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Abstract

Biological systems can share and collectively process information to yield emergent effects,

despite inherent noise in communication. While man-made systems often employ intricate

structural solutions to overcome noise, the structure of many biological systems is more

amorphous. It is not well understood how communication noise may affect the computa-

tional repertoire of such groups. To approach this question we consider the basic collective

task of rumor spreading, in which information from few knowledgeable sources must reliably

flow into the rest of the population. We study the effect of communication noise on the ability

of groups that lack stable structures to efficiently solve this task. We present an impossibility

result which strongly restricts reliable rumor spreading in such groups. Namely, we prove

that, in the presence of even moderate levels of noise that affect all facets of the communi-

cation, no scheme can significantly outperform the trivial one in which agents have to wait

until directly interacting with the sources—a process which requires linear time in the popu-

lation size. Our results imply that in order to achieve efficient rumor spread a system must

exhibit either some degree of structural stability or, alternatively, some facet of the communi-

cation which is immune to noise. We then corroborate this claim by providing new analyses

of experimental data regarding recruitment in Cataglyphis niger desert ants. Finally, in

light of our theoretical results, we discuss strategies to overcome noise in other biological

systems.

Author summary

Biological systems must function despite inherent noise in their communication. Systems

that enjoy structural stability, such as biological neural networks, could potentially over-

come noise using simple redundancy-based procedures. However, when individuals have

little control over who they interact with, it is unclear what conditions would prevent run-

away error accumulation. This paper takes a general stance to investigate this problem,

concentrating on the basic information-dissemination task of rumor spreading. Drawing

on a theoretical model, we prove that fast rumor spreading can only be achieved if some

part of the communication setting is either stable or reliable. We then provide empirical
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support for this claim by conducting new analyses of data from experiments on recruit-

ment in desert ants.

Introduction

Systems composed of tiny mobile components must function under conditions of unreliabil-

ity. In particular, any sharing of information is inevitably subject to communication noise. The

effects of communication noise in distributed living systems appears to be highly variable.

While some systems disseminate information efficiently and reliably despite communication

noise [1–5], others generally refrain from acquiring social information, consequently losing all

its potential benefits [6–8]. It is not well understood which characteristics of a distributed sys-

tem are crucial in facilitating noise reduction strategies and, conversely, in which systems such

strategies are bound to fail. Progress in this direction may be valuable towards better under-

standing the constraints that govern the evolution of cooperative biological systems.

Computation under noise has been extensively studied in the computer science commu-

nity. These studies suggest that different forms of error correction (e.g., redundancy) are highly

useful in maintaining reliability despite noise [9–12]. All these, however, require the ability to

transfer significant amount of information over stable communication channels. Similar

redundancy methods may seem biologically plausible in systems that enjoy stable structures,

such as brain tissues.

The impact of noise in stochastic systems with ephemeral connectivity patterns is far less

understood. To study these, we focus on rumor spreading—a fundamental information dis-

semination task that is a prerequisite to almost any distributed system [13–16]. The literature

on rumor spreading is quite vast and encompasses different disciplines over the last decades

[17, 18]. For a succinct overview as for theoretical computer science, see Section Related works
in computer science in the Supplementary Information.

A successful and efficient rumor spreading process is one in which a large group manages

to quickly learn information initially held by one or a few informed individuals. Fast informa-

tion flow to the whole group dictates that messages be relayed between individuals. Similar to

the game of Chinese Whispers, this may potentially result in runaway buildup of noise and

loss of any initial information [19]. It currently remains unclear what are the precise condi-

tions that enable fast rumor spreading. On the one hand, recent works indicate that in some

models of random noisy interactions, a collective coordinated process can in fact achieve fast

information spreading [20, 21]. These models, however, are based on push operations that

inherently include a certain reliable component (see more details in Section Separation
between PUSH and PULL). On the other hand, other works consider computation through

noisy operations, and show that several distributed tasks require significant running time [22].

The tasks considered in these works (including the problem of learning the input bits of all

processors, or computing the parity of all the inputs) were motivated by computer applica-

tions, and may be less relevant for biological contexts. Moreover, they appear to be more

demanding than basic tasks, such as rumor spreading, and hence it is unclear how to relate

bounds on the former problems to the latter ones.

