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Abstract Multiple scale distributions are multivariate distributions that ex-
hibit a variety of shapes not necessarily elliptical while remaining analytical
and tractable. In this work we consider mixtures of such distributions for their
ability to handle non standard typically non-Gaussian clustering tasks. We
propose a Bayesian formulation of the mixtures and a tractable inference pro-
cedure based on variational approximation. The interest of such a Bayesian
formulation is illustrated on an important mixture model selection task, which
is the issue of selecting automatically the number of components. We derive
procedures that can be carried out in a single run of the inference scheme,
in contrast to the more costly comparison of information criteria. Preliminary
results on simulated and real data show promising performance in terms of
selection and computation time.

Keywords Gaussian scale mixture · Bayesian analysis · Bayesian model
selection · EM algorithm · Variational approximation

1 Introduction

Multiple scale distributions refer to a recent generalization of scale mixtures
of Gaussians in a multivariate setting [Forbes and Wraith, 2014]. This family
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of distributions has the ability to generate a number of flexible distributional
forms with closed-form densities and interesting properties. It nests in partic-
ular several symmetric multiple scale heavy tailed distributions (such as gen-
eralized multivariate Student distributions [Forbes and Wraith, 2014]) and
asymmetric multiple scale generalized hyperbolic distributions [Wraith and
Forbes, 2015, Browne and McNicholas, 2015]. The multiple scale framework
has also been used by [Franczak et al., 2015] for multiple scale shifted asym-
metric Laplace distributions. The multiple scale framework has the advantage
of allowing different tail and skewness behaviors in each dimension of the vari-
able space with arbitrary correlation between dimensions. This is interesting
when targeting clustering applications using mixtures of such distributions
(see [Forbes and Wraith, 2014, Wraith and Forbes, 2015] for illustration).

In previous work [Forbes and Wraith, 2014, Wraith and Forbes, 2015], in-
ference has been carried out based on maximum likelihood principle and using
the EM algorithm. In this work, we consider a Bayesian treatment for the
advantages that the Bayesian framework can offer in the mixture model con-
text. Mainly, it avoids the ill-posed nature of maximum likelihood due to the
presence of singularities in the likelihood function. A mixture component may
collapse by becoming centered at a single data vector sending its covariance
to 0 and the model likelihood to infinity. A Bayesian treatment protects the
algorithm from this problem occurring in ordinary EM. Also, Bayesian model
comparison embodies the principle that states that simple models should be
preferred. Typically, maximum likelihood does not provide any guidance on
the choice of the model order as more complex models can always fit the data
better.

However, the Bayesian formulation is more involved as it requires the ad-
ditional specification of priors on the parameters and the computation of pos-
terior distributions which are often not available in closed-form. For standard
scale mixtures of Gaussians, the usual Normal-Wishart prior can be used for
the Gaussian parameters. In contrast, for multiple scale distributions, the de-
composition of the scale matrix in the model definition (see (2) below) requires
separated priors on the eigenvectors and eigenvalues of the matrix. Such priors
do not derive easily from a standard conjugate choice. We therefore propose
another solution and the corresponding inference scheme based on a varia-
tional approximation of the posterior distributions. To illustrate the proposed
Bayesian implementation, we consider the task of selecting the number of com-
ponents in multiple scale distribution mixtures. Although standard informa-
tion criterion comparison can be applied to a range of such mixtures, the goal
is to avoid repetitive inference and comparison of models. Following common
practice that is to start from deliberately overfitting mixtures (e.g. Malsiner-
Walli et al. [2016], Corduneanu and Bishop [2001], McGrory and Titterington
[2007], Attias [1999]), we investigate the component-elimination property of
the Bayesian setting. We propose two different strategies that make use of this
component elimination property to select the number of components from a
single run of the inference scheme.



Bayesian mixtures of multiple scale distributions 3

The rest of the paper is organized as follows. The multiple scale distribu-
tions are briefly recalled in Section 2. Mixture of these distributions and their
Bayesian formulation are specified in Section 3. A variational approximation
inference is detailed in Section 4. A possible use for the number of mixture
components selection and the two proposed strategies are described in Section
5, illustrated with experiments on simulated and real data in Section 6.

2 Multiple scale mixture distributions

A M -variate scale mixture of Gaussians is a distribution of the form:

p(y;µ,Σ,θ) =

∫ ∞
0

NM (y;µ,Σ/w) fW (w;θ) dw (1)

where NM ( . ;µ,Σ/w) denotes the M -dimensional Gaussian distribution with
mean µ, covariance Σ/w and fW is the probability distribution of a univariate
positive variable W referred to hereafter as the weight variable. A common
form is obtained when fW is a Gamma distribution G(ν/2, ν/2) where ν de-
notes the degrees of freedom (we shall denote the Gamma distribution when
the variable is X by G(x;α, γ) = xα−1Γ (α)−1 exp(−γx)γα where Γ denotes the
Gamma function). For this form, (1) is the density denoted by tM (y;µ,Σ, ν)
of the M-dimensional Student t-distribution with parameters µ (real location
vector), Σ (M ×M real positive definite scale matrix) and ν (positive real
degrees of freedom parameter). Most of the work on multivariate scale mixture
of Gaussians has focused on studying different choices for the weight distribu-
tion fW (see e.g. Eltoft et al. [2006]) but the weight variable W in most cases
has been considered as univariate.

The extension proposed by Forbes and Wraith [2014] consists of intro-
ducing a multidimensional weight. To do so, the scale matrix is decomposed
into Σ = DADT , where D is the matrix of eigenvectors of Σ and A is
a diagonal matrix with the corresponding eigenvalues. This spectral decom-
position is classically used in Gaussian model-based clustering [Banfield and
Raftery, 1993, Celeux and Govaert, 1995]. The matrix D determines the ori-
entation of the Gaussian and A its shape. Using this parameterization of
Σ, the scale Gaussian part in (1) is set to NM (y;µ,D∆wAD

T ), where
∆w = diag(w−11 , . . . , w−1M ) is the M × M diagonal matrix whose diagonal
components are the inverse weights {w−11 , . . . , w−1M }. The multiple scale gen-
eralization consists therefore of:

p(y;µ,Σ,θ) =

∫ ∞
0

...

∫ ∞
0

NM (y;µ,D∆wAD
T ) fw(w1...wM ;θ) dw1...dwM (2)

where fw is now a M-variate density function depending on some parame-
ter θ to be further specified. In the following developments, we will consider
only independent weights, i.e. θ = {θ1, . . . ,θM} with fw(w1 . . . wM ;θ) =
fW1(w1;θ1) . . . fWM

(wM ;θM ). For instance, setting fWm(wm; θm) to a Gamma
distribution G(wm;αm, γm) results in a multivariate generalization of a Pear-
son type VII distribution (see e.g. Johnson et al. [1994] vol.2 chap. 28 for
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a definition of the Pearson type VII distribution) while setting fWm(wm) to
G(wm; νm/2, νm/2) leads to a generalization of the multivariate t-distribution.
In both cases, we can express the densities denoted by MP(y;µ,Σ,α,γ)
and MS(y;µ,Σ,ν) with ν = {ν1, . . . , νM}, α = {α1, . . . , αM} and γ =
{γ1 . . . γM}:

MP(y;µ,Σ,α, γ) =

M∏
m=1

Γ (αm + 1/2)

Γ (αm)(2Amγmπ)1/2

(
1 +

[DT (y − µ)]2m
2Amγm

)−(αm+1/2)

(3)

Similarly,

MS(y;µ,Σ, ν) =
M∏
m=1

Γ ((νm + 1)/2)

Γ (νm/2)(Amνmπ)1/2

(
1 +

[DT (y − µ)]2m
Amνm

)−(νm+1)/2

(4)

However for identifiability, model (3) needs to be further specified by fixing
all γm parameters, for instance to 1. Despite this additional constraint, the
decomposition of Σ still induces another identifiability issue. Both (3) and (4)
are invariant to a same permutation of the columns of D,A and elements of α
or ν. In a frequentist setting this can be solved by imposing a decreasing order
for the eigenvalues in A. In a Bayesian setting one way to solve the problem is
to impose on A a non symmetric prior (see Section 3.1). An appropriate prior
on D would be more difficult to set.

