. Ryan, P. D. Browne, and . Mcnicholas, A mixture of generalized hyperbolic distributions, Canadian Journal of Statistics, vol.43, issue.2, pp.176-198, 2015.

G. Celeux and G. Govaert, Gaussian parsimonious clustering models, Pattern Recognition, vol.28, issue.5, pp.781-793, 1995.
URL : https://hal.archives-ouvertes.fr/inria-00074643

A. Corduneanu and C. Bishop, Variational Bayesian Model Selection for Mixture Distributions, Proceedings Eighth International Conference on Artificial Intelligence and Statistics, p.2734, 2001.

D. Dahl, Model-based clustering for expression data via a Dirichlet process mixture model, in Bayesian Inference for Gene Expression and Proteomics, 2006.

T. Eltoft, T. Kim, and T. Lee, Multivariate Scale Mixture of Gaussians Modeling, Independent Component Analysis and Blind Signal Separation, vol.3889, pp.799-806, 2006.

M. A. Figueiredo and A. K. Jain, Unsupervised learning of finite mixture models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.3, pp.381-396, 2002.

B. N. Flury and W. Gautschi, An Algorithm for Simultaneous Orthogonal Transformation of Several Positive Definite Symmetric Matrices to Nearly Diagonal Form, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.1, pp.169-184, 1986.

F. Forbes and D. Wraith, A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweights: Application to robust clustering, Statistics and Computing, vol.24, issue.6, pp.971-984, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00823451

B. C. Franczak, C. Tortora, R. P. Browne, and P. D. Mcnicholas, Unsupervised learning via mixtures of skewed distributions with hypercube contours, Pattern Recognition Letters, vol.58, pp.69-76, 2015.

A. Fritsch and K. Ickstadt, Improved criteria for clustering based on the posterior similarity matrix, Bayesian Analysis, vol.4, issue.2, pp.367-391, 2009.

S. Frühwirth-schnatter, Finite mixture and Markov switching models, 2006.

D. Hoff, A Hierarchical Eigenmodel for Pooled Covariance Estimation, Journal of the Royal Statistical Society. Series B (Statistical Methodology), vol.71, issue.5, pp.971-992, 2009.

L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, vol.2, 1994.

G. Malsiner-walli, ,. , S. Frühwirth-schnatter, and B. Grün, Model-based clustering based on sparse finite Gaussian mixtures, Statistics and Computing, vol.26, issue.1, pp.303-324, 2016.

C. A. Mcgrory and D. M. Titterington, Variational Approximations in Bayesian Model Selection for Finite Mixture Distributions, Comput. Stat. Data Anal, vol.51, issue.11, pp.5352-5367, 2007.

S. Richardson and P. J. Green, On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion), Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.59, issue.4, pp.731-792, 1997.

J. Rousseau and K. Mengersen, Asymptotic behaviour of the posterior distribution in overfitted mixture models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.73, issue.5, pp.689-710, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641475

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery, mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal, vol.8, issue.1, pp.205-233, 2016.

M. Stephens, Bayesian analysis of mixture models with an unknown number of components: an alternative to reversible jump methods, The Annals of Statistics, vol.28, issue.1, pp.40-74, 2000.

K. Tu, Modified Dirichlet Distribution: Allowing Negative Parameters to Induce Stronger Sparsity, Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 1986.

J. Verbeek, N. Vlassis, and B. Kröse, Efficient Greedy Learning of Gaussian Mixture Models, Neural Computation, vol.15, issue.2, pp.469-485, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00321487

D. Wraith and F. Forbes, Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering, Computational Statistics & Data Analysis, vol.90, pp.61-73, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01970565