In this paper we take a general stance to identify limitations under which reliable and fast

rumor spreading cannot be achieved. Modeling a well-mixed population, we consider a passive

communication scheme in which information flow occurs as one agent observes the cues dis-

played by another. If these interactions are perfectly reliable, the population could achieve

extremely fast rumor spreading [16]. In contrast, here we focus on the situation in which
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messages are noisy. Informally, our main theoretical result states that fast rumor spreading

through large populations can only be achieved if either

• the system exhibits some degree of structural stability, or

• some facet of the pairwise communication is immune to noise.

In fact, our lower bounds hold even when individuals are granted unlimited computational

power and even when the system can take advantage of complete synchronization. In light of

these theoretical results, we then turn to discuss several examples of information sharing in

distributed biological systems. We provide new analyses of the efficiency of information dis-

semination during recruitment by desert ants. These suggest that this system lacks reliability in

all its communication components, and its deficient performances qualitatively validate our

predictions. Finally, we revisit existing rumor spreading solutions in large biological systems

and discuss different strategies for confronting noise.

The problem

An intuitive description of the model follows. For more precise definitions, see, Section The
models in the Supplementary Information.

Consider a population of n agents. Thought of as computing entities, assume that each

agent has a discrete internal state, and can execute randomized algorithms—by internally flip-

ping coins. In addition, each agent has an opinion, which we assume for simplicity to be binary,

i.e., either 0 or 1. A small number, s, of agents play the role of sources. Source agents are aware

of their role and share the same opinion, referred to as the correct opinion. The goal of all

agents is to have their opinion coincide with the correct opinion.

To achieve this goal, each agent continuously displays one of several messages taken from

some finite alphabet S. Agents interact according to a random pattern, termed as the parallel-
PULL model: In each round t 2 Nþ, each agent u observes the message currently displayed by

another agent v, chosen independently and uniformly at random from all agents. Importantly,

communication is noisy, hence the message observed by umay differ from that displayed by v.
More precisely, for any m,m0 2 S, let Pm,m0 be the probability that, any time some agent u
observes an agent v holding some message m 2 S, u actually receives message m0. The proba-

bilities Pm,m0 define the entries of the noise-matrix P [21], which does not depend on time.

The noise is characterized by a noise parameter δ> 0. Our model encapsulates a large family

of noise distributions, making our bounds highly general. Specifically, the noise distribution

can take any form, as long as it satisfies the following criterion.

Definition 1 (δ-uniform noise) We say that the noise is δ-uniform if Pm,m0 � δ for any
m,m0 2 S.

When messages are noiseless, it is easy to see that the number of rounds that are required to

guarantee that all agents hold the correct opinion with high probability is Oðlog nÞ [16]. In

what follows, we aim to show that when the δ-uniform noise criterion is satisfied, the number

of rounds required until even one non-source agent can be moderately certain about the value

of the correct opinion is very large. Specifically, thinking of δ and s as constants independent

of the population size n, this number of rounds is at least O(n).

To prove the lower bound, we will bestow the agents with capabilities that far surpass those

that are reasonable for biological entities. These include:

• Unique identities: Agents have unique identities in the range {1, 2, . . .n}. When observing

agent v, its identity is received without noise.

Limits on reliable information flows through stochastic populations
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• Complete knowledge of the system: Agents have access to all parameters of the system

(including n, s, and δ) as well as to the full knowledge of the initial configuration except, of

course, the correct opinion and the identity of the sources. In addition, agents have access to

the results of random coin flips used internally by all other agents.

• Full synchronization: Agents know when the execution starts, and can count rounds.

We show that even given this extra computational power, fast convergence cannot be

achieved. All the more so, fast convergence is impossible under more realistic assumptions.

Results

The purpose of this work is to identify limitations under which efficient rumor spreading

would be impossible. Our main result is theoretical and, informally, states that when all com-

ponents of communication are noisy fast rumor spreading through large populations is not

feasible. In other words, our results imply that fast rumor spreading can only be achieved if the

system either exhibits some degree of structural stability or that some facet of its communica-

tion is immune to noise. These results in hand, a next concern is how far our highly theoretical

analysis can go in explaining actual biological systems.

Theoretical results with a high degree of generality may hold relevance to a wider range of

biological systems. Lower bound and impossibility results follow this approach. Indeed, impos-

sibility results from physics and information theory have previously been used to further the

understanding of several biological systems [23, 24]. The results we present here are, similarly,

in the form of lower bounds but, this time, they are derived from the realm of distributed com-

putation. As such, our theorems are general enough to constrain the performances of a vast

class of computational systems regardless of their particulars or the specific computational

algorithms which they apply. This generality stretches over to biology and can provide us with

fundamental lessons regarding the limitations faced by distributed biological systems [24–26].