3 Bayesian mixtures of multiple scale distributions

In this section, we outline a Bayesian model for a mixture of multiple scale
Pearson VII distributions. In a Bayesian setting, it is more convenient to use
the precision matrix T decomposed into T = DADT , which is the inverse of
the covariance matrix Σ = DA−1DT , in the parameterization. Note that in
(3) and in previous work, A is then replaced by A−1. Moreover, we consider
for identifiability that all γm are set to 1. The distributions we consider are
therefore of the form,

MP(y;µ,D,A,α) =

M∏
m=1

Γ (αm + 1/2)Am

Γ (αm)(2π)1/2

(
1 +

Am[DT (y − µ)]2m
2

)−(αm+1/2)

(5)

Let us consider an i.i.d sample y = {y1, . . . ,yN} from a K-component
mixture of multiple scale distributions as defined in (5). With the usual nota-
tion for the mixing proportions π = {π1, . . . , πK} and ψk = {µk,Ak,Dk,αk}
for k = 1 . . .K, we consider,

p(y;Φ) =

K∑
k=1

πkMP(y;µk,Ak,Dk,αk)

where Φ = {π,ψ} with ψ = {ψ1, . . .ψK} denotes the mixture parameters.
Additional variables can be introduced to identify the class labels: {Z1, . . . , ZN}
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define respectively the components of origin of {y1, . . . ,yN}. An equivalent
modelling is therefore:

∀i ∈ {1 . . . N}, Yi|Wi = wi, Zi = k,ψ ∼ N (µk,Dk∆wiA
−1
k D

T
k ) ,

Wi|Zi = k,ψ ∼ G(αk1, 1)⊗ . . .⊗ G(αkM , 1) ,

and Zi|π ∼M(1, π1, . . . , πk) ,

where ∆wi = diag(w−1i1 , . . . , w
−1
iM ), symbol ⊗ means that the components

of Wi are independent and M(1, π1, . . . , πk) denotes the Multinomial dis-
tribution. In what follows, the weight variables will be denoted by W =
{W1, . . . ,WN} and the labels by Z = {Z1, . . . , ZN}.

3.1 Priors on component-specific parameters

To complete the Bayesian formulation, we assign priors on parameters in ψ.
However, it is common (see e.g. Archambeau and Verleysen [2007]) not to
impose priors on the parameters αk since no convenient conjugate prior exist
for these parameters. Then the scale matrix decomposition imposes that we
set priors on µk and Dk,Ak. For the means µk, the standard Gaussian prior
can be used:

µk | Ak,Dk ∼ N (mk,DkΛ
−1
k A

−1
k D

T
k ) , (6)

where mk (vector) and Λk (diagonal matrix) are hyperparameters and we
shall use the notation m = {m1, . . . ,mK} and Λ = {Λ1, . . .ΛK}. For Ak

and Dk a natural solution would be to use the distributions induced by the
standard Wishart prior on Tk but this appears not to be tractable in inference
scheme based on a variational framework. The difficulty lies in considering an
appropriate and tractable prior for Dk. There exists a number of priors on the
Stiefel manifold among which a good candidate could be the Bingham prior
and extensions investigated by Hoff [2009]. However, it is not straightforward
to derive from it a tractable E-Φ1 step (see Section 4) that could provide a
variational posterior distribution. Nevertheless, this kind of priors could be
added in the M-D-step. The simpler solution adopted in the present work
consists of consideringDk as an unknown fixed parameter and imposing a prior
only on Ak, which is a diagonal matrix containing the positive eigenvalues of
Tk. It is natural to choose:

Ak ∼ ⊗Mm=1G(λkm, δkm) , (7)

where λk = {λkm,m = 1 . . .M} and δk = {δkm,m = 1 . . .M} are hyperpa-
rameters with λ = {λ1, . . .λK} and δ = {δ1, . . . δK} as additional notation. It
follows the joint prior on µ1:K = {µ1, . . . ,µK}, A1:K = {A1, . . . ,AK} given
D1:K = {D1, . . . ,DK}

p(µ1:K ,A1:K ;D1:K) =

K∏
k=1

p(µk|Ak;Dk) p(Ak) (8)

where the first term in the product is given by (6) and the second term by (7).
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3.2 Priors on mixing weights

As it will become clearer in Section 5 devoted to the selection of the number
of components, we consider two cases for the mixing weights. First, follow-
ing Corduneanu and Bishop [2001], no prior is imposed on π (Section 4.1).
Then a standard Dirichlet prior D(τ1, . . . , τK) is used in a second case with
τ = {τ1, . . . , τK} the Dirichlet parameters (Section 4.2). Note that the no
prior case is actually equivalent to choose a uniform prior D(1, . . . , 1) and to
estimate π as the maximum a posteriori (MAP), while in the Bayesian setting,
a full posterior is computed for π and point estimates rather derived using the
posterior mean.

For the complete model, the whole set of parameters is denoted by Φ. In
the first setting, Φ = {Φ1,Φ2} is decomposed into a set Φ1 = {Φ1

1, . . .Φ
1
K}

with Φ1
k = {µk,Ak} of parameters for which we have priors and a set Φ2 =

{Φ2
1, . . .Φ

2
K} with Φ2

k = {πk,Dk,αk} of unknown parameters considered as
fixed. In addition, hyperparameters are denoted by Φ3 = {Φ3

1, . . .Φ
3
K} with

Φ3
k = {mk,Λk,λk, δk}. When a Dirichlet prior is used for π, the param-

eters definitions change to Φ1
k = {µk,Ak, πk}, Φ2

k = {Dk,αk} and Φ3
k =

{τk,mk,Λk,λk, δk}.

4 Inference using variational Expectation-Maximization

The main task in Bayesian inference is to compute the posterior probability
of the latent variables X = {W ,Z} and the parameter Φ for which only the
Φ1 part is considered as random. We are therefore interested in computing the
posterior p(X,Φ1 | y,Φ2). This posterior is intractable and approximated here
using a variational approximation q(X,Φ1) with a factorized form q(X,Φ1) =
qX(X) qΦ1(Φ1) in the set D of product probability distributions. The so-
called variational EM procedure (VEM) proceeds as follows. At iteration (r),
the current parameters values are denoted by Φ2(r−1) and VEM alternates
between two steps,

E-step: q(r)(X,Φ1) = arg max
q∈D
F(q,Φ2(r−1))

M-step: Φ2(r) = arg max
Φ2
F(q(r),Φ2) ,

where F is the usual free energy

F(q,Φ2) = Eq[log p(y,X,Φ1;Φ2)]− Eq[log q(X,Φ1)]. (9)

The full expression of the free energy is not necessary to maximize it and to
derive the variational EM algorithm. However, computing the free energy is
useful. It provides a stopping criterion and a sanity check for implementation
as the free energy should increase at each iteration. Then it can be used as
specified in section 5.2 as a replacement of the likelihood to provide a model
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selection procedure. The detailed expression is given in Appendices C and D,
respectively for the case without and with prior on the weights.

The E-step above divides into two steps. At iteration (r), denoting in ad-

dition by q
(r−1)
X the current variational distribution for X:

E-Φ1-step: q
(r)
Φ1 (Φ1) ∝ exp(E

q
(r−1)
X

[log p(Φ1|y,X;Φ2(r−1))]) (10)

E-X-step: q
(r)
X (X) ∝ exp(E

q
(r)

φ1
[log p(X|y,Φ1;Φ2(r−1))]) . (11)

Then the M-step reduces to:

M-step: Φ2(r) = arg max
φ2

E
q
(r)
X q

(r)

Φ1
[log p(y,X,Φ1;Φ2)] .

