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Šibenik, Croatia - June 11 2018



Outline

▶ Introduction

▶ One Time pad - Stream Ciphers

▶ Block Ciphers - Operation Modes

▶ Hash function

▶ Symmetric Cryptanalysis: Foundation of Trust

▶ Differential (and Linear) Cryptanalysis

▶ New Directions



Symmetric Cryptography



Cryptography

▶ Cryptography : hiding/protecting information against

malicious adversaries.

▶ Main aims:

Confidentiality ⇒ usually with the help of a key

Authentication

Integrity

...
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Cryptography - Encryption

Symmetric encryption and Asymmetric encryption

Alice Bob

Charlie
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Symmetric Cryptography

        1.

2.
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Asymmetric Cryptography

Without needing a previous meeting:
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Asymmetric vs Symmetric Cryptography

Asymmetric:
• Advantage: No need of key exchange.
• Disadvantage: Computationally costly.

Symmetric:
• Disadvantage: Need of key exchange.
• Advantage: Performant, adapted to constrained

environments.

⇒ Use asymmetric for key exchange, and next use

symmetric!!.
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Security of Encryption Algorithms

Asymmetric (e.g. RSA) (no key exchange/computationally costly)

Security based on well-known hard mathematical

problems (e.g. factorization).

Symmetric (e.g. AES) (key exchange needed/efficient)

Ideal security defined by generic attacks.

Need of continuous security evaluation (cryptanalysis).
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Generic Attacks on Ciphers

▶ Security provided by an ideal cipher defined by the best

generic attack:

exhaustive search for the key in 2|K|.

▶ Recovering the key from a secure cipher must be

infeasible:

⇒ typical key sizes |K| = 128 to 256 bits.
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Cryptanalysis

In general:

A primitive is considered secure as long as no attack better

than generic attacks on it is found.

Cryptanalysis: looking for these other attacks.

(we will see more about this later)
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One Time Pad & Stream Ciphers



One Time Pad

▶ One Time Pad: provides perfect secrecy.

With a completly random key K
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⇒ all C are equally likely,

but needs a secret key as long as the message!!
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OTP with shorter keys?

Solution:

▶ From a shorter secret seed k, generate a “long”

sequence (keystream) indistinguishable from random

if we don’t have the seed k
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Stream Ciphers

In practice: the keystream is obtained from pseudo-random

generators.

Additive stream cipher:

gpseudo-random generator -
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K, IV = initialisation
mt

ciphertext
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Stream Ciphers

Initialisation, transition, extraction:

K, IV
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Ex: Combination generators

Device n

Device 2

Device 1

...

f

@
@
@

@
@@R

�
�
�

�
���

-
- S keystream

x1
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xn

where each xi has period Ti.
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eSTREAM project

After Nessie’s failure:

▶ Launched by European network ECRYPT 2005-08

▶ Conception of new dedicated stream ciphers

▶ 37 submitted algorithms

▶ 8 in final portfolio, only 6 unbroken now...

Seems difficult - how could it be easier? ⇒ Block ciphers
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Ex. Trivium (eSTREAM portfolio)

80 bit key and IV, 288 bit state [DC-P’06].
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Block Ciphers



Block ciphers

Message decomposed into blocks, each transformed by the

same function EK.

EK
- -

?

P C

K

EK is composed of a round transform repeated through

several similar rounds.
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Block ciphers - Two main families

▶ Feistel constructions:

▶ SPN constructions: transform the whole state:
• Substitution layer (S-boxes, non-linear)
• Permutation layer typically ⊕ and/or rotations.
• Subkey addition.
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Block ciphers

▶ Key schedule: generates subkeys for each round from

the secret key.

▶ A block cipher is a family of permutations parametrized

by the key.

What to do when:

▶ Longer messages than a block?

▶ Several messages?

