
HAL Id: hal-01955305
https://inria.hal.science/hal-01955305

Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On subspace trails cryptanalysis
Daniel Coggia

To cite this version:
Daniel Coggia. On subspace trails cryptanalysis. Cryptography and Security [cs.CR]. 2018. �hal-
01955305�

https://inria.hal.science/hal-01955305
https://hal.archives-ouvertes.fr

On subspace trails cryptanalysis

Daniel Coggia,

supervised by Anne Canteaut and Christina Boura

Inria Project Team SECRET

August 20, 2018

Summary

General context

Cryptography is about designing cryptosystems and cryptanalysis is about determining their security.

Among well-known cryptosystems, the Advanced Encryption Standard (AES) chosen as a standard

in 2001 [10] is probably the most widely used cryptographic primitive nowadays and determining

its security remains a central problem in cryptanalysis. As cryptanalytic techniques still emerge in

that goal, Grassi et al. presented at Eurocrypt 2017 [7] a new kind of distinguisher for a reduced

version of the AES. A distinguisher is an algorithm able to distinguish between the cipher and a

random oracle, which can be a first step in designing an attack against the cipher. This new kind

of distinguisher is based on the notion of subspace trails.

The research problem

The proof of the existence of the distinguisher given by Grassi et al. in [7] is quite tedious and

cumbersome while having a clear understanding of the distinguisher is crucial for determining its

true limits. The research problem adressed during this internship is to fully understand this proof

and to explore its possible extensions. All the details about the proof are presented in Section 1.

Sections 2, 3 and 4 present the possible extensions.

My contribution

Always in a tight working relationship with Anne Canteaut and Christina Boura, I proved the

properties behind Grassi’s distinguisher in the most concise way and in the most general design

I could. From the better understanding and intuition I got, I explored ways of improving the

distinguisher on the AES and on another cipher with a similar design, Midori [2].

Arguments supporting its validity

The best evidence that the first part of my work (the rewriting of a proof in Section 1) is a good

improvement is that I provide in this report a two-page-long proof general enough for embracing

all the cases proved by Grassi et al. in ten pages of [7]. Moreover, my proof works without a rather

1

strong hypothesis used by Grassi et al. in [7]. The second part of my work, exploring possible

improvements of the distinguisher, mostly led me to understanding the main papers on similar

subjects and I have produced C programs running all the algorithms I present in this report.

Summary and future work

The distinguisher published by Grassi et al. is first presented and studied in Section 1. We will

then see