The resulting variational EM algorithm is further specified below in two cases
depending on the prior used for the mixing weights.

4.1 No prior on mixing coefficients

This corresponds to a setting adopted by Corduneanu and Bishop [2001] where
the mixing coefficients are estimated using type-II maximum likelihood. In this
case, the complete likelihood p(y,X,Φ1;Φ2,Φ3) writes as

p(y|Z,W ,µ1:K ,A1:K ;D1:K) p(W |Z;α1:K) p(Z;π) p(µ1:K ,A1:K ;D1:K ,m,Λ,λ, δ).

Applying the previous general formulas (10) and (11), the 2 sub-steps E-Φ1

and E-X steps provide respectively the variational posterior of Φ1, which has
the same structure as the prior distribution (8),

q
(r)
Φ1 (Φ1) =

K∏
k=1

q
(r)
µk|Ak(µk | Ak) q

(r)
Ak

(Ak) ,

and the variational posterior of X in the form

q
(r)
X (X) =

N∏
i=1

q
(r)
Xi

(Wi,Zi) =

N∏
i=1

q
(r)
Wi|Zi(Wi|Zi)q(r)Zi (Zi) .

The detailed expressions are given in Appendix A.
The M-step divides into 3 sub-steps, where π,D1:K and α1:K are updated

separately. Denoting by n
(r)
k the sum

N∑
i=1

q
(r)
Zi

(k), the M-π-step leads to the

standard formula for mixtures. For k = 1 . . .K, πk is updated as:

π
(r)
k =

N∑
i=1

q
(r)
Zi

(k)/N = n
(r)
k /N .

The other sub-steps are given in Appendix A.
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4.2 Dirichlet prior on mixing coefficients

In this section π is now considered as a random variable. More specifically the
prior over Φ1 writes

p(π,µ1:K ,A1:K ; τ ,D1:K) = p(π; τ )

K∏
k=1

p(µk|Ak;Dk)p(Ak) (12)

where p(π; τ ) = D(π; τ1, . . . , τK) =
Γ (

∑K
k=1 τk)∏K

k=1 Γ (τk)

K∏
k=1

πτk−1k is a Dirichlet dis-

tribution.
With this modification, only the p(Z;π) term changes into p(Z|π) p(π; τ )

in the complete likelihood p(y,X,Φ1;Φ2,Φ3) which becomes,

p(y|Z,W ,µ1:K ,A1:K ;D1:K) p(W |Z;α1:K) p(Z|π) p(π; τ ) p(µ1:K ,A1:K ;D1:K ,m,Λ,λ, δ).

For the E-Φ1 step, the variational posterior has the same form as the prior

(12) with the variational posterior for π denoted by q
(r)
π (π),

q
(r)
Φ1 (π,µ1:K ,A1:K) = q(r)π (π)

K∏
k=1

q
(r)
µk,Ak

(µk,Ak)

where q
(r)
µk,Ak

(µk,Ak) has the same expression as given by (16) and (17) in
Appendix A. The new term is

q(r)π (π) = D(π; τ̃
(r)
1 , . . . , τ̃

(r)
K )

with τ̃
(r)
k = τk +

∑N
i=1 q

(r−1)
Zi

(k) = τk + n
(r−1)
k .

The E-X-step is given in Apprendix B. It is only partly impacted by the

addition of a prior on π, which changes only the expression of q
(r)
Zi

. The M-step
formulation remains the same as before without the M-π step.

In what follows, we illustrate the use of this Bayesian formulation and
its variational EM implementation on the issue of selecting the number of
components in the mixture.

5 Identifying the number of mixture components

A difficult problem when fitting mixture models is to determine the number K
of components to include in the mixture. A recent review on the problem with
theoretical and practical aspects can be found in Celeux et al. [2018]. Tradi-
tionally, this selection is performed by comparing a set of candidate models for
a range of values of K, assuming that the true value is in this range. The num-
ber of components is selected by minimizing a model selection criterion, such
as the Bayesian inference criterion (BIC), minimum message length (MML),
Akaike’s information criteria (AIC) to cite just a few [McLachlan and Peel,
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2000, Figueiredo and Jain, 2002]. Of a slightly different nature is the so-called
slope heuristic [Baudry et al., 2012], which involves a robust linear fit and
is not simply based on criterion comparisons. However, the disadvantage of
these approaches is that a whole set of candidate models has to be obtained
and problems associated with running inference algorithms (such as EM) many
times may emerge. Alternatives have been investigated that select the number
of components from a single run of the inference scheme. Apart from the Re-
versible Jump Markov Chain Monte Carlo method of Richardson and Green
[1997] which allows jumps between different numbers of components, two types
of approaches can be distinguished depending on whether the strategy is to
increase or to decrease the number of components. The first ones can be re-
ferred to as greedy algorithms (e.g. Verbeek et al. [2003]) where the mixture is
built component-wise, starting with the optimal one-component mixture and
increasing the number of components until a stopping criterion is met. More
recently, there seems to be an increase interest among mixture model practi-
tioners for model selection strategies that start instead with a large number
of components and merge them [Hennig, 2010]. For instance, Figueiredo and
Jain [2002] propose a practical algorithm that starts with a very large number
of components, iteratively annihilates components, redistributes the observa-
tions to the other components, and terminates based on the MML criterion.
The approach in Baudry et al. [2010] starts with an overestimated number
of components using BIC, and then merges them hierarchically according to
an entropy criterion, while Melnykov [2014] proposes a similar method that
merges components based on measuring their pair-wise overlap. Another trend
in handling the issue of finding the proper number of components is to consider
Bayesian non-parametric mixture models. This allows the implementation of
mixture models with an infinite number of components via the use of Dirich-
let process mixture models (e.g. Rasmussen, Gorur and Rasmussen [2010],
Yerebakan et al. [2014], Wei and Li [2012]). The Bayesian non-parametric ap-
proach is a promising technique. We consider a Bayesian formulation but in
the simpler case of a finite number of components. We suspect all our Bayesian
derivations could be easily tested in a non parametric setting with some minor
adaptation left for future work.

We consider approaches that start from an overfitting mixture with more
components than expected in the data. In this case, as described by Frühwirth-
Schnatter [2006], identifiability will be violated in two possible ways. Identi-
fiability issues can arise either because some of the components weights have
to be zero (then component-specific parameters cannot be identified) or be-
cause some of the components have to be equal (then their weights cannot be
identified). In practice, these two possibilities are not equivalent as checking
for vanishing components is easier and is likely to lead to more stable behav-
ior than testing for redundant components (see e.g. Rousseau and Mengersen
[2011]).

Both increasing and decreasing methods can be considered in a Bayesian
and maximum likelihood setting. However, in a Bayesian framework, in con-
trast to maximum likelihood, considering a posterior distribution on the mix-



10 Alexis Arnaud et al.

ture parameters requires integrating out the parameters and this acts as a
penalization for more complex models. The posterior is essentially putting
mass on the sparsest way to approximate the true density, see e.g. Rousseau
and Mengersen [2011]. Although the framework of Rousseau and Mengersen
[2011] is fully Bayesian with priors on all mixture parameters, this penaliza-
tion effect is also effective when only some of the parameters are integrated
out. This is observed by Corduneanu and Bishop [2001] who use priors only
for the component mean and covariance parameters. Considering that no prior
on π in this case is equivalent to a uniform Dirichlet prior D(1, . . . , 1) if the
maximum a posteriori is used, this is not surprising and what Corduneanu and
Bishop [2001] observed is that the penalization is visible on the MAP. This
justifies in our setting the investigation of a case with no prior on the mixing
weights (Section 4.1).