⇒ Operation modes
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Operation Modes: ECB

▶ Problem: equal Ptxts generate equal Ctxts
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Operation Modes: CBC [EMST’76]

▶ Proven secure if the block cipher is secure and if the

key is changed after ≪ 2n/2 encryptions.
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Interlude: birthday paradox



Birthday Paradox

▶ ”In a room with 23 people, there is a 50% chance of

having two colliding dates of birthday”.

Intuitive explanation:

23 people ⇒ 23×22
2 pairs.

With 2n/2 elements we can build about 2n pairs (so we have

a good chance of finding a collision).
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Back to modes



CBC: Careful with Recommendations

Sweet-32 attack [BL’16], based on finding a collision in the

internal state:

For ciphers of 64 bits, we can find a collision in about 232

encrypted blocks, and recover the plaintext.

Possible because the security recommendations were not

respected.
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Operation Modes: CTR[DH’ 79]

▶ Proven secure if the block cipher is secure and if the

key is changed after ≪ 2n/2 encryptions (missing difference

attack otherwise [LS18]).
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AES



AES Competition and Winner

Launched by NIST to find a succesor of DES 97-00.

15 submissions, 1 winner: Rijndael [Daemen-Rijmen 97]

AES:

▶ SPN cipher.

▶ 10/12/14 rounds for 128/192/256-bit keys.

▶ Block of 128 bits.
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AES Round Function

Images from http://en.wikipedia.org/wiki/Advanced Encryption Standard
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Authenticated Encryption



AE

In order to provide confidentiality and authenticity:

▶ Authenticated encryption:

▶ Caesar competition finished this year.

▶ See next talk by Thomas Shrimpton
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Hash Functions



Cryptographic Hash Functions

H : {0, 1}∗ → {0, 1}ℓh

• Given a message of arbitrary length returns a short

’random-looking’ value of fixed length.
• Many applications: MAC’s (authentification), digital

signatures, integrity check of executables, pseudorandom

generation...
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Cryptographic Hash Functions

28/67



Hash Functions applications

Autentication:
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Hash Functions applications

Digital signature:

�
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Hash Functions applications

Verifying the integrity:
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Security requirements of hash functions

▶ Collision resistance

Finding two messages M and M′ so that

H(M) = H(M′) must be ”hard”.

▶ Second preimage resistance

Given a message M and H(M), finding another

message M′ so that H(M) = H(M′) must be ”hard”.

▶ Preimage resistance

Given a hash H, finding a message M so that

H(M) = H must be ”hard”.
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Security requirements of hash functions?

A strict definition of ”hard”:

▶ Collision resistance
• Generic attack needs 2ℓh/2 hash function calls ⇒

any attack requires at least as many hash function calls

as the generic attack.

▶ Second preimage resistance and preimage resistance
• Generic attack needs 2ℓh hash function calls ⇒

any attack requires at least as many hash function calls

as the generic attack.
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Why Preimage Resistance? Example
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Why Collision Resistance? Example
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Why 2nd Preimage Resistance? Example
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Iterative Hashing

▶ Difficulty to create algorithms with an arbitrary length

input: concept of iterative hashing.

▶ The message is split into blocks. Typically, an iterative

hash function can be defined by:

a compression function, that takes a chaining value and

a message block and generates a new chaining value.

an construction, that defines how to iterate the

applications of the compression function.
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Padding the message

▶ Cut the message in blocks of fixed length.

▶ If the length of the message is not a multiple of the

size of the block?
• we can not just complete it with zeroes:
• 00010 and 0001000 can produce a collision.

▶ Ex. of sound padding: Add ’1’ in the end, next add

’0’s until completing the block.

▶ Strengthened padding: includes the message length.
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Construction: Merkle-Damg̊ard [MD’79]

▶ Apply iteratively a compression function f

▶ Collision-resistance proof: if f is collision resistant,

then the hash function is collision resistant.

f f

M1 M2

IV f

Mk

fin.

