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of Distributed Graphs
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The Open University, Ra’anana, Israel
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Abstract. We study the problem of privacy-preserving planarity test-
ing of distributed graphs. The setting involves several parties that hold
private graphs on the same set of vertices, and an external mediator that
helps with performing the computations. Their goal is to test whether
the union of their private graphs is planar, but in doing so each party
wishes to deny from his peers any information on his own private edge
set beyond what is implied by the final output of the computation. We
present a privacy-preserving protocol for that purpose which is based
on the Hanani-Tutte Theorem. That theorem enables translating the
planarity question into the question of whether a specific system of lin-
ear equations over the field F2 is solvable. Our protocol uses a diverse
cryptographic toolkit which includes techniques such as homomorphic
encryption, oblivious Gaussian elimination, and private set intersection.
This is the first time that a solution to this problem is presented.

Keywords: secure multiparty computation · privacy-preserving distributed
computations · distributed graphs · graph planarity.

1 Introduction

A planar graph G = (V,E) is a graph that can be properly embedded in the
two-dimensional plane R2 in the following sense: there exists a bijection ϕ from
the vertex set V to R2 and a representation of each edge e = (u, v) ∈ E as a
continuous simple curve in R2 with ϕ(u) and ϕ(v) as its end points, such that
no two curves intersect apart possibly at their end points.

Planar graphs constitute an attractive family of graphs, both in theory and
in practice. In many applications where graph structures arise, it is needed to
test the planarity of those graphs. A classical example is in the area of inte-
grated circuit (IC) design. An IC consists of electronic modules and the wiring
interconnections between them. It can be represented by a graph in which the
vertices are the modules and the edges are the wires. An IC can be printed on
the surface of a chip iff the graph is planar, because wires must not cross each
other. Another setting in which planarity is a natural notion is in road maps. A
set of cities and interconnecting roads can be thought of as a graph; the graph
vertices are the cities while the edges are connecting roads. Such a map can be
constructed with non-crossing roads (in order to avoid constructing bridges or
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obstructing the traffic flow by stop lights) iff the corresponding graph is planar.
Apart from the above motivating examples, there are cases in which the pla-
narity of a graph can be exploited in order to simplify and expedite the solution
of some computational problems. Examples include sub-graph isomorphism [1],
maximal clique [2], and maximum cut [3].

In this study we consider a distributed version of the planarity testing prob-
lem. In that problem there are several parties, P1, . . . , Pd, each one holding a
private graph on the same set of vertices; namely, Pi has a graph Gi = (V,Ei)
where V is publicly known and shared by all, while Ei is private, 1 ≤ i ≤ d. They
wish to determine whether the union graph G = (V,E), where E =

⋃d
i=1Ei, is

planar or not. As the edge sets Ei, 1 ≤ i ≤ d, are private, the planarity testing
should be carried out in a privacy-preserving manner. Namely, after the conclu-
sion of the computational procedure Pi must not learn anything on Ej , j 6= i,
beyond what is implied by Gi and the planarity of G. For example, two (or more)
companies may wish to check the possibility of printing the ICs which implement
their products on the same chip. They prefer not to disclose to each other their
own IC design, before they are verified that they could collaborate in that man-
ner. The algorithmic solutions which we propose herein for privacy-preserving
planarity testing could be used in that application scenario.

The strict notion of perfect privacy-preservation is sometimes relaxed by al-
lowing some leakage of information, if such a relaxation enables a more efficient
computation and if the leakage of information is characterized (in order to de-
cide, in any given application setting, whether the gain in efficiency justifies the
reduction in privacy-preservation). There are many examples of studies that re-
lax perfect privacy in order to allow practical solutions, from various domains
such as distributed association rule mining [4, 5], anonymization of distributed
datasets [6–8], collaborative filtering [9, 10], distributed graph mining [11], and
distributed constraint optimization problems [12–14].

Well known characterizations for planar graphs were proposed by both Wag-
ner [15] and Kuratowski [16]. For example, the Wagner’s characterization states
that a graph is planar iff it does not have K5 (the complete graph over 5 ver-
tices) or K3,3 (the complete bipartite graph over 3 vertices in each part) as
a minor (see Figure 1). Namely, K5 or K3,3 cannot be obtained from G by a
sequence of these operations: contracting edges, deleting edges, and deleting iso-
lated vertices. However, directly applying either Wagner’s characterization, or
the closely-related Kuratowski’s characterization, in order to test the planarity
of a given graph, yields exponential-time algorithms [17].

Optimal linear time planarity testing algorithms were proposed in [18, 19].
These algorithms are iterative and use a DFS-subroutine [17]. Alas, those fea-
tures of these algorithms turn out to be significant obstacles when trying to de-
vise corresponding privacy-preserving variants of these algorithms. Thus, none
of the above-mentioned approaches seem to be adequate in order to base on
them an efficient privacy-preserving planarity testing protocol.