However, in a deliberately overfitting mixture model, a sparse prior on
the mixture weights will empty superfluous components during estimation
[Malsiner-Walli et al., 2016]. To obtain sparse solutions with regard to the
number of mixture components, an appropriate prior on the weights π has to
be selected. Guidelines have been given in previous work when the prior for the
weights is a symmetric Dirichlet distribution D(τ1, . . . , τK) with all τk’s equal
to a value τ0. To empty superfluous components automatically the value of τ0
has to be chosen appropriately. In particular, Rousseau and Mengersen [2011]
proposed conditions on τ0 to control the asymptotic behavior of the posterior
distribution of an overfitting mixture with respect to the two previously men-
tioned regimes. One regime in which a high likelihood is set to components
with nearly identical parameters and one regime in which some of the mixture
weights go to zero. More specifically, if τ0 < d/2 where d is the dimension
of the component specific parameters, when N tends to infinity, the poste-
rior expectation of the weight of superfluous components converges to zero.
In practice, N is finite and as observed by Malsiner-Walli et al. [2016], much
smaller value of τ0 are needed (e.g. 10−5). It was even observed by Tu [2016]
that negative values of τ0 were useful to induce even more sparsity when the
number of observations is too large with respect to the prior impact. Dirich-
let priors with negative parameters, although not formally defined, are also
mentioned by Figueiredo and Jain [2002]. This latter work does not start from
a Bayesian formulation but is based on a Minimum Message Length (MML)
principle. Figueiredo and Jain [2002] provide an M-step that performs compo-
nent annihilation, thus an explicit rule for moving from the current number
of components to a smaller one. A parallel is made with a Dirichlet prior with
τ0 = −d/2 which according to Tu [2016] corresponds to a very strong prior
sparsity.

5.1 Single-run number of component selection

In a Bayesian setting with symmetric sparse Dirichlet priors D(τ0, . . . , τ0), the
theoretical study of Rousseau and Mengersen [2011] justifies to consider the
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posterior expectations of the weights E[πk|y] and to prune out the too small
ones. In practice this raises at least two additional questions: which expression
to use for the estimated posterior means and how to set a threshold under
which the estimated means are considered too small. The posterior means
estimation is generally guided by the chosen inference scheme. For instance in
our variational framework with a Dirichlet prior on the weights, the estimated
posterior mean E[πk|y] takes the following form (the (r) notation is removed
to signify the convergence of the algorithm),

E[πk|y] ≈ Eqπ [πk] =
τ̃k∑K
l=1 τ̃l

=
τk + nk∑K
k=1 τk +N

(13)

where nk =
∑N
i=1 qZi(k) and qZi(k) is given by (30) (see Appendix A). qZi(k)

is the variational a posteriori probability that observation yi comes from com-
ponent k and nk can be interpreted as the estimated size of component k. If
we are in the no weight prior case, then the expectation simplifies to

πk ≈
nk
N

(14)

with qZi(k) given by (25) (see Appendix B).
Nevertheless, whatever the inference scheme or prior setting, we are left

with the issue of detecting when a component can be set as empty. There is
usually a close relationship between the component weight πk and the number
of observations assigned to component k. This later number is itself often
replaced by nk. As an illustration, the choice of a negative τ0 by Figueiredo
and Jain [2002] corresponds to a rule that sets a component weight to zero
when nk is smaller than d/2. This prevents the algorithm from approaching the
boundary of the parameter space. When one of the components becomes too
weak, meaning that it is not supported by the data, it is simply annihilated.
One of the drawbacks of standard EM for mixtures is thus avoided. The rule
of Figueiredo and Jain [2002] is stronger than that used by McGrory and
Titterington [2007] which annihilates a component when the sum nk reduces
to 1 or the one of Corduneanu and Bishop [2001] which corresponds to the
sum nk lower than a very small fraction of the sample size, i.e. nk/N < 10−5

where N varies from 400 to 900 in their experiments. Note that McGrory and
Titterington [2007] use a Bayesian framework with variational inference and
their rule corresponds to thresholding the variational posterior weights (13) to
1/N because they set all τk to 0 in their experiments.

In addition to these thresholding approaches, alternatives have been de-
veloped that would worth testing to avoid the issue of setting a threshold for
separating large and small weights. In their MCMC sampling, Malsiner-Walli
et al. [2016] propose to consider the number of non-empty components at each
iteration and to estimate the number of components as the most frequent num-
ber of non-empty components. This is not directly applicable in our variational
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treatment as it would require to generate hard assignments to components at
each iteration instead of dealing with their probabilities. In contrast, we could
adopt techniques from the Bayesian non-parametrics literature which seek for
optimal partitions, such as the criterion of Dahl [2006] using the so-called pos-
terior similarity matrix (Fritsch and Ickstadt [2009]). This matrix could be
approximated easily in our case by computing the variational estimate of the
probability that two observations are in the same component. However, even
for moderate numbers of components, the optimization is already very costly.

In this work, we consider two strategies for component elimination. The
first one is a thresholding approach while the second one is potentially more
general as it is based on increasing the overall fit of the model assessed via the
variational free energy at each iteration. Both these strategies lead themselves
to two variants depending on whether or not a prior is used for the mixing
weights. The tested procedures are more specifically described in the next
section.

5.2 Tested procedures

We compare three types of single-run methods to estimate the number of
components in a mixture of multiple scale distributions. The first two types
correspond to a thresholding strategy but for two different Bayesian models
(Sparse Dirichlet prior or TypeII ML).

5.2.1 Bayesian algorithm with sparse Dirichlet prior: ”SparseDirichlet”

A first method is directly derived from a Bayesian setting with a sparse sym-
metric Dirichlet prior likely to induce vanishing coefficients as supported by
the theoretical results of Rousseau and Mengersen [2011]. This corresponds to
the approach adopted in Malsiner-Walli et al. [2016] and McGrory and Tit-
terington [2007]. The difference between the later two being how they check
for vanishing coefficients. Our variational inference leads more naturally to
the solution of McGrory and Titterington [2007] which is to check the weight
posterior means, that is whether at each iteration (r),

n
(r)
k < (Kτ0 +N)ρt − τ0 (15)

where ρt is the chosen threshold on the posterior means. When ρt is set such

that (15) leads to n
(r)
k < 1, this method is referred to, in the next Section, as

SparseDirichlet+πtest. For comparison, the algorithm run with no intervention
is called SparseDirichlet.

5.2.2 Type II maximum likelihood on mixing weights: ”TypeIIML”

A second method corresponds to the method proposed by Corduneanu and
Bishop [2001]: no prior on the weights and a criterion on the estimated weights
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to detected vanishing coefficients. It corresponds to applying (15) with τ0 = 0.
This method is referred to below as TypeIIML when the algorithm is run until
convergence and TypeIIML+πtest when (15) is used at each iteration with
ρt = 1/N .

5.2.3 Free Energy based algorithm: ”FEtest”

At last, we consider a criterion based on the free energy (9) to detect com-
ponents to eliminate. This choice is based on the observation that when no
prior is used for the weights, we cannot control the hyperparameters (e.g τk)
to guide the algorithm in the vanishing components regime. The algorithm
may as well go to the redundant component regime. The goal is then to test
whether this alternative method is likely to handle this behavior. The pro-
posal is to start from a clustering solution with too many components and
to try to remove them using a criterion based on the gain in free energy. In
this setting, the components that are removed are not necessarily vanishing
components but can also be redundant ones. In the proposed variational EM
inference framework, the free energy arises naturally as a selection criterion. It
has been stated in Attias [2000] and Beal [2003] that the free energy penalizes
model complexity and that it converges to the well known Bayesian Informa-
tion Criterion (BIC) and Minimum Description Length (MDL) criterion, when
the sample size increases, illustrating the interest of this measure for model
selection.