While the generality of our lower bound results makes them relevant to a large number of

biological systems it also constitutes a weakness. Namely, the assumptions on which such theo-

rems are based are not tailored to describe a particular system. This implies that comparisons

between the model assumptions and the actual details of a specific system will not be perfect.

Nevertheless, we show how our theoretical results can shed light on some non-trivial behaviors

in a specific biological system whose characteristics are close enough to the underlying theoret-

ical assumptions (see Section Recruitment in desert ants). Particularly, we empirically show

that when desert ants communicate information regarding a new food source they are subject

to limitations which are similar to those assumed by our model. We then demonstrate a non-

trivial slowdown in the speed at which information spreads through the system as a function

of group size. Despite the non-perfect matching between the theoretical assumption and the

biological system, this non-trivial result stands in direct accordance with our theoretical lower

bounds.

Distributed computing provides an effective means of studying biological groups [27–30].

However, to the best of our knowledge, there are no examples in which algorithmic lower

bounds, one of distributed computing most powerful tools, have been applied to a particular

living system. This work uses lower bounds to provide insights into non-trivial dynamics

observed during ant recruitment behavior.

Theoretical results

In all the statements that follow we consider the parallel-PULL model satisfying the δ-uniform

noise criterion, with cs/n< δ� 1/|S| for some sufficiently large constant c, where the upper
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bound follows from the criterion given in Definition 1. Hence, the previous lower bound on δ
implies a restriction on the alphabet size, specifically, |S|< n/(cs).

Theorem 1.1 Any rumor spreading protocol cannot converge in less than Oð nd

s2ð1� djSjÞ2
Þ rounds.

Observe that the lower bound we present loses relevance when s is of order greater than
ffiffiffi
n
p

, as our proof technique becomes uninformative in presence of a large number of sources

(see Remark 2 in the Supplementary Information). Recall also that we assume that a source is

aware that it is a source, but if it wishes to identify itself as such to agents that observe it, it

must encode this information in a message, which is, in turn, subject to noise. We also con-

sider the case in which an agent can reliably identify a source when it observes one (that is, this

information is not noisy). For this case, the following lower bound, which is weaker than the

previous one but still polynomial, apply (see also the S1 Text, Detectable sources):

Corollary 1.1 Assume that sources are reliably detectable. There is no rumor spreading proto-
col that converges in less than Oðð nd

s2ð1� djSjÞ2
Þ

1=3
Þ rounds.

Our results suggest that, in contrast to systems that enjoy stable connectivity, structureless

systems are highly sensitive to communication noise (see Fig 1). More concretely, the two cru-

cial assumptions that make our lower bounds applicable are: 1) stochastic interactions, and 2)

δ-uniform noise (Fig 1, right hand panel). When agents can stabilize their interactions the first

assumption is violated. In such cases, agents can overcome noise by employing simple error-

correction techniques, e.g., using redundant messaging or waiting for acknowledgment before

proceeding to the next action. As demonstrated in Fig 1, (left hand panel), when the noise is

not uniform, it might be possible to overcome it with simple techniques based on using default

neutral messages, and employing exceptional distinguishable signals only when necessary.

Recruitment in desert ants

Our theoretical results assert that efficient rumor spreading in large groups could not be

achieved without some degree of communication reliability. An example of a biological system

whose communication reliability appears to be deficient in all of its components is recruitment

Fig 1. Non-uniform noise vs. uniform noise. On the left, we consider an example with non-uniform noise. Assume that

the message vocabulary consists of 5 symbols, that is, S = {m1, m2, m3,m4,m5}, wherem1 = 0 andm5 = 1, represent the

opinions. Assume that noise can occur only between consecutive messages. For example,m2 can be observed as either

m2,m3 orm1, all with positive constant probability, but can never be viewed as m4 orm5. In this scenario, the population

can quickly converge on the correct opinion by executing the following. The sources always display the correct opinion,

i.e., eitherm1 orm5, and each other agent displaysm3 unless it has seen eitherm1 orm5 in which case it adopts the

opinion it saw and displays it. In other words,m3 serves as a default message for non-source agents, andm1 andm5 serve

as attracting sinks. It is easy to see that the correct opinion will propagate quickly through the system without

disturbance, and within Oðlog nÞ number of rounds, where n is the size of the population, all agents will hold it with

high probability. In contrast, in the case of δ-uniform noise as depicted on the right picture, if every message can be

observed as any other message with some constant positive probability (for clarity, some of the arrows have been omitted

from the sketch), then convergence cannot be achieved in less than O(n) rounds, as Theorem 1.1 dictates.

https://doi.org/10.1371/journal.pcbi.1006195.g001
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in Cataglyphis niger desert ants. In this species, when a forager locates an oversized food item,

she returns to the nest to recruit other ants to help in its retrieval [31, 32].