In this study we propose a privacy-preserving protocol for planarity testing
of distributed graphs, which is based on the Hanani-Tutte Theorem [20]. Our
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Fig. 1. The minors that cannot appear in a planar graph — K5 and K3,3.

protocol is based on the mediated model that was presented in [21]. In that
model, there exists an external mediator T to which the parties may export
some computations, but the mediator should not learn information on the private
inputs of the parties or the final output. We assume that all interacting parties
(P1, . . . , Pd and T ) are semi-honest. Namely, they follow the protocol correctly,
and do not form coalitions, but they try to extract from their view in the protocol
information on the private inputs of other parties. (All privacy-related studies
that we mentioned earlier also make similar assumptions.)

Due to page limitation and for the sake of clarity, we focus here on the case
d = 2. The extension to any d is deferred to the full journal version of this study.

The outline of this work is as follows. In Section 2 we provide the relevant
background on planarity testing, while in Section 3 we describe the main cryp-
tographic toolkit that we use in our solution. We overview our solution and the
two main stages of which it consists in Section 4. The subsequent Sections 5 and
6 include the detailed description and analysis of each of the two stages in our
solution. Finally, we conclude in Section 7.

2 Planarity testing using the Hanani-Tutte Theorem

In this section we state the Hanani-Tutte Theorem and then use it in order
to translate the planarity question of a graph to the solvability of a system of
linear equations over F2. To that end, we introduce the following definitions and
notations:
− If e ∈ E we let a(e) and b(e) denote the two vertices that e connects.
− A drawing D of a graph G = (V,E) is an embedding of G in R2. Namely,

it is a mapping ϕ : V → R2 together with a representation of each edge e ∈ E
as a continuous simple curve that connects ϕ(a(e)) and ϕ(b(e)).
− Two edges e, f ∈ E are called independent if {a(e), b(e)}∩{a(f), b(f)} = ∅.
− The set of all pairs of independent edges in E is denoted Eind2 .
− For a given drawing D of G and {e, f} ∈ Eind2 , parityD(e, f) is the parity

of the number of crossings between the curves representing e and f in D.
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Theorem [Hanani-Tutte]. A graph G is planar iff it has a drawing D in which

parityD(e, f) = 0 for all {e, f} ∈ Eind2 .

Let D be a drawing of G, e ∈ E, and v ∈ V \ {a(e), b(e)}. An (e, v)-move
consists of taking a small section of the curve that represents e in D and de-
forming it in a narrow tunnel to make it pass over v, while not passing over any
other vertex. The effect of an (e, v)-move in a drawing D is that parityD(e, f)
changes for all edges f that are adjacent to v, but it remains unchanged for all
other edges f (see Figure 2).

Fig. 2. An (e, v)-move. As a result, parityD(e, f) changes only for the four edges ad-
jacent to v (from 0 to 1). For all other edges f , parityD(e, f) remains unchanged (0).

A remarkable corollary of this theorem is a planarity testing algorithm. It
starts with an arbitrary drawing D of the input graph G, preferably a drawing
in which parityD(e, f) can be computed efficiently for every pair of independent
edges in G. Then, the algorithm tries to find another drawing D′, by making
a series of (e, v) moves, in which parityD′(e, f) = 0 for all {e, f} ∈ Eind2 . If it
succeeds, then the graph is planar, otherwise it is not (see [20, Lemma 3.3]).

The existence of D′ can be determined by considering the following system
of linear equations. Define for each e ∈ E and v ∈ V \ {a(e), b(e)} a Boolean
variable xe,v; that variable equals 1 iff the transition from D to D′ includes an
(e, v)-move. It follows that for any pair of independent edges {e, f} ∈ Eind2 ,

parityD′(e, f) = parityD(e, f) + xe,a(f) + xe,b(f) + xf,a(e) + xf,b(e) in F2 .

Hence, given the drawing D, there exists a drawing D′ in which parityD′(e, f) =
0 for all {e, f} ∈ Eind2 iff there exists a solution to the following system of linear
equations over F2:

parityD(e, f) + xe,a(f) + xe,b(f) + xf,a(e) + xf,b(e) = 0 {e, f} ∈ Eind2 . (1)

That is the Hanani-Tutte (HT hereinafter) system for the graph G = (V,E)
(with respect to the drawing D). It consists of |Eind2 | equations (one for each
pair of independent edges) in |E| · (|V | − 2) unknowns (xe,v for all e ∈ E and
v ∈ V \ {a(e), b(e)}). The graph G is planar iff that system is solvable.
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3 Cryptographic Toolkit

In this section we provide a birdseye view of the cryptographic primitives and
procedures that we shall be using later on.

3.1 Homomorphic encryption

An encryption function F is called (additively) homomorphic if the domain
of plaintexts is a commutative additive group, the domain of ciphertexts is a
commutative multiplicative group, and for every two plaintexts, m1 and m2,
F(m1 + m2) = F(m1) · F(m2). When the encryption function is randomized
(in the sense that F(m) depends on m as well as on a random string) then
F is called probabilistic. Homomorphic encryption functions allow performing
arithmetic computations in the ciphertext domain. The property of being prob-
abilistic is essential for getting semantic security.