The free energy expressions used are given in Appendices C and D. With
no prior on the weights, the algorithm is referred to as TypeIIML+FEtest.
The same idea can be applied in the fully Bayesian setting, referred to here
as SparseDirichlet+FEtest. The heuristic can be described as follows (see the
next section for implementation details).

1. Iteration r = 0: Initialization of the K(0) clusters and probabilities using
for instance repetitions of k-means or trimmed k-means.

2. Iteration r ≥ 1:
(a) E and M steps updating from parameters at iteration r − 1
(b) Updating of the resulting Free Energy value
(c) In parallele, for each cluster k ∈ {1 . . .K(r−1)}

i. Re-normalization of the cluster probabilities when cluster k is re-
moved from current estimates at iteration r − 1: the sum over the
remaining K(r−1) − 1 clusters must be equal to 1

ii. Updating of the corresponding E and M steps and computation of
the associate Free Energy value

(d) Selection of the mixture with the highest Free Energy among theK(r−1)-
component mixture (step (b)) or one of the (K(r−1) − 1)-component
mixtures (step (c)).

(e) Updating of K(r) accordingly, to K(r−1) or K(r−1) − 1 .
3. When no more cluster deletion occur (eg. during 5 steps), we switch to the

EM algorithm (TypeIIML or SparseDirichlet).
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6 Experiments

In addition to the 6 methods mentioned above and referred to below as
MP single-run procedures, we consider standard Gaussian mixtures using the
Mclust package [Scrucca et al., 2016] including a version with priors on the
means and covariance matrices. The Bayesian Information Criterion (BIC) is
used to select the number of components from K = 1 to 10. The respective
methods are denoted below by GM+BIC and Bayesian GM+BIC. Regarding
mixtures of MP distributions, we also consider their non Bayesian version,
using BIC to select K, denoted below by MMP+BIC.

In practice, values need to be chosen for hyperparameters. These include
the mk that are set to 0, the Λk that are set to εIM with ε small (set to 10−4)
so has to generate a large variance in (6). The δkm are then set to 1 and λkm
to values 5 × 10−4 = λ1 < λ2 < . . . < λM = 10−3. When necessary, the τk’s
are set to 10−3 to favor sparse mixtures.

Initialization is also an important step in EM algorithms. For one data
sample, each single-run method is initialized I = 10 times. These I = 10
initializations are the same for all single-run methods. Each initialization is
obtained with K = 10 using trimmed k-means and excluding 10% of outliers.
Each trimmed kmeans output is the one obtained after running the algorithm
from R = 10 restarts and selecting the best assignment after 10 iterations. For
each run of a procedure (data sample), the I = 10 initializations are followed
by 5000 iterations maximum of VEM before choosing the best output. For
Gaussian mixtures, the initialization procedure is that embedded in Mclust.
For MP models, initial values of the αkm’s are set to 1.

Another important point for single-run procedures, is how to finally enu-
merate remaining components. For simplicity, we report components that are
expressed by the maximum a posteriori (MAP) rule, which means components
for which there is at least one data point assigned to them with the highest
probability.

6.1 Simulated data

We first start with some simulated data from a mixture of MP distributions
in dimension 2 with 3 components respectively centered at [0,−2], [0, 0] and
[0, 2] with the same scale matrix [2, 0; 0, 0.2] and parameters αk1 = 2 and
αk2 = 100 for k = 1, 2, 3. This example is a MP version of a Gaussian mix-
ture used by Corduneanu and Bishop [2001] and McGrory and Titterington
[2007] (see Figure 1 (a)). The sample size is N = 900 and 10 samples are sim-
ulated and used to test the different procedures. Table 1 summarizes the final
observed or selected number of components for each procedure. For Gaussian
mixtures K = 4 is the most selected value by BIC with sometimes values up
to 7 selected. The presence of data points in the tails induces the addition
of components to capture all points that cannot be well explained by the 3
main visual components (Figures 1 (c) and (d)). For the MMP case and the
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(a) Simulated data (b) Trimmed kmeans (K = 10)

(c) Bayesian GM+BIC (K = 7) (d) GM+BIC (K = 4)

(e) MP mixture (K = 3)

Fig. 1 (a): Mixture of 3 MP distributions with N = 900, (b): 10 component initializa-
tion using trimmed k-means, (c): Bayesian GM+BIC clustering (K = 7), (d): GM+BIC
clustering (K = 4), (e) MP mixture clustering (K = 3).

6 MP single-run procedures, the final number of components is almost al-
ways 3 and the clusterings are all very similar to the one shown in Figure
1 (e) (TypeIIML+πtest case). Mean computational times over the 10 samples
are reported in seconds in Table 1 (last column). These mean times are all
including the I = 10 repetitions. They are only indicative because implemen-
tations differ significantly between Mclust, MMP and the otherMP single-run
procedures. Mclust is the fastest. MMP is not the slowest but this is due to a
more optimized implementation than the other Bayesian models. However, de-
spite implementation differences, computational gain is observed as expected
when using one of the 4 procedures with component elimination. In particular,
combining a sparse Dirichlet prior and free energy-based elimination seems to
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Procedure Selected number of components Average
(10 restarts) time

1 2 3 4 5 6 7 8 9 10 (in seconds)

GM+BIC . . 2 8 . . . . . . 16

BayesianGM+BIC . . 4 3 1 1 1 . . . 34

MMP+BIC . . 10 . . . . . . . 3589

TypeIIML . . 8 2 . . . . . . 5115

TypeIIML+πtest . . 9 1 . . . . . . 1349

TypeIIML+FEtest . . 10 . . . . . . . 1391

SparseDirichlet . . 9 1 . . . . . . 5051

SparseDirichlet+πtest . . 10 . . . . . . . 1326

SparseDirichlet+FEtest . . 10 . . . . . . . 1032

Table 1 Two dimensional MP mixture with K = 3 well separated components. Final
observed or selected number of components for each procedure on 10 samples, and mean
computational times (over the 10 samples) in seconds (for the total of the I = 10 repetitions).
The most frequent selection is indicated by a box while the true value is in green.

(a) Simulated data (b) Trimmed kmeans (K = 10)

(c) GM+BIC (K = 4) (d) MP mixture (K = 3)

Fig. 2 (a): Mixture of 3 closer MP distributions with N = 900, (b): 10 component ini-
tialization using trimmed k-means, (c): GM+BIC clustering (K = 4), (d): MP mixture
clustering (K = 3).

provide the largest gain with a running time (1032s) divided by more than 3
compared to the MMP+BIC procedure (3589s).

A second example consists of 3 similar MP distributions but with closer
means namely [0,−1], [0, 0] and [0, 1] (Figure 2 (a)). In terms of clustering
and computational times, conclusions are similar as illustrated in Figure 2
and Table 2. All MP methods find K = 3 .
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Procedure Selected number of components Average
(10 restarts) time

1 2 3 4 5 6 7 8 9 10 (in seconds)

GM+BIC . . 1 9 . . . . . . 86

BayesianGM+BIC . . 1 9 . . . . . . 41

MMP+BIC . . 10 . . . . . . . 2942

TypeIIML . . 10 . . . . . . . 4892

TypeIIML+πtest . . 10 . . . . . . . 1471

TypeIIML+FEtest . . 10 . . . . . . . 1336

SparseDirichlet . . 10 . . . . . . . 5004

SparseDirichlet+πtest . . 10 . . . . . . . 1311

SparseDirichlet+FEtest . . 10 . . . . . . . 1334

Table 2 Two dimensionalMP mixture with K = 3 closer components. Final observed or
selected number of components for each procedure on 10 samples, and mean computational
times (over the 10 samples) in seconds (for the total of the I = 10 repetitions). The most
frequent selection is indicated by a box while the true value is in green.

