D. Eppstein, Subgraph isomorphism in planar graphs and related problems, Journal of Graph Algorithms and Applications, vol.3, issue.3, pp.1-27, 1999.
DOI : 10.1142/9789812777638_0014

URL : http://arxiv.org/pdf/cs/9911003

C. H. Papadimitriou and M. Yannakakis, The clique problem for planar graphs, Information Processing Letters, vol.13, issue.4, pp.131-133, 1981.
DOI : 10.1016/0020-0190(81)90041-7

F. Hadlock, Finding a maximum cut of a planar graph in polynomial time, The SIAM Journal on Computing, vol.4, issue.3, pp.221-225, 1975.

M. Kantarcioglu and C. Clifton, Privacy-preserving distributed mining of association rules on horizontally partitioned data, IEEE Transactions on Knowledge and Data Engineering, vol.16, pp.1026-1037, 2004.
DOI : 10.1109/tkde.2004.45

URL : http://www.cerias.purdue.edu/ssl/techreports-ssl/2004-91.pdf

T. Tassa, Secure mining of association rules in horizontally distributed databases, Transactions on Knowledge and Data Engineering, vol.26, pp.970-983, 2014.
DOI : 10.1109/tkde.2013.41

URL : http://arxiv.org/pdf/1106.5113

W. Jiang and C. Clifton, A secure distributed framework for achieving k-anonymity, The VLDB Journal, vol.15, pp.316-333, 2006.
DOI : 10.1007/s00778-006-0008-z

T. Tassa and E. Gudes, Secure distributed computation of anonymized views of shared databases, Transactions on Database Systems, vol.37, 2012.

T. Tassa and D. Cohen, Anonymization of centralized and distributed social networks by sequential clustering, Transactions on Knowledge and Data Engineering, vol.25, pp.311-324, 2013.
DOI : 10.1109/tkde.2011.232

A. Jeckmans, Q. Tang, and P. Hartel, Privacy-preserving collaborative filtering based on horizontally partitioned dataset, CTS, pp.439-446, 2012.
DOI : 10.1109/cts.2012.6261088

E. Shmueli and T. Tassa, Secure multi-party protocols for item-based collaborative filtering, pp.89-97, 2017.
DOI : 10.1145/3109859.3109881

G. Asharov, F. Bonchi, D. García-soriano, and T. Tassa, Secure centrality computation over multiple networks, pp.957-966, 2017.
DOI : 10.1145/3038912.3052602

T. Grinshpoun and T. Tassa, A privacy-preserving algorithm for distributed constraint optimization, In: AAMAS, pp.909-916, 2014.

T. Léauté and B. Faltings, Protecting privacy through distributed computation in multi-agent decision making, Journal of Artificial Intelligence Research, vol.47, pp.649-695, 2013.

T. Tassa, T. Grinshpoun, and R. Zivan, Privacy preserving implementation of the max-sum algorithm and its variants, Journal of Artificial Intelligence Research, vol.59, pp.311-349, 2017.
DOI : 10.1613/jair.5504

URL : https://jair.org/index.php/jair/article/download/11068/26248

K. Wagner, ¨ Uber eine eigenschaft der ebenen komplexe, Mathematische Annalen, vol.114, pp.570-590, 1937.
DOI : 10.1007/bf01594196

K. Kuratowski, Sur leprobì eme des courbes gauches en topologie, Fundamenta Mathematicae, vol.15, pp.271-283, 1930.
DOI : 10.4064/fm-15-1-271-283

URL : https://www.impan.pl/shop/publication/transaction/download/product/92829?download.pdf

M. Patrignani, Handbook on graph drawing and visualization, pp.1-42, 2013.

J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, Journal of the ACM, vol.21, issue.4, pp.549-568, 1974.
DOI : 10.1145/321850.321852

URL : https://ecommons.cornell.edu/bitstream/1813/6011/1/73-165.pdf

J. M. Boyer and W. J. Myrvold, On the cutting edge: Simplified o(n) planarity by edge addition, Journal of Graph Algorithms and Applications, vol.8, issue.2, pp.241-273, 2004.

M. Schaefer, Toward a theory of planarity: Hanani-tutte and planarity variants, Journal of Graph Algorithms and Applications, vol.17, issue.4, pp.367-440, 2013.
DOI : 10.1007/978-3-642-36763-2_15

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-642-36763-2_15.pdf

J. Alwen, A. Shelat, and I. Visconti, Collusion-free protocols in the mediated model, pp.497-514, 2008.

S. Goldwasser and S. Micali, Probabilistic encryption and how to play mental poker keeping secret all partial information, STOC, pp.365-377, 1982.

K. Nissim and E. Weinreb, Communication efficient secure linear algebra, pp.522-541, 2006.
DOI : 10.1007/11681878_27

URL : https://link.springer.com/content/pdf/10.1007%2F11681878_27.pdf

C. A. Meadows, A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party, IEEE Symposium on Security and Privacy, pp.134-137, 1986.

W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions on Information Theory, vol.22, issue.6, pp.644-654, 1976.

A. C. Yao, Protocols for secure computations (extended abstract), In: FOCS, pp.160-164, 1982.
DOI : 10.1109/sfcs.1982.38

H. Lin and W. Tzeng, An efficient solution to the millionaires' problem based on homomorphic encryption, ACNS, pp.456-466, 2005.

T. Grinshpoun and T. Tassa, P-syncbb: A privacy preserving branch and bound DCOP algorithm, Journal of Artificial Intelligence Research, vol.57, pp.621-660, 2016.
DOI : 10.1613/jair.5322

URL : https://jair.org/index.php/jair/article/download/11036/26207

G. Barshap, Privacy-preserving planarity testing of distributed graphs, Department of Mathematics and Computer Science, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01954423