There are many well known ciphers that are probabilistic and additively
homomorphic. A basic example of such a cipher over F2, which we use in our
protocol, is the Goldwasser-Micali cipher [22].

3.2 Deciding the solvability of an encrypted linear system

Nissim and Weinreb [23] presented a method for obliviously deciding whether
an encrypted system of linear equations is solvable or not. They considered a
setting that involves two parties – T and P . T holds an encrypted matrix F(M),
where M is a matrix of dimensions ka×kb, and an encrypted vector F(b), where
b is a column vector of dimension ka. Both M and b are over the field F = F2,
while F is an additively homomorphic encryption over that field, for which P
holds the private decryption key. Their protocol is Monte Carlo in the sense that
its output may be wrong. Specifically, at the conclusion of the protocol T gets
F(β) for some bit β. If the system Mx = b is not solvable then β will always be
zero. Otherwise, if the system is solvable, then β = 1 with probability at least c
for some positive constant c. Hence, by performing several independent runs of
the protocol, it is possible to decide the solvability of the system with an error
probability sufficiently small.

4 Overview of the proposed planarity testing protocol

Our planarity testing protocol has two stages. The first one consists of a prelim-
inary check of the size of the unified edge set E. It is outlined in Section 4.1, and
detailed in Section 5. The second stage includes the main protocol, in which the
HT system of equations for the unified graph is constructed obliviously, and then
its solvability is tested in a privacy-preserving manner. We provide a birdseye
view of that stage in Section 4.2, and dive into its details in Section 6.
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4.1 Testing the number of edges in the unified graph.

Let V = {v1, . . . , vn} denote the vertex set in the unified graph G = (V,E). A
well-known result (see e.g. [17]) states that G is planar only if

|E| = |E1 ∪ E2| ≤ 3n− 6 . (2)

Hence, in the first stage, the three parties, P1, P2 and T , engage in a secure
protocol for checking whether inequality (2) holds or not. If it does not, they
know that the unified graph G is not planar. If it does hold, they proceed to the
second stage in the verification (Section 4.2).

Running this stage is optional. On one hand, it leaks to the interacting par-
ties information on |E| beyond the required output about the planarity of G
(specifically, whether inequality (2) holds or not). On the other hand, it may
enable the parties to detect non-planarity without running the costly compu-
tation of the second stage. Hence, if in the relevant application scenario the
information regarding whether inequality (2) holds or not is deemed benign, it
is recommended to run this stage.

4.2 A privacy-preserving implementation of the Hanani-Tutte
planarity test.

The three parties P1, P2 and T construct the HT system of linear equations, Eq.
(1), for the unified graph G. Towards that end, they begin by constructing the
system of linear equations for the complete graph on V , denoted KV (i.e., KV

is the graph on V that has all
(
n
2

)
edges):

xe,a(f) + xe,b(f) + xf,a(e) + xf,b(e) = parityD(e, f) {e, f} ∈ Kind
2 ; (3)

here, Kind
2 is the set of all pairs of independent edges in KV . The number of

equations in that system is

NKV
:= |Kind

2 | =
1

2
·
(
n

2

)
·
(
n− 2

2

)
. (4)

This step can be constructed publicly with no privacy risks, since the vertex set
V is known to all, and KV is the complete graph on V . The main effort is in
letting the mediator T extract from the large system in Eq. (3) the subset of
equations in Eq. (1). To protect the unified graph data from T , he will get only
an encrypted version of the subset of linear equations corresponding to G. The
last part of the protocol is dedicated to determining whether that system has a
solution or not. The main difficulty here lies in the fact that no party actually
sees the relevant system of equations: only T holds that system, but he holds
an encryption of that system, where the corresponding decryption key is known
only to P1.

To allow this approach, we must start with some drawing of KV , which, in
turn, induces also a drawing of G. We consider the following embedding of V in
R2. If V = {v1, . . . , vn}, then vj is mapped into the point

vj 7→ ϕ(vj) := (cos(2πj/n), sin(2πj/n)) , 1 ≤ j ≤ n . (5)
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Namely, the vertices v1, . . . , vn are mapped to equi-distant points on the unit
circle, in a counter-clockwise order according to their index. The edge ei,j =
(vi, vj) is then represented by the straight line segment between ϕ(vi) and ϕ(vj).
Figure 3 illustrates that basic drawing for a graph over n = 6 vertices.

Fig. 3. Left: illustration of the embedding of n = 6 vertices, together with two con-
necting edges. Right: the corresponding drawing of KV and of G = (V,E) with
E = {e1,4, e1,5, e2,4, e2,6, e3,6, e5,6} (the six edges in E are marked by thicker lines).