We consider several other models, 3 Gaussian mixtures and 10 MP mix-
tures, with 10 simulated samples each, for a total of 130 samples, K varying
from 3 to 5, N from 900 to 9000, with close or more separated clusters. The
results are summarized in Table 3 and the simulated samples illustrated in Fig-
ure 3. Gaussian mixture models provide the right component number in 26%
to 32% of the cases, which is higher than the number of Gaussian mixtures in
the test (23%). All procedures hesitate mainly between the true number and
this number plus 1. We observe a good behavior of the free energy heuristic in
both fully Bayesian and TypeII ML cases with a time divided by 3 compared
to the non BayesianMP mixture procedure, although the later benefits from
a more optimized implementation. Component elimination procedures based
on proportions (πtest) are less successful maybe due to slower convergence.
Their dependence to the choice of a threshold value is certainly a limitation
although some significant gain is observed over the cases with no component
elimination (TypeIIML and SparseDirichlet lines in Table 3). Overall, elimi-
nating components on the run is beneficial, both in terms of time and selection
performance but using a penalized likelihood criterion (free energy) to do so
avoid the commitment to a fix threshold and is more successful. A possible
reason is that small components are more difficult to eliminate than redundant
ones. Small components not only require the right threshold to be chosen but
also they may appear at much latter iterations as illustrated in Figure 4.

6.2 Standard dataset

The procedures are also illustrated on a standard data set in more than 1
dimension and for which the results are easy to interpret.
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Procedures Difference between selected and true number Average
(10 restarts) of components time

0 1 2 3 4 5 6 7 (in seconds)

GM+BIC 26.1 33.0 8.4 3.8 19.2 1.5 2.3 5.3 177

Bayesian GM+BIC 31.5 34.6 3.0 3.0 20.7 3.8 1.5 1.5 92

MMP+BIC 94.6 5.3 . . . . . . 9506

TypeIIML 45.3 41.5 12.3 .7 . . . . 10473

TypeIIML+πtest 61.5 34.6 3.0 .7 . . . . 4872

TypeIIML+FEtest 98.4 .7 . .7 . . . . 3975

SparseDirichlet 54.6 39.2 5.3 .7 . . . . 10355

SparseDirichlet+πtest 70.0 27.6 1.5 .7 . . . . 4640

SparseDirichlet+FEtest 99.2 . . .7 . . . . 3125

Table 3 13 models simulated 10 times each: the true number of components is varying so
the columns indicate the difference between the selection and the truth. The average time
(for the total of the I = 10 repetitions, over the 130 samples) is indicated in the last column.
The most frequent selection (in %) is indicated by a box while the true value is in green.
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Fig. 3 Examples of simulated samples. First line: 3 Gaussian mixtures with 3 and 5 com-
ponents. Second line:MP mixtures with different dof and increasing separation from left to
right. Third line:MP mixtures with increasing separation, from left to right, and increasing
number of points, N = 900 for the first plot, N = 9000 for the last two.
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Fig. 4 Illustration of the two component elimination strategies: Free energy gain strategy,
iterations 10 to 50 (left) and too small component proportion test, iterations 10 to 720
(right). Eliminations are marked with red lines. Most of them occur at earlier iterations
when using the free energy test.

6.2.1 Old Faithful Geyser data

This data set contains 272 observations on 2 variables which are the waiting
time between eruptions and the duration of the eruption for the Old Faithful
geyser in Yellowstone National Park. The scatter plot in Figure 5 (a) shows
two moderately separated groups. For model selection this example has been
studied in particular by Stephens [2000] with Gaussian mixtures. It was found
that when more than 2 clusters are fit the extra components are there to
model the deviation from normality in the two obvious groups rather than to
model interpretable extra clusters. This is consistent with what we observe
with Gaussian models (GM+BIC and Bayesian GM+BIC), finding 3 compo-
nents (Figure 5 (c)) while ourMP model with BIC (MMP+BIC) and the free
energy based elimination procedure show consistently 2 selected clusters (Fig-
ure 5 (d)). All other methods select 3 components but the clustering differs
from that of the Gaussian models (Figures 5 (c) and (e)). All procedures were
initialized with a 10 component assignment similar to that shown in Figure
5 (b). In terms of complexity, it appears that the fastest procedures are the
free energy based ones (FEtest) (176s) with a time divided by 5 compared to
the MMP+BIC one (1012s).

The code used for the experiments is available under the MMST item at
https://team.inria.fr/mistis/software/.

7 Discussion and conclusion

Multiple scale distributions have been shown to perform well in the modelling
of non-elliptical clusters with potential outliers and tails of various heaviness.
Considering a Bayesian formulation of mixtures of such multiple scale distri-
butions, we derived an inference procedure based on a variational EM algo-

https://team.inria.fr/mistis/software/
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(a) Old Faithful data (b) Trimmed kmeans (K = 10)

(c) GM+BIC (K = 3) (d) MMP+BIC & FEtest (K = 2)

(e) Other single-run methods (K = 3)

Fig. 5 (a): Old Faithful data, (b): 10 component initialization using trimmed k-means, (c):
Gaussian mixture clustering as selected by BIC (K = 3), (d):MP clustering obtained with
BIC and free energy based elimination (K = 2); (e):MP clustering for the other single-run
procedures (K = 3).

rithm. Our main motivation was to investigate, in the context of mixtures
of non-Gaussian distributions, different single-run procedures to select auto-
matically the number of components. The Bayesian formulation makes this
possible when starting from an overfitting mixture, where K is larger than the
expected number of components. The advantage of single run procedures is to
avoid time consuming comparison of scores for each mixture model from 1 to
K components. There are different ways to implement this idea: full Bayesian
settings which have the advantage to be supported by some theoretical jus-
tification [Rousseau and Mengersen, 2011] and Type II maximum likelihood
as proposed by Corduneanu and Bishop [2001]. For further acceleration, we
investigated component elimination which consists of eliminating components
on the run. They are two main ways to do so: components are eliminated as
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soon as they are not supported by enough data points (their estimated weight
is under some threshold) or when their removal does not penalize the over-
all fit. For the latest case, we proposed a heuristic based on the gain in free
energy. The free energy acts as a penalized likelihood criterion and can poten-
tially eliminate both too small components and redundant ones. Redundant
components do not necessarily see their weight tend to zero and cannot be
eliminated via a simple thresholding.

On preliminary experiments, we observed that eliminating components on
the run is beneficial, both in terms of time and selection performance. Free en-
ergy based methods appeared to perform better than posterior weight thresh-
olding methods: using a penalized likelihood criterion (free energy) avoids the
commitment to a fix threshold and is not limited to the removal of small com-
ponents. However, a fully Bayesian setting is probably not necessary as both
in terms of selection and computation time, Type II maximum likelihood on
the weights was competitive with the use of a Dirichlet prior with a slight
advantage to the latter.

To confirm these observations, more tests in particular on larger and real
data sets would be required to better compare and understand the various
characteristics of each procedure. Theoretical justification for thresholding ap-
proaches, as provided by Rousseau and Mengersen [2011], applies for Gaussian
mixtures but may not hold in our case of non-elliptical distributions. A more
specific study would be required and could provide additional guidelines as
how to set the threshold in practice. Also time comparison in our study is
only valid for the Bayesian procedures for which the implementation is similar
while the other methods using BIC have been better optimized, but this does
not change the overall conclusion as regards computational efficiency.
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A No prior on mixing coefficients: E and M steps

A.1 E-step.