In our experimental setup, summarized in Fig 2, recruitment occurs in the small area of the

nest’s entrance chamber (Fig 2a). We find that within this confined area, the interactions

between ants follow a near uniformly random meeting pattern [33]. In other words, ants seem

to have no control over which of their nest mates they will meet next (Fig 2b). This random

meeting pattern approximates the first main assumption of our model. Another of the model’s

assumptions is that ants interact in parallel. This implies that the interaction rate per ant be

constant and independent of group size. Indeed, the empirical rate of interaction during the

recruitment process was measured to be 0.82 ± 0.07 (mean ± sem, N = 44) interactions per

Fig 2. Unreliable communication and slow recruitment by desert ant(Cataglyphis niger). a. The experimental setup. The

recruiter ant (circled) returns to the nest’s entrance chamber (dark, 9cm diameter, disc) after finding the immobilized food

item (arrow). Group size is ten. b. A pdf of the number of interactions that an ant experiences before meeting the same ant

twice. The pdf is compared to uniform randomized interaction pattern. Data summarizes N = 671 interactions from seven

experiments with a group size of 6 ants. c. Interactions of stationary ants with moving ants were classified into three different

messages (‘a’ to ‘c’) depending on the moving ants’ speed. The noise at which messages were confused with each other was

estimated according to the response of the recipient, initially stationary, ants (see Materials and methods). Gray scale

indicates the estimated overlap between every two messages δ(i, j). Note δ = min(δ(i, j))� 0.3. Data collected overN = 278

interactions. d. The mean time it takes an ant that is informed about the food to recruit two nest-mates to exit the nest is

presented for two group size ranges. Error bars represent standard error of the means overN = 24 experiments.

https://doi.org/10.1371/journal.pcbi.1006195.g002
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minute per ant and induces a small increase with group size: 0.62 ± 0.13 for two ants (N = 8)

and 1 ± 0.2 for a group sizes of 9-10 (N = 5).

It has been shown that recruitment in Cataglyphis niger ants relies on rudimentary alerting

interactions [34, 35] which are subject to high levels of noise [32]. Moreover, the information

an ant passes in an interaction can be attributed solely to her speed before the interaction [32].

Binning ant speeds into three discrete messages and measuring the responses of stationary

ants to these messages, we can estimate the probabilities of one message to be mistakenly per-

ceived as another one (see Estimating δ in the Methods). We find that this communication is

extremely noisy which complies with the uniform-noise assumption with a δ of approximately

0.3 (Fig 2c). While artificially dividing the continuous speed signals into a large number of dis-

crete messages (thus creating a larger alphabet) would inevitably decrease δ, this is not sup-

ported by our empirical data (see Section Methods).

Finally, the interaction scheme, as exhibited by the ants, can be viewed somewhere in-

between the noisy-push and the noisy-pull models. Moving ants tend to initiate more interac-

tion [32] and this may resemble, at first glance, a noisy-push interaction scheme. However, the

ants’ interactions actually share characteristics with noisy-pull communication. Mainly, ants

cannot reliably distinguish an ant that attempts to transmit information from any other non-

communicating individual [32]. The fact that a receiver ant cannot be certain that a message

was indeed communicated to her coincides with the lack of reliability in information transmis-

sion in line with our theoretical assumptions (see more details on this point in the Section Sep-
aration between PUSH and PULL).

Given the coincidence between the communication patterns in this ant system and the

requirements of our lower bound we expect long delays before any uninformed ant can be rel-

atively certain that a recruitment process is occurring. We therefore measured the time it takes

an ant, that has been at the food source, to recruit the help of two nest-mates for different total

group size. One might have expected this time to be independent of the group size or even to

decrease as two ants constitute a smaller fraction of larger groups. To the contrary, we find

that the time until the second ant is recruited increases with group size (p< 0.05 Kolmogorov-

Smirnov test over N = 24 experiments, see Fig 2d).