Let us denote the above drawing of KV (and the corresponding drawing of G,
which is a sub-graph of KV ) by D. Consider now an arbitrary pair of independent
edges ei,j and ek,`; we may assume, without loss of generality, that i < j, k < `,
and i < k. Then it is easy to see that parityD(ei,j , ek,`) = 1 iff i < k < j < `.

The corresponding HT system (3) can be constructed publicly, by each of
P1, P2 and T , for this drawing D of the complete graph KV . As stated earlier,
the main problem will be to identify, among those NKV

equations, the |Eind2 |
equations that relate to pairs of edges e and f that are both in E. Then, the
graph G = (V,E) is planar iff that sub-system of |Eind2 | equations has a solution.
In Section 6 we provide the details of that computation.

5 First stage: Testing the size of the unified edge set

Let V2 := {(vi, vj) : 1 ≤ i < j ≤ n} denote the set of all possible
(
n
2

)
edges in G.

Since E = E1 ∪ E2, we infer that Ec = Ec1 ∩ Ec2, where for any subset A ⊆ V2,
Ac := V2 \ A denotes its complement within V2. Hence, by Eq. (2), the unified
graph G = (V,E) is planar only if

|Ec| = |Ec1 ∩ Ec2| ≥
(
n

2

)
− (3n− 6) . (6)

In order to verify the latter inequality it is possible to invoke any of the
multitude of protocols for private set intersection. The first such protocol was
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Protocol 1 Testing the size of the unified edge set

1: P1 and P2 select a large multiplicative group Z∗
p (p is prime) and a hash function

H whose range can be embedded in Z∗
p.

2: Ph selects a secret and random exponent 1 < αh < p− 1, h = 1, 2.
3: P1 sends to P2 a vector x1 of length

(
n
2

)
where, for each edge (vi, vj) ∈ Ec1, i < j,

x1 includes an entry of the form H(i, j)α1 , while the remaining
(
n
2

)
− |Ec1| entries

are randomly selected from Z∗
p. The order of x1’s entries is random.

4: P2 sends to P1 a vector x2 of length
(
n
2

)
where, for each edge (vi, vj) ∈ Ec2, i < j,

x2 includes an entry of the form H(i, j)α2 , while the remaining
(
n
2

)
− |Ec2| entries

are randomly selected from Z∗
p. The order of x2’s entries is random.

5: P1 sends to T the vector y2, where y2(i) = x2(i)α1 , 1 ≤ i ≤
(
n
2

)
.

6: P2 sends to T the vector y1, where y1(i) = x1(i)α2 , 1 ≤ i ≤
(
n
2

)
.

7: T compares the two received vectors and finds out the number z of matching entries
in them.

8: If z <
(
n
2

)
− (3n− 6), T notifies P1 and P2 that the union graph is not planar.

proposed in [24], and is based on the Diffie-Hellman protocol [25]. Protocol 1,
which we present below, is based on the private set intersection protocol of [24].

As a result of Steps 1-6, which are self-explanatory, T receives two vectors,
y1 and y2, each of which is of length

(
n
2

)
. The vector yh, h = 1, 2, includes

the hash of all edges in Ech, raised to the exponent α1α2, while the remaining(
n
2

)
−|Ech| entries are random elements in Z∗p. The number z of matching entries

in those two vectors (Step 7) satisfies z ≥ |Ec|, while with very high probability
z = |Ec|. Indeed, if (vi, vj) ∈ Ec1 ∩ Ec2 then both vectors y1 and y2 will include
an entry that equals H(i, j)α1α2 ; hence, those two entries will be identified by
T in Step 7 as matching entries and, consequently, T will increment the counter
z by 1. However, we note that T may wrongly increment the counter z due to
random false matchings. False matchings can occur if there are collusions in H,
namely, if there exist two pairs (i, j) and (i′, j′) such that H(i, j) = H(i′, j′), or
if P1 and P2 selected in Steps 3 and 4 random entries ξ1 and ξ2, respectively,
so that ξα1

2 = ξα2
1 . By selecting a secure hash function with a sufficiently large

range, the probability of such false matchings is negligible.

The security of Protocol 1 follows from the hardness of the Discrete Log
problem. The protocol entails O(n2) hash function evaluations and exponentia-
tions (for P1 and P2) and O(n2 log n) comparisons for T . The protocol has only
two rounds of communication in which O(n2 log p) bits are transmitted.

Protocol 1 reveals to T the size of E. If P1 and P2 wish to prevent T from
learning that information, they may modify Protocol 1 towards hiding that infor-
mation. They can choose an integer K > 0 and then select at random an integer
k ∈ [0,K]. Next, they will select 2K − k random and distinct elements from Z∗p:
ai, 1 ≤ i ≤ k, and bh,i, 1 ≤ i ≤ K−k, h = 1, 2. Then, P1 will add to y2 additional
K entries, at random locations, with the values a1, . . . , ak, b1,i, . . . , b1,K−k, while
P2 will add to y1 additional K entries, at random locations, with the values
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a1, . . . , ak, b2,i, . . . , b2,K−k. Given those modifications, T will recover in Step 7 a
value z that equals |Ec|+ k (with high probability).