H
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Construction: Sponge [Bertoni et al. 08]
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▶ Based on a permutation P .

▶ Sponge proof of indifferentiability: if P is a

random permutation, then the hash function is

indifferentiable from a random oracle.
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SHA-3 Competition

A NIST competition for looking for a hash standard

replacement of SHA-1.

▶ From 2008 to 2012.

▶ 64 initial submissions

▶ 1 winner: Keccak
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Keccak [Bertoni et al. 08]

• |State| = 1600 bits
• |M | = 1024 bits (256) or 512 bits(512).
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Keccak: Internal Permutation

24 rounds of θ, ρ, π, χ, ι:

Images from http://keccak.noekeon.org/Keccak-reference-3.0.pdf
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Cryptanalysis



Cryptanalysis: Foundation of Confidence

Any attack better than the generic one

is considered a “break”.

▶ Proofs on symmetric primitives need to make

unrealistic assumptions.

▶ We are often left with an empirical measure of the

security: cryptanalysis.
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Cryptanalysis

Studies the security of cryptographic primitives.

AKA: Trying to break the primitives, to find attacks:

Empirical measure of security.
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Cryptanalysis and Confidence

Security by knowledge and not by obscurity → only good

way to go.

▶ Primitives are known to the general public ⇒ their best

existing cryptanalysis should also be known,

▶ implying a great need for public cryptanalysis (the nice

guys).
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Current scenario

▶ Competitions (AES, SHA-3, eSTREAM, CAESAR).

▶ New needs: lightweight, FHE-friendly, easy-masking.

⇒ Many good proposals/candidates.

▶ How to choose?

▶ How to be ahead of possible weaknesses?

▶ How to keep on trusting the chosen ones?
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Cryptanalysis: Foundation of Confidence

When can we consider a primitive as secure?

• A primitive is secure as far as no attack on it is known.
• The more we analyze a primitive without finding any

weaknesses, the more reliable it is.

Design new attacks + improvement of existing ones:

▶ essential to keep on trusting the primitives,

▶ or to stop using the insecure ones!
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What can an attacker do?

We can consider the attacker to have access to:

▶ Known Ciphertexts (KPA)

▶ Known Plaintexts (KCA)

▶ Chosen Plaintexts (CPA)

▶ Chosen Ciphertexts (CCA)

▶ Adaptative-Chosen Plaintexts...(ACPA)

In general: we expect the primitives to resist attacks in the

strongest possible non trivial setting.
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On weakened versions

If no attack is found on a given cipher, what can we say

about its robustness, security margin?

The security of a cipher is not a 1-bit information:
• Round-reduced attacks.
• Analysis of components.

⇒ determine and adapt the security margin.
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Ex.: Advanced Encryption Standart

Winner: AES-128, 10 rounds.

▶ 1998: best internal attack: 6 rounds.

▶ 2001: new attack on 7 rounds.

▶ 2001 to 2018: more than 30 new attacks, improving

complexity.

▶ 2018: best known attack is still on 7 rounds. Best

complexity: 297 data, 299 time and 298 memory [DFJ12].

”The hard problem here is to break AES” (Anne Canteaut)
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On high complexities

When considering large keys, sometimes attacks breaking

the ciphers might have a very high complexity far from

practical e.g.. 2120 for a key of 128 bits.

Still dangerous because:
• Weak properties not expected by the designers.
• Experience shows us that attacks only get better.
• Other existing ciphers without the ”ugly”properties.
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On very high complexities

Attack complexity reduced by one or two bits regarding

generic attack:

▶ When determining the security margin: find the highest

number of rounds reached.

▶ Security redefinition when a new generic attack is found

(e.g. accelerated key search with bicliques [BKR 12]).
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On weaker scenarios

Key recovery, state recovery, plaintext recovery vs ...

Distinguishers are dangerous: e.g. to decide between only

two possible plaintexts.