Our theoretical results set a lower bound on the minimal time it takes uninformed ants to

be recruited. Note that our lower bounds actually correspond to the time until any individual

can be sure with more than 2/3 probability of the rumor. In the context of the ant recruitment

experiment this means that if an ant goes out of the nest only if she is sure with some probabil-

ity that there is a reason to exit, then the lower bounds correspond to the time until the first,

and similarly the second (see Fig 2d), ants exit the nest.

Our lower bound is linear in the group size (Theorem 1.1). Note that this does not imply

that the ants’ biological algorithm matches the lower bound and must be linear as well. Rather,

our theoretical results qualitatively predict that as group size grows, recruitment times must

eventually grow as well. This stands in agreement with Fig 2d. Thus, in this system, inherently

noisy interactions on the microscopic level have direct implications on group level

performance.

Overview of the main lower bound proof

Here, we provide the intuition for our main theoretical result, Theorem 1.1. For a formal proof

please refer to the S1 Text, The lower bounds. The proof can be broken into three parts and,

below, we refer to each of them separately.

Part I. From parallel-PULL to broadcast-PULL. Consider an efficient protocol P for

the parallel-PULL setting. The first part of the proof shows how P can be used to produce a

Limits on reliable information flows through stochastic populations
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protocol P 0 that operates in another model, called broadcast-PULL. In this latter model, at

each time step t 2 Nþ one agent is chosen u.a.r. and all agents observe it, receiving the same

noisy sample of its message. The running time of the resulting protocol P 0 will be n times the

running time of P. The construction of P 0 builds on the permissive assumptions we employ

regarding the power of computation of agents and their unique identities in {1, 2, . . .n}. In P 0,
agents divide time steps in the broadcast-PULL model into rounds, each composed of pre-

cisely n time steps. For an integer i, where 1� i� n, during the i-th step of each round, all

agents receive an observation, but n − 1 of them ignore it. Specifically, only agent (imod n)+1

keeps the observation. The agent will then wait until the end of the round to actually process

this observation according to P. This ensures that when a round is completed, each agent pro-

cesses precisely one independent uniform sample from the configuration of the previous

round, as it would in a round of the parallel-PULL model. This draws a precise injection from

rounds in broadcast-PULL and rounds in parallel-PULL. This construction implies that to

prove Theorem 1.1 it is enough to prove that there is no rumor spreading protocol in the

broadcast-PULL model that converges in less than Oð n2d

s2ð1� djSjÞ2
Þ rounds.

Part II. From broadcast-PULL to a statistical inference problem. To establish the

desired lower bound, we next show how the rumor spreading problem in the broadcast-

PULL model relates to a statistical inference test. That is, from the perspective of a given

agent, the rumor spreading problem can be understood as the following: Based on a sequence

of noisy observations, the agent should be able to tell whether the correct opinion is 0 or 1. We

formulate this problem as a specific task of distinguishing between two random processes, one

originated by running the protocol assuming the correct opinion is 0 and the other assuming

it is 1.

One of the main difficulties lies in the fact that these processes may have a memory. At dif-

ferent time steps, they do not necessarily consist of independent draws of a given random vari-

able. In other words, the probability distribution of an observation not only depends on the

correct opinion, on the initial configuration and on the underlying randomness used by

agents, but also on the previous noisy observation samples and (consequently) on the messages

agents themselves choose to display on that round. An intuitive version of this problem is the

task of distinguishing between two (multi-valued) biased coins, whose bias changes according

to the previous outcomes of tossing them (e.g., due to wear). See Fig 3 for an illustration.

Despite this apparent complexity, we show that the difficulty of this distinguishing task can

be captured by two scalar parameters, denoted ε and δ. Parameter δ lower bounds the proba-

bility for any observation to be attained (given any sequence of observations). Parameter ε cap-

tures the extent to which the processes are ‘similar’. More specifically, at round t, given a

sequence of previous observations, denoted x(<t), the next observation has the same probability

to be attained in each process, up to an ε additive term (see Fig 3). A crucial observation is that

ε is very small, precisely, ε = Θ(s(1 − δ|S|)/n). This follows from the fact that given x(<t), the

behavior of non-source agents in the two processes is the same, regardless of the value of the

correct opinion. Indeed, internally, an agent is only affected by its initial knowledge, the ran-

domness it uses, and the sequence of observations it sees. This means that at round t, the pro-

cesses would differ only if the agent to be observed on that round happens to be a source

(which happens with probability s/n) and, on top of that, the observed message is not changed

by noise (which accounts for the factor (1 − δ|S|)). However, a small value of ε is not enough

to ensure slow running time. Indeed, even though the t’th observation may be distributed

almost the same, if it happens that some observation can be attained only in one process, then

seeing such an observation would immediately allow the observer to distinguish the two pro-

cesses. A sufficiently large δ prevents the aforementioned scenario.