Hence, the inequality that needs to be verified now is whether z <
(
n
2

)
−

(3n − 6) + k. In the latter inequality, T knows the left hand side (z) while P1

knows the right hand side, and the two parties need to verify the inequality
without disclosing to each other information on the compared values beyond
the information of whether the inequality holds or not. This is an instance of
the celebrated Yao’s millionaires’ problem [26]. By invoking any of the many
available protocols for solving that problem (e.g. [27]), the two parties may find
out securely whether |Ec| <

(
n
2

)
− (3n− 6).

Such a modification of Protocol 1 prevents T from getting |E|. Higher values
of K will imply higher levels of obfuscation, but at the same time also higher
communication and computational costs. As implied by [28, Lemma 4], if K >(
n
2

)
then the probability of T not learning anything on |E| from z is exactly

1 −
(
n
2

)
/(K + 1); in all other cases (namely, in probability

(
n
2

)
/(K + 1), T will

learn either a lower or an upper bound on |E|.

6 Second stage: Private planarity testing

Protocol 2 decides the planarity of the union graph G in a privacy-preserving
manner. It begins with P1 generating a key pair in a probabilistic additively
homomorphic cipher, F , over F2.

Next, the three parties execute a sub-protocol, called ConstructHTSys-
tem (Step 2). The purpose of that sub-protocol is to construct the HT system
for the union graph G, Eq. (1), in an oblivious manner. At the end of that
sub-protocol T will hold an (entry-wise) F-encryption of the coefficient matrix
of that system. (We note that T will actually get an “inflated” version of that
system, in the following sense: instead of an encryption of the HT system for
G, Eq. (1), he will hold an encryption of the larger HT system for the complete
graph KV , Eq. (3), where all equations that relate to pairs of edges that are not
in Eind2 are zeroed.)

Then (Step 3), P1 and T execute a sub-protocol, called DecideSolvability,
which decides the solvability of the encrypted system that was constructed in
the previous step. T holds the encryption of the coefficient matrix and the right
hand side vector for that system, while P1 holds the relevant decryption key.
The sub-protocol DecideSolvability decides the solvability of the system in a
privacy-preserving manner, that is – without decrypting the system. The Boolean
flag that DecideSolvability returns indicates the solvability of the system. If
it is true then the system is solvable and, consequently, the union graph G
is planar. Otherwise, if it is false, then, with high probability (which may be
tuned as desired), the system is not solvable and, hence, the union graph G is
not planar.

In the next sub-sections (Sections 6.1 and 6.2) we discuss the implementation
of the two main steps in Protocol 2.
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Protocol 2 Privacy preserving HT planarity testing

1: P1 generates a key pair in a probabilistic additively homomorphic cipher, F , over
F2. P1 notifies P2 and T of the public encryption key in F .

2: P1, P2 and T execute ConstructHTSystem. At its conclusion, T holds an F-
encryption of the HT system for the union graph, (re,f : {e, f} ∈ Kind

2 ).
3: P1 and T execute DecideSolvability(re,f : {e, f} ∈ Kind

2 ).
4: if DecideSolvability returns true then
5: Output ”The union graph is planar”.
6: else
7: Output ”The union graph is non-planar”.
8: end if

6.1 Constructing an F-encryption of the HT system

Here we discuss the sub-protocol ConstructHTSystem, which is implemented
in Protocol 3. Before starting to do so, we take a look at the HT systems for
G and for the complete graph KV . The HT system for the complete graph KV ,
with respect to the drawing D described in Section 4.2, is given in Eq. (3). All
parties can construct that system, since KV is a public graph. The HT system
for G, Eq. (1), which determines the planarity of G = (V,E), is a sub-system
(subset of equations) of (3). That sub-system includes only the equations relating
to pairs {e, f} ∈ Eind2 ⊂ Kind

2 (namely, pairs of independent edges {e, f} where
both e and f are in E).

Let V2 := {ei,j = (vi, vj) : 1 ≤ i < j ≤ n} denote the edge set in the full graph
KV (consisting of all possible pairs of vertices from V ). The set Kind

2 consists of
all pairs of independent edges in KV . Its size is NKV

(Eq. (4)), and it consists
of all pairs of edges {e = (vi, vj), f = (vk, v`)} where all four indices i, j, k, ` are
distinct (as the two edges are independent), and i < j, k < `, and i < k. Our
protocol, ConstructHTSystem, assumes that the set Kind

2 is ordered. We
assume hereinafter that it is ordered lexicographically by the 4-tuple (i, j, k, `).