E-Φ1 step. In this setting, the variational posterior has the same structure as the prior
distribution (8). More specifically,

q
(r)

Φ1 (Φ1) =
K∏
k=1

q
(r)

Φ1 (Φ1
k) with q

(r)

Φ1 (Φ1
k) = q

(r)

Φ1 (µk,Ak) = q
(r)
µk|Ak

(µk | Ak) q
(r)
Ak

(Ak) where

q
(r)
µk|Ak

(µk | Ak) = N (µk; m̃
(r)
k , Σ̃

(r)
k ) (16)

q
(r)
Ak

(Ak) =

M∏
m=1

G(Akm; λ̃
(r)
km, δ̃

(r)
km) . (17)

Variational posteriors are defined via variational parameters m̃
(r)
k , Σ̃

(r)
k and λ̃

(r)
km, δ̃

(r)
km. These

parameters involve q
(r−1)
X via q

(r−1)
Zi

(k) = q
(r−1)
X (Zi = k) and

∆̃
(r−1)
ki = diag(w̃

(r−1)
ki1 , . . . , w̃

(r−1)
kiM ) (18)

where w̃
(r−1)
kim = E

q
(r−1)
X

[Wim|Zi = k] = α̃
(r−1)
km /γ̃

(r−1)
kim . The specific expressions of α̃

(r−1)
km

and γ̃
(r−1)
kim are given in eq. (26) and (27) of the E-X step below but using values from

iteration (r− 1). The covariance matrix Σ̃
(r)
k depends on Ak as in the prior (6) while after

simplification m̃
(r)
k does not:

Σ̃
(r)
k = D

(r−1)
k Ñ (r)−1A−1

k D
(r−1)T
k (19)

m̃
(r)
k = Σ̃kD

(r−1)
k Ak

(
ΛkD

(r−1)T
k mk +

N∑
i=1

q
(r−1)
Zi

(k)∆̃
(r−1)
ki D

(r−1)T
k yi

)

= D
(r−1)
k Ñ (r)−1

(
ΛkD

(r−1)T
k mk +

N∑
i=1

q
(r−1)
Zi

(k)∆̃
(r−1)
ki D

(r−1)T
k yi

)
(20)

with Ñ
(r)
k = Λk +

N∑
i=1

q
(r−1)
Zi

(k)∆̃
(r−1)
ki . (21)

Then (17) is defined by the parameters:

λ̃
(r)
km = λkm + 1/2

N∑
i=1

q
(r−1)
Zi

(k) (22)

δ̃
(r)
km = δkm + 1/2 [Mk]m,m (23)

where [Mk]m,m denotes the mth diagonal element on the following matrix Mk:

Mk = D
(r−1)T
k

(
N∑
i=1

q
(r−1)
Zi

(k)yi(yi − m̃
(r)
k )TD

(r−1)
k ∆̃

(r−1)
ki

)
+D

(r−1)T
k mk(mk − m̃

(r)
k )TD

(r−1)
k Λk .

E-X step. q
(r)
X (X) =

N∏
i=1

q
(r)
Xi

(Wi,Zi) with

q
(r)
Wi|Zi

(Wi|Zi = k) =

M∏
m=1

q
(r)
Wim|Zi

(Wim|Zi = k)=
M∏
m=1

G(Wim; α̃
(r)
km, γ̃

(r)
kim) (24)
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q
(r)
Zi

(Zi = k) = q
(r)
Zi

(k) ∝ π(r−1)
k exp(ρ̃

(r)
k /2)

M∏
m=1

Γ (α̃
(r)
km)

Γ (α
(r−1)
km ) γ̃

(r)α̃
(r)
km

kim

. (25)

The right-hand side term above is easy to normalized. The variational parameters α̃
(r)
km, γ̃

(r)
kim

are given by:

α̃
(r)
km = α

(r−1)
km +

1

2
(26)

γ̃
(r)
kim = 1 +

1

2

(
Ã

(r)
km[D

(r−1)T
k (yi − m̃

(r)
k )]2m + [Ñ

(r)
k ]−1

m,m

)
(27)

where Ñ
(r)
k is given in (21), ρ̃

(r)
k and Ã

(r)
km are easily computed from (17) (Υ is the Digamma

function):

ρ̃
(r)
k = E

q
(r)
Ak

[log |Ak|] =

M∑
m=1

Υ (λ̃
(r)
km)− log δ̃

(r)
km (28)

Ã
(r)
k = E

q
(r)
Ak

[Ak] that is for m = 1 . . .M , Ã
(r)
km = λ̃

(r)
km/δ̃

(r)
km . (29)

A.2 M-step.

M-π-step. This step leads to the standard formula for mixtures. For k = 1 . . .K, π is
updated as:

π
(r)
k =

N∑
i=1

q
(r)
Zi

(k)/N = n
(r)
k /N .

M-α- step. This step is less standard but equivalent to the update found in non Bayesian
mixture of multiple scale distributions. The details can be found in the Supplementary
material of [Forbes and Wraith, 2014]. In practice the αk’s are updated as follows. The
estimates do not exist in closed form, but are given as a solution of the equations below, for
each k = 1 . . .K and m = 1 . . .M :

Υ (αkm) = Υ (α̃
(r)
km)−

1

n
(r)
k

N∑
i=1

q
(r)
Zi

(k) log
(
γ̃
(r)
kim

)

The resolution of these equations in αkm provides α
(r)
km.

M-D-step. Each Dk can be updated separately as follows. Intermediate quantities are
introduced to simplify the notation. For i = 1 . . . N + 1:

∀i = 1 . . . N, V
(r)
ki = q

(r)
Zi

(k)(yi − m̃
(r)
k )(yi − m̃

(r)
k )T

V
(r)
k(N+1)

= (mk − m̃
(r)
k )(mk − m̃

(r)
k )T

∆̃
(r)
k(N+1)

= Λk

As already defined in (18) and (21),

∀i = 1 . . . N, ∆̃
(r)
ki = diag(w̃

(r)
ki1, . . . , w̃

(r)
kiM )
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and Ñ
(r+1)
k = Λk +

N∑
i=1

q
(r)
Zi

(k)∆̃
(r)
ki .

D
(r)
k = arg min

Dk∈O

N+1∑
i=1

trace(Dk∆̃
(r)
ki Ãk

(r)
DT
k V

(r)
ki )

+E
q
(r)
A

[trace(DkÑ
(r+1)
k AkD

T
k D

(r−1)
k (Ñ

(r)
k )−1A−1

k D
(r−1)T
k )] .

The exact computation of the expectation above is feasible but would result in an expres-
sion where the elements of Dk would be separated. As an alternative, we consider J i.i.d

simulations of Ak according to distribution q
(r)
Ak

which is a product of Gamma distributions

given in (17). Denoting by Akj for j = 1 . . . J these simulations, D
(r)
k can be approximated

by,

D
(r)
k ≈ arg min

Dk∈O

N+1∑
i=1

trace(Dk∆̃
(r)
ki Ãk

(r)
DT
k V

(r)
ki )

+ 1
J

J∑
j=1

trace(DkÑ
(r+1)
k AkjD

T
k D

(r−1)
k (Ñ

(r)
k )−1A−1

kj D
(r−1)T
k ) .

The Monte-Carlo approximation of the expectation has the advantage to allow for the opti-
mization of Dk on the Stiefel manifold O. In [Celeux and Govaert, 1995, Forbes and Wraith,
2014, Wraith and Forbes, 2015], an algorithm by Flury and Gautschi [1986] was used but
we consider here a more recent procedure using an accelerated line search method proposed
by Browne and McNicholas [2014].

B Dirichlet prior on mixing coefficients: E-step

E-Φ1 step. With the same form for the prior and variational posterior, it comes

q
(r)

Φ1 (π,µ1:K ,A1:K) = q(r)(π)

K∏
k=1

q
(r)
µk,Ak

(µk,Ak)

where q
(r)
µk,Ak

(µk,Ak) has the same expression as given by (16) and (17). The new term is

q
(r)
π (π) = D(π; τ̃

(r)
1 , . . . , τ̃

(r)
K )

with τ̃
(r)
k = τk +

∑N
i=1 q

(r−1)
Zi

(k) = τk + n
(r−1)
k .