Related-keys might be dangerous, depending on the use of

the cipher (if used in hash functions, these properties should

be known).
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On weaker scenarios

Collision, preimage, second-preimage vs ...

Distinguishers, compression function collisions, semi-free

start collisions... (might invalidate proof assumptions).

In general, most of the cases might be seen as non-expected

”ugly” properties. Better to consider other existing ciphers

without the ”ugly”properties.
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Cryptanalysis Warnings

Recommendations should be respected. For example:

▶ Flame [2012]: collisions on MD5[WFL2004].

▶ Attaque sur TLS[ABP..13]: Bias of RC4[FMS01].

▶ Sloth[BL16]: collisions on MD5[WLF2004].

Problems that were predicted !!
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Differential Cryptanalysis



Differential Cryptanalysis [BS’90]

Given an input difference between two plaintexts, some

output differences occur more often than others.

X
′

X
′′

Y
′

Y
′′

∆X ∆Y

EK

EK

Differential: input and output difference (∆X,∆Y ).

Differential probability:

PX,K[EK(X)⊕ EK(X +∆X) = ∆Y ] (vs 2−n).

Chosen Plaintext Attacks. Provides a distinguisher.
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Differential paths

▶ Differential path = configuration of differences in the

internal state through rounds.

▶ Each differential path has a probability of being verified.

▶ Easier to compute a priori: hypothesis of stochastic

equivalence: consider the rounds independent:

compute the differential probability of a path by

multiplying the probability of each round.

▶ The S-box DDT provides, for all α and β:

DDT [α, β] = #{x|S(x+ α) + S(x) = β

▶ DP of linear layer is 1.
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Differential path: example
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Differential Cryptanalysis [BS’90]

Probability of differential: sum of all the differential paths.

Hard to determine. Try to approximate by the highest

probability ones...

Many hypothesis: actually, rounds are not independent, for

some keys it (not always) behaves like a random key...

⇒ Importance of implementing attacks (or reduced-round

attacks) in order to verify theoretical assumptions.
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Last round attacks: key recovery

R-round differential(∆X,∆Y ) of high probability

⇓
attack R+ n rounds of the cipher.

1. Find many pairs with input difference ∆X.

2. Encrypt each of them for R+ n rounds of the cipher.

If the partial decryption of the last n rounds leads to a

difference ∆Y frequently enough, then the key bits involved

are the correct ones with high probability.
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Differential Cryptanalysis

Many improvements, related techniques:

▶ Truncated differentials

▶ Neutral bits

▶ Conditional differentials

▶ Impossible differentials

▶ Rebound attacks...
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Linear Cryptanalysis



Linear cryptanalysis [MY’92]

▶ The dual of differential cryptanalysis:

▶ Exploit the existence of (highly) biased affine relations

between some plaintext and ciphertext bits.

▶ This bias can be used to mount a distinguisher or even

to recover some keybits.
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Linear cryptanalysis [MY’92]

This expression

⊕
i∈Sp Pi ⊕

⊕
j∈SK Kj =

⊕
k∈SC Ck

is verified with high bias 2−ε:

Pb = 1
2(1± 2−ε),

with about 22ε data we can detect the bias. Known plaintext

attacks.
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Improvements Linear cryptanalysis

▶ Big number of (very) technical improvements.

▶ Many variants: last-round, multiple, multidimensional,

zero correlation,...

We are always looking at how to improve the complexities,

how to reach more rounds...
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Important/Future Directions



Important/Future Directions

▶ Permutaton-based primitives (sponge family)

▶ Lightweight primitives ⇒ new NIST competition

▶ New needs: FHE, masking..

▶ Post-quantum security?
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Conclusion



Conclusion

▶ Many new needs/ scenarios

▶ Cyptanalysis: new techniques, improvements, families.

A never ending task.

▶ Better safe than sorry!

▶ To be continued on Friday with Lightweight Primitives

and Cryptanalysis.
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