For each edge e ∈ V2 and h ∈ {1, 2}, let αhe be the Boolean variable denoting
whether e ∈ Eh or not. Then, e ∈ E iff α1

e ∨ α2
e = 1. Consequently, the equation

that corresponds to the pair of independent edges {e, f} ∈ Kind
2 appears in the

HT system for G, Eq. (1), iff

χe,f := (α1
e ∨ α2

e) ∧ (α1
f ∨ α2

f ) = 1 . (7)

In the first part of ConstructHTSystem (Steps 1-2), T gets the F-encryption
of χe,f for all {e, f} ∈ Kind

2 , where χe,f is the Boolean flag indicating whether
{e, f} ∈ Eind2 (Eq. (7)), and F is the cipher that P1 selected in Step 1 of Protocol
2. Towards that end, we observe that

χe,f := (α1
e ∨ α2

e) ∧ (α1
f ∨ α2

f ) = (α1
e + α2

e − α1
e · α2

e) · (α1
f + α2

f − α1
f · α2

f ) . (8)

Hence, by opening the brackets on the right hand side of Eq. (8) and then
applying F on both sides of that equation, we get, using the homomorphism of
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F and simple algebra, that F(χe,f ) = A ·B−1, where

A = αα
2
f · βα

2
e · γ1+α

2
e·α

2
f · F(α2

e · α2
f ) , B = (α · β)α

2
e·α

2
f · γα

2
e+α

2
f , (9)

and
α := F(α1

e) , β := F(α1
f ) , γ := F(α1

e · α1
f ) . (10)

In view of the above derivations, P1 sends to P2 the three values α, β, and γ,
for each of the NKV

pairs {e, f} ∈ Kind
2 , where the triplets (α, β, γ) are ordered

by the lexicographical order over Kind
2 (Step 1). P2 can then use Eq. (9) in order

to compute A and B, for each such pair. Note that all powers of α, β and γ in Eq.
(9) are determined by Boolean variables owned by P2, while F(α2

e · α2
f ) can be

computed by P2 since he has the public encryption key of F . P2 then sends to T
a vector of length NKV

, in which each entry includes the value F(χe,f ) = A·B−1
for the relevant pair {e, f} ∈ Kind

2 (Step 2).

Protocol 3 ConstructHTSystem: Constructing an encryption of the HT
system

1: P1 sends to P2 the vector ((α, β, γ) : {e, f} ∈ Kind
2 ) (see Eq. (10)).

2: P2 sends to T the vector u := (F(χe,f ) : {e, f} ∈ Kind
2 ).

3: for all {e, f} ∈ Kind
2 , where e = ei,j , f = ek,`, i < j, k < ` and i < k do

4: T allocates a vector re,f of dimension N + 1 where N :=
(
n
2

)
· (n− 2).

5: T creates a bijection Φ : [N ]→ {(g, v) : g ∈ V2, v ∈ V \ {a(g), b(g)}}.
6: for i ∈ [N ] do
7: (g, v)← Φ(i).
8: if (g = e and v ∈ {a(f), b(f)}) or (g = f and v ∈ {a(e), b(e)}) then
9: re,f (i)← F(χe,f )

10: else
11: re,f (i)← F(0)
12: end if
13: end for
14: if i < k < j < ` then
15: re,f (N + 1)← F(χe,f )
16: else
17: re,f (N + 1)← F(0)
18: end if
19: end for

The goal of the main loop in Steps 3-19 is to let T construct an entry-wise
F-encryption of the HT system for G, Eq. (1). That system has |Eind2 | equations
over |E| · (n − 2) unknowns. It is a sub-system of the full system for KV , Eq.
(3), which has NKV

equations over N :=
(
n
2

)
· (n− 2) unknowns. The encrypted

system that T constructs in the loop in Steps 3-19 will be of the same dimensions
as the larger system for the full graph, but all rows in it that are not relevant
for G will be zeroed. T will remain oblivious to the rows in the full system that
he zeroes in this process. We proceed to explain how this is done.



12 G. Barshap and T. Tassa

Consider the augmented matrix that describes the HT system for KV , Eq.
(3). It hasNKV

rows, one for each pair {e, f} ∈ Kind
2 . Each row, re,f , is a Boolean

vector of length N + 1, where N =
(
n
2

)
· (n− 2), since it includes the coefficient

of each unknown variable (and there are N such variables, one for each coupling
of an edge and a non-adjacent vertex) plus the right hand side (parityD(e, f)).
In the linear equation corresponding to the pair {e, f}, the coefficients of all
variables are zero, except for four of those variables (see Eq. (3)). Hence, in
the inner loop in Steps 6-13, T goes over the first N entries of re,f ; in each
of the four entries that should equal 1, T places the value F(χe,f ) (those are
values that T got from P2 in Step 2), while in all the remaining ones he places
the value F(0) (those are encryptions that T can compute on his own since he
has the public encryption key of F). In the last position in re,f , corresponding
to the right hand side of the equation for the pair {e, f}, T places the value
F(χe,f ) in case the two edges intersect in the basic drawing D, while otherwise
he places the value F(0) (Steps 14-18). As a result, if χe,f = 0, T constructs an
encryption of the all-zero equation; but if χe,f = 1, T constructs an encryption
of the equation for the pair {e, f}, as in Eq. (3). In summary, T gets a system of
NKV

encrypted equations: |Eind2 | of those equations are an F-encryption of the
system (1), while the remaining ones are F-encryptions of the trivial equation
(the equation in which all coefficients and right hand side are zero).