Limits on reliable information flows through stochastic populations
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Part III. A lower bound for the statistical test problem. The last step of the proof

shows that at least O(δ/ε2) samples are required in order to solve any distinguishing task with

parameters δ and ε. The proof involves notions from Statistical Hypothesis Testing such as

the Kullback-Leibler (KL) divergence (see, e.g., Chapter 5 in [36]). For example, generalizing

known results, we show that, if Pð�tÞ0 and Pð�tÞ1 are the two distributions of observations up

to time t, any distinguishing algorithm must satisfy that the error probability is at least

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KLðPð�tÞ0 ; Pð�tÞ1 Þ

q

(see Rumor Spreading and hypothesis testing, S1 Text). Hence, for the

probability of error to be small, the term KLðPð�tÞ0 ; Pð�tÞ1 Þmust be large. To calculate the KL-

divergence one often uses a tensorization lemma, but this could not be used in our case since

the observations in different rounds are not independent. Instead, we use the more general

Chain Rule identity (see [36]). This allows us to focus on the KL-divergence of every round

separately rather than of the whole sequence. In contrast to the fully independent case, we also

condition on the previous draws, on the randomness used by agents, and on the initial config-

uration. Finally, we obtain: KLðPð�tÞ0 ; Pð�tÞ1 Þ ¼ O tε2

d

� �
. This implies that the number of observa-

tions t needs to be of order δ/ε2 to make the error less than, say 1/3. This bound translates to a

Fig 3. Distinguishing between two types of coins. On the top there are two possible coins with slightly different distributions

for yielding a head (H) or a tail (T). (We depicted two possible outcomes but our model can account for more.) Given a

sequence of observations (corresponding to the random outcomes of coin tosses), the goal of the observer is to guess the coin

type being used (either 0 or 1). The wear induced by tossing the coins may, with time, change the probability that they land on

either heads or tails in a way that depends on the coin type as well as on the previous toss outcomes (observations). In

particular, notice that without a change in the probability of heads in our example we would not obtain a posterior probability

0.51 starting with a prior of 0.45 after six coin flips involving two heads. Pj(H(t) j observations) for j 2 {0, 1} denotes the

probability of Coin of type j to yieldH given the particular sequence of t observations. Here, this sequence isH, T, T,H, T, T.

At the beginning of the next round, i.e., the 7th round, |ε(t = 6)|1 measures how “far” the theH vs T distribution generated by

the worn down coin 1 is from the same distribution as generated by the worn down coin 2. More precisely, for the case

above, |ε(6)|1 = |P0(H j observations) − P1(H j observations)| + |P0(T j observations) − P1(T j observations)| = |0.51 − 0.43| +

|0.49 − 0.57| = 0.16. The parameter ε bounds all possible |ε(t)|1 from above.

https://doi.org/10.1371/journal.pcbi.1006195.g003
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lower bound of O(n2δ/(s2(1 − δ|S|)2)) steps for the broadcast-PULL model and hence a lower

bound of O(nδ/(s2(1 − δ|S|)2)) rounds for the parallel-PULL model.

Generalizations

Several of the assumptions discussed earlier for the parallel-PULL model were made for the

sake of simplicity of presentation. In fact, our results can be shown to hold under more general

conditions, that include: 1) different rate for sampling a source, and 2) a more relaxed noise

criterion. In addition, our theorems were stated with respect to the parallel-PULL model. In

this model, at every round, each agent samples a single agent u.a.r. In fact, for any integer k,

our analysis can be applied to the model in which, at every round, each agent observes k agents

chosen u.a.r. In this case, the lower bound would simply reduce by a factor of k. Our analysis

can also apply to a sequential variant, in which in each time step, two agents u and v are chosen

u.a.r from the population and u observes v. In this case, our lower bounds would multiply by a

factor of n, yielding, for example, a lower bound of O(n2) in the case where δ and s are con-

stants. Observe that the latter increase is not surprising as each round in the parallel-PULL
model consists of n observations, while the sequential model consists of only one observation

in each time step. See more details in the Supplementary Information.