E-X step. This step is only partly impacted by the addition of a prior on π. It comes as in

the previous section, q
(r)
X (X) =

N∏
i=1

q
(r)
Xi

(Wi,Zi) with the term below unchanged and given

by (24), (26) and (27),

q
(r)
Wi|Zi

(Wi | Zi = k) =

M∏
m=1

q
(r)
Wim|Zi

(Wim | Zi = k) =

M∏
m=1

G(Wim; α̃
(r)
km, γ̃

(r)
kim) .

In contrast, the posterior on Z is changed into

q
(r)
Zi

(Zi = k) = q
(r)
Zi

(k) ∝ π̃
(r)
k exp(ρ̃

(r)
k /2)

M∏
m=1

Γ (α̃
(r)
km)

Γ (α
(r−1)
km ) γ̃

(r)α̃
(r)
km

kim

. (30)
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where the modification reduces to changing π
(r−1)
k into π̃

(r)
k that can be derived from the

previous E-Φ1 step as

log π̃
(r)
k = Eq

π(r)
[log πk] = Υ (τ̃

(r)
k )− Υ (

K∑
k=1

τ̃
(r)
l ) = Υ (τk + n

(r−1)
k )− Υ (

K∑
k=1

τl +N) .

The last term being constant with respect to (r) and k, it follows that π̃
(r)
k is proportional

to exp(Υ (τk + n
(r−1)
k )) and it is enough to use this later expression in (30).

C No prior on mixing coefficients: free energy expression

The expression of the free energy at each iteration is needed to apply the procedure men-
tioned in section 5.2. It is given here in the absence of weight prior (Section 4.1). The free
energy expression differs only slightly when a Dirichlet prior is added (see Appendix D).
The free energy can be decomposed into two terms. At each iteration (r),

F(q(r),Φ2(r)) = Eq(r) [log p(y,X,Φ1;Φ2(r))]− Eq(r) [log q(r)(X,Φ1)] ,

where the second term is made of entropies and the first term has been already computed
in the M-step.

C.1 Entropy terms

In this section, we provide the expression of −Eq(r) [log q(r)(X,Φ1)] when it is equal to

−Eq(r) [log q(r)(X,Φ1)] = H[q
(r)
X ] +H[q

(r)

Φ1 ]

=

N∑
i=1

H[q
(r)
Xi

] +

K∑
k=1

H[q
(r)

Φ1
k

] .

In the expression above, H[q
(r)

Φ1
k

] is the entropy of the Normal-Wishart distribution defined

in (16) and (17),

H[q
(r)

Φ1
k

] =
1

2

(
M log 2πe− log |Ñ (r)

k | −
M∑
m=1

Υ (λ̃
(r)
km)− log δ̃

(r)
km

)

+

M∑
m=1

(
λ̃
(r)
km − log δ̃

(r)
km + logΓ (λ̃

(r)
km) + (1− λ̃(r)km)Υ (λ̃

(r)
km)

)
,

where Ñ
(r)
k is given by equation (21), λ̃

(r)
km and δ̃

(r)
km by (22) and (23).

Then each term H[q
(r)
Xi

] is the sum of a product-of-Gamma entropy and a multinomial
entropy,

H[q
(r)
Xi

] =

K∑
k=1

q
(r)
Zi

(k)

M∑
m=1

(
α̃
(r)
km + logΓ (α̃

(r)
km) + (1− α̃(r)

km)Υ (α̃
(r)
km)− log γ̃

(r)
kim

)

−
K∑
k=1

q
(r)
Zi

(k) log q
(r)
Zi

(k)

where q
(r)
Zi

(k) is given by (25), α̃
(r)
km by (26) and γ̃

(r)
kim by (27).
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C.2 M-step terms

The term Eq(r) [log p(y,X,Φ1;Φ2(r))] decomposes into five terms,

Eq(r) [log p(y,X,Φ1;Φ2(r))] = Eq [log p(y|X,Φ1;D(r))] + E
q
(r)
Z,W

[log p(W |Z;α
(r)
1:K)]

+E
q
(r)
Z

[log p(Z;π(r))] + E
q
(r)
µ,A

[log p(µ1:K |A1:K ;D
(r)
1:K)] + E

q
(r)
A

[log p(A1:K)] .

The five terms are detailed in turn below,

Eq(r) [log p(y|X,Φ1;D
(r)
1:K)] = −1/2

N∑
i=1

K∑
k=1

q
(r)
Zi

(k)

(
M log 2π − ρ̃(r)k −
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km)− log γ̃
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kim)

+(m̃
(r)
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TD
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ki Ã
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k D

(r)T
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k − yi) + trace(∆̄
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ki (Ñ
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)
with ∆̄

(r)
ki given in (18), m̃

(r)
k in (20), Ñ

(r)
k in (21), ρ̃

(r)
k and Ã

(r)
k in (28) and (29), α̃

(r)
km

and γ̃
(r)
kim in (26) and (27), D

(r)
k is the solution of the M-D-step. .

E
q
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Z,W

[log p(W |Z;α
(r)
1:K)] =

N∑
i=1

K∑
k=1

q
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Zi

(k)
M∑
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(
− logΓ (α
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km)
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(r)
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kim)−
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)

where q
(r)
Zi

(k) is given in (25), α
(r)
km are the solutions of the M-α step, α̃

(r)
km and γ̃

(r)
kim are

given in (26) and (27).
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∑N
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where Ñ
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k are given in (21) and (20), ρ̃

(r)
k is given in (28) and Ã
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E
q
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[log p(A1:K)] =
K∑
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M∑
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)

with Ã
(r)
km given in (29), λ̃

(r)
km and δ̃

(r)
km in (22) and (23).
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D Dirichlet prior on mixing coefficients: free energy expression

D.1 Entropy terms

The entropy terms are the same as in the previous Section with an additional term that

corresponds to the entropy of q
(r)
π :

H[q
(r)
π ] = logB(τ̃ (r))− (K − τ̃ (r)0 )Υ (τ̃

(r)
0 )−

K∑
k=1

(τ̃
(r)
k − 1)Υ (τ̃

(r)
k )

where B(τ̃ (r)) =

∏K
k=1 Γ (τ̃

(r)
k )

Γ (τ̃
(r)
0 )

and τ̃
(r)
0 =

∑K
k=1 τ̃

(r)
k .

D.2 M-step terms

Similarly to the previous Section C, the term Eq(r) [log p(y,X,Φ1;Φ2(r))] decomposes now
into six terms,

Eq(r) [log p(y,X,Φ1;Φ2(r))] = Eq [log p(y|X,Φ1;D(r))] + E
q
(r)
Z,W

[log p(W |Z;α
(r)
1:K)] + E

q
(r)
Z
q
(r)
π

[log p(Z;π)]

+E
q
(r)
µ,A

[log p(µ1:K |A1:K ;D
(r)
1:K)] + E

q
(r)
A

[log p(A1:K)] + E
q
(r)
π

[log p(π; τ )] .

where the last term is an additional term not present in Section C and the third term has
changed and is now

E
q
(r)
Z
q
(r)
π

[log p(Z;π)] =

(
K∑
k=1

n
(r)
k Υ (τ̃

(r)
k )

)
−NΥ (τ̃

(r)
0 )

The new term is,

E
q
(r)
π

[log p(π; τ )] = − logB(τ ) + (K − τ0)Υ (τ̃
(r)
0 ) +

K∑
k=1

(τk − 1)Υ (τ̃
(r)
k )

where τ0 =
∑K
k=1 τk. All other terms have already been computed in Section C.
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