6.2 Determining the solvability of an encrypted linear system

The sub-protocol DecideSolvability (Protocol 4) decides the solvability of a
system of NKV

linear equations over N =
(
n
2

)
· (n− 2) unknowns. Let M denote

the NKV
×N matrix of coefficients of that system, and b denote the right hand

side vector (an NKV
-dimensional column vector). The two parties that run the

sub-protocol are P1 and T . P1 holds the decryption key in F (see Step 1 in
Protocol 2) – a probabilistic additively homomorphic cipher over F2; T , on the
other hand, holds F(M) and F(b). DecideSolvability determines whether
the system Mx = b has a solution or not. It does so in a privacy-preserving
manner, i.e., without revealing to neither of the two parties information on the
underlying matrix M and right hand side b.

To do so, the two parties execute the protocol due to Nissim and Weinreb
[23] that we outlined in Section 3.2, which enables them to obliviously decide
whether an encrypted system of linear equations is solvable or not. We refer to
this protocol below by the name SolvabilityLinearSystem. The output of
Protocol SolvabilityLinearSystem is F(β), where β is a bit that indicates
the existence of a vector x for which Mx = b.

We recall that the basic protocol due to Nissim and Weinreb is a true-biased
Monte Carlo protocol. Namely, a true answer (i.e., the system is solvable) is
always correct, while a false answer may be wrong. We assume herein that the
procedure SolvabilityLinearSystem which is invoked in Step 1 of Protocol
4 executes the basic protocol due to Nissim and Weinreb a sufficient number of
times so that the probability of a false answer to be incorrect is reduced to below
some given desired threshold.
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Sub-protocol 4 DecideSolvability

1: T and P1 run Protocol SolvabilityLinearSystem with inputs F(M) and F(b).
The output F(β) goes to T .

2: T sends to P1 the value F(β).
3: P1 decrypts and recovers β.
4: if β = 1 then
5: return true
6: else
7: return false
8: end if

6.3 Privacy analysis

The potential leakages of information to any party is due to messages that he
receives from other parties. We proceed to discuss the security of each of the
steps in Protocol 2 that involves exchange of messages.

In Step 1 of Protocol 3 (which is invoked by Protocol 2), P2 receives from P1

information relating to E1. Specifically, for each pair of independent edges in KV ,
P2 receives the values α := F(α1

e), β := F(α1
f ), and γ := F(α1

e · α1
f ). However,

as that information is encrypted by F , P2 cannot extract information on E1,
assuming that the chosen cipher F is semantically secure (as is the case with
the Goldwasser-Micali cipher [22] which we propose to utilize here). Similarly
for Step 2 of Protocol 3 in which T receives information on E; as it is encrypted
by F , it is protected from T .

Finally, the security of Protocol 4 follows from the security of Solvability-
LinearSystem that was established in [23].

6.4 Computational and communication costs

We begin by assessing the computational and communication costs of the first
two steps in Protocol 3. The computational cost of Protocol 3 for P1 is 2

(
n
2

)
encryptions (for computing α and β for all edges in KV ), and, in addition, NKV

(Eq. (4)) encryptions, for computing γ for all pairs of edges in Kind
2 (Step 1).

The computational cost of Protocol 3 for P2 is dominated by the need to perform
NKV

encryptions (F(α2
e ·α2

f )) in order to compute A for for all pairs of edges in

Kind
2 . The remaining operations for computing A and B (see Eq. (9)) in Step 2

are only multiplications (note that all exponents in Eq. (9) are 0, 1, or 2). The
communication cost of Steps 1-2 in Protocol 3 is O(NKV

) bits.
The computational costs for T due to Protocol 3 are negligible, as it has to

perform no new encryptions, other than computing F(0) once. We note that the
value F(0) appears in many entries in the encrypted HT linear system of equa-
tions. However, the procedure SolvabilityLinearSystem, which is executed
in the next stage, is designed so that there is no need for T to generate here
independent encryptions F(0) for each such entry.

The main computational bottleneck is Protocol 4. Indeed, as the underlying
matrix has ka = NKV

= O(n4) rows and kb =
(
n
2

)
· (n−2) = O(n3) columns, the
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computational cost of running an oblivious Gaussian elimination on it is of order
O(ka · k2b ) = O(n10). Such a computational cost severely limits the applicability
of our protocol to very small graphs.