Discussion

Exponential separation between PUSH and PULL
Our lower bounds on the parallel-PULL model (where agents observe other agents) should be

contrasted with known results in the parallel-PUSH model (this is the push equivalent to par-

allel-PULL model, where in each round each agent may or may not actively push a message to

another agent chosen u.a.r.). Although never proved, and although their combination is

known to achieve more power than each of them separately [16], researchers often view the

parallel-PULL and parallel-PUSH models as very similar on complete communication topol-

ogies. Our lower bound result, however, undermines this belief, proving that in the context of

noisy communication, there is an exponential separation between the two models. Indeed,

when the noise level is constant for instance, convergence (and in fact, a much stronger con-

vergence than we consider here) can be achieved in the parallel-PUSH using only logarithmic

number of rounds [20, 21], by a simple strategy composed of two stages. The first stage consists

of providing all agents with a guess about the source’s opinion, in such a way that ensures a

non-negligible bias toward the correct guess. The second stage then boosts this bias by pro-

gressively amplifying it. A crucial aspect in the first stage is that agents remain silent until a cer-

tain point in time that they start sending out messages. This prevents agents from starting to

spread information before they have sufficiently reliable knowledge and allows for a balanced

control of the rumor spread. More specifically, marking an edge corresponding to a message

received for the first time by an agent, the set of marked edges forms a spanning tree of low

depth, rooted at the source. The depth of such tree can be interpreted as the deterioration of

the message’s reliability. On the other hand, as shown here, in the parallel-PULL model, even

with the synchronization assumption, rumor spreading cannot be achieved in less than a linear

number of rounds.

Perhaps the main reason why these two models are often considered similar is that with an

extra bit in the message, a PUSH protocol can be approximated in the PULL model, by letting

this bit indicate whether the agent in the PUSH model was aiming to push its message. How-

ever, for such a strategy to work, this extra bit has to be reliable. Yet, in the noisy PULL
model, no bit is safe from noise, and hence, as we show, such an approximation cannot work.

In this sense, the extra power that the noisy PUSH model gains over the noisy PULL model,
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is that the very fact that one node attempts to communicate with another is reliable. This,

seemingly minor, difference carries significant consequences.

Strategies to overcome noise in biological systems

Communication in man-made computer networks is often based on reliable signals which are

typically transferred over highly defined structures. These allow for ultra-fast and highly reli-

able calculations. Biological networks are very different from this and often lack reliable mes-

saging, well defined connectivity patterns or both. Our theoretical results seem to suggest that,

under such circumstances, efficient spread of information would not be possible. Nevertheless,

many biological groups disseminate and share information, and, often, do so reliably. Next, we

discuss information sharing in biological systems within the general framework of our lower-

bounds.

The correctness of the lower bounds relies on two major assumptions: 1) stochastic inter-

actions, and 2) uniform noise. Communication during desert ant recruitment complies with

both these assumptions (see Fig 2b and 2c) and indeed the speed at which messages travel

through the group (see Fig 2d) is low. Below, we discuss several biological examples where

efficient rumor spreading is achieved. We expect that, in these examples, at least one of the

assumptions mentioned above should break adding some degree of reliability to the overall

communication. The group can then utilize this reliability and follow one of the strategies

mentioned in Section Theoretical results, in order to yield reliable collective performance.

We begin by discussing examples that violate the first assumption, namely, that of stochastic

interactions, and then discuss examples that violate the second assumption, namely, uniform

noise.

Stable connectivity as a means to overcome noise. Synaptic connectivity in the mamma-

lian brain is known to be highly noisy [37]. However, this cellular-level noise has little effect on

the global function of brains which are highly reliable. A major factor that allows this restora-

tion of reliability are the structural stability and redundancies that characterize brain connec-

tivity. It is well understood how such properties can allow for fast and efficient propagation of

electrical signals through large neuronal populations [1, 2].