The main problem with Protocol 2 is that it runs the oblivious Gaussian
elimination over an encrypted matrix that has NKV

rows. We recall that the
actual system, Eq. (1), has only |Eind2 | equations. Since |E| ≤ 3n− 6, as verified
in the first stage, then |Eind2 | = O(n2). Hence, one goal is to reduce the number
of rows in the encrypted HT system from NKV

= O(n4) to the exact number
of relevant equations |Eind2 | = O(n2). Moreover, the number of columns in Eq.
(1) is |E| · (n − 2) ≤ (3n − 6) · (n − 2) = O(n2). Hence, another goal is to
reduce the number of columns (unknowns) from O(n3) to O(n2). If we achieve
both goals then the cost of the oblivious Gaussian elimination would reduce to
O(n6). While this time complexity still limits the scalability of the protocol,
it allows its execution on graphs with several hundreds of vertices. Such time
complexity renders our protocol viable for application settings such as the two
motivating examples that were considered in the introduction (IC design and
road networks).

6.5 Reducing the size of the HT system

In the master thesis [29] on which this study is based, we present a variant of
Protocol 2 that achieves the above mentioned goals of reducing the number of
rows and number of columns in the HT system. Due to space limitations, we only
outline the main ideas of that variant herein, and leave the detailed description
and analysis to the full version of this study.

The main difference from Protocol 2 is that P1 generates the encryption of
the HT system for the full graph KV , Eq. (3), and sends it to T . Then, T extracts
from that large system the sub-system for G, Eq. (1). Specifically, P1 performs
a similar computation to the one that T does in Steps 3-19 of Protocol 3, where
the only difference is that in Steps 9 and 15 P1 inserts the value F(1) (and
not F(χe,f ) as done in Protocol 3) in the relevant entries. Before sending the
encrypted matrix to T , P1 applies on its rows and columns random permutations,
which are selected jointly by P1 and P2 and are kept secret from T .

Recall that the matrix has ka = NKV
= O(n4) rows and kb+1 =

(
n
2

)
·(n−2)+

1 = O(n3) columns. By examining the structure of the matrix, see Eq. (3), each
of the ka rows has either four or five 1-entries, while the remaining entries are 0.
Hence, in the encrypted matrix that P1 sends to T , there will be O(n4) entries
that equal F(1) and O(n7) entries that equal F(0). P1 cannot re-use encryptions,
since it is necessary to prevent T from distinguishing between 0 and 1 entries. It
is possible to generate those O(n7) encrypted entries by performing only O(n3.5)
encryptions and relying on the homomorphic property of F (which implies that
F(0) · F(0) = F(0) and F(0) · F(1) = F(1)).

In order to enable T to detect which rows in the encrypted matrix need to
be discarded (since they relate to pairs of edges in Kind

2 \ Eind2 ), T generates a
key pair in a probabilistic additively homomorphic cipher, E , over F2. Then, P1

and P2 perform the computation in Steps 1-2 of Protocol 3 with E instead of
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F . Hence, P2 sends to T the vector u := (E(χe,f ) : {e, f} ∈ Kind
2 ), where the

entries are permuted in accord to the selected order of rows in the encrypted
matrix that P1 had sent earlier to T . Subsequently, T computes v := E−1(u)
and then he removes from the matrix all rows that correspond to 0-entries in
v. A similar procedure can be used to enable T to remove columns that are
irrelevant for the HT system for G. After performing those two reductions, T
gets an encryption of the system in Eq. (1). That is the system on which the
procedure DecideSolvability is applied.

Such a variant of Protocol 2 has a computational cost of O(n6). It has larger
communication costs than Protocol 2, as P1 needs to transfer to T O(n7) bits.
In addition, it enables T to infer |E| (as the final number of columns equals
|E| · (n − 2)). If the latter value is deemed sensitive, P1 and P2 can obfuscate
it by sending to T information that will result in keeping unnecessary columns,
i.e., columns relating to variables xe,v where e /∈ E. Such course of action will
increase the computational cost, but will prevent T from inferring |E|.

7 Conclusions

We introduced the problem of privacy-preserving planarity testing of distributed
graphs. We presented a protocol that solves this problem. Our protocol, based on
the Hanani–Tutte Theorem, protects the private edge sets of each of the parties,
under the assumption that the parties are semi-honest and do not collude.

In the full version of this study [29] we present an extension of our protocol to
any number of parties; we present in detail and analyze the more efficient variant
of Protocol 2, which we outlined in Section 6.5; and we show how our protocol
can be used in order to reduce the complexity of various privacy-preserving graph
computations, such as testing 3-colorability or testing outer-planarity.

This study raises the following problems for future research:
(a) Improving scalability, either by devising more efficient ways to test the

solvability of the HT system, or by designing a privacy-preserving version of
another planarity testing algorithm.

(b) Devising privacy-preserving protocols for solving graph problems, which
are known to have an efficient solution in cases where the underlying graph is
planar, e.g. the sub-graph isomorphism problem, or the maximal clique problem.

(c) Enhancing the resiliency of the protocol to coalitions, and to stronger
adversarial models (i.e., malicious parties).
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