Animal groups can also benefit from stable connectivity to enhance the reliability of rumor

spreading. An example comes from house-hunting rock ants [38]. When these ants commence

their move between nest sites, the information regarding the location of the target nest is held

by only a few scout ants, that then disseminate it to the entire colony. To communicate this

information, the ants engage in prolonged interactions which include the formation of stable

pairs that walk in tandem towards the target nest and frequently contact each other [39]. These

tandem run interactions allow for highly reliable communication and permit the follower ant

to lead a subsequent interaction such that the rumor can continue to spread efficiently. While

this redundancy of multiple interaction allows for the efficient flow of information, it comes at

the inevitable price of long interaction durations [40].

Non-uniform noise. When the physical structure of a group is not well defined, the

importance of reliable messaging schemes grows. In flocks of birds and schools of fish,

changes in the behavior of a single individual can be relayed across a series of local interac-

tions [41], and generate a response wave that travels across the entire group [3–5]. It has

been shown that information can travel faster in flocks that display a higher level of align-

ment [42]. Within the context of our analysis, as a group becomes more ordered it becomes

easier to distinguish a sudden directional change by an informed individual from the ran-

dom velocity fluctuations of uninformed birds. Besides a possibly reduced level of uniformity

in the interactions implied by the additional spatial structure, the reliability of information
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transfer violates the δ-uniform noise assumption and allows for fast and reliable directional

changes on the collective scale.

As noted above, push-type communication is another route which may potentially add suf-

ficient reliability to support rumor spreading. In this sense, what distinguishes push from pull

is the trait by which a non-message cannot be confused with a message. An example for the

usefulness of an active push behavior comes from alarm behavior in ants. A single ant sensing

danger can actively excrete discrete volatile alarm pheromones that are sensed by a large num-

ber of group members and elicit panic or attack responses [43, 44]. Conversely, no ant would

secrete these distinct pheromones unless she directly perceived danger or sensed the alarm sig-

nal. Therefore, when an ant senses an alarm pheromone the only possibility is that one of her

nest mates has sensed danger. As indicated by our theoretical lower bound, if alarm messages

would be confused with non-alarming messages then such fast and reliable information spread

would not be possible.

The difficulty of spreading information fast, as indicated by our theoretical results, is fur-

ther consistent with the fact that, even in fully-cooperative groups, such as ants or bees, an

animal that receives information from a conspecific will often not transfer it further before

obtaining its own independent first-hand knowledge [40, 45–48].

Finally, we note that given the aforementioned discussion, our insight regarding the diffi-

culty of functioning under uniform noise can serve an evolutionary explanation for the emer-

gence of new communication signals (e.g., alarming signal) that would be distinct from other

signals, and prevent confusion.

Methods

All experimental results presented in this manuscript are re-analyses of data obtained in Cata-
glyphis niger recruitment experiments [32]. In short, ants in the entrance chamber of an artifi-

cial nest were given access to a tethered food item just outside the nest’s entrance (Fig 2a). The

inability of the ants to retrieve the food induced a recruitment process [32].

The reaction of the ants to this manipulation was filmed and the locations, speeds and inter-

actions of all participating ants were extracted from the resulting videos.

Calculation of δ
To estimate the noise parameter δ we used interactions between ants moving at three different

speed ranges (measured in cm/sec), namely, ‘a’: 1-10, ‘b’: 10-20, and ‘c’: over 20 and “receiver”

ants. Only interactions in which the receiver ant was initially stationary were used as to ensure

that the state of these ants before the interaction is as similar as possible. The message alphabet

is then assumed to be S = {a, b, c}. The response of a stationary ant v to the interaction was

quantified in terms of her speed after the interaction.

An alphabet of three messages was used since the average responses of v to any two mes-

sages were significantly different (all p-values smaller than 0.01) justifying the fact that these

are not artificial divisions of a continuous speed signal into a large number of overlapping

messages. On the other hand, dividing the bins further (say, each bin divided into 2 equal

bins) yielded statistically indistinguishable responses from the receiver (all p-values larger than

0.11). Therefore, our current data best supports a three letter alphabet.

Assuming equal priors to all messages in S, and given specific speed of the receiver ant, v,
the probability that it was the result of a specific message i 2 S was calculated as pi(v) = p(v j
i)/∑k2S p(v j k), where p(v j j) is the probability of responding in speed v after “observing” j.
The probability δ(i, j) that message i was perceived as message j was then estimated as the
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weighted sum over the entire probability distribution measured as a response to j: δ(i, j) = ∑v
p(v j j) � pi(v). The parameter δ can then be calculated using δ = min{δ(i, j) j i, j 2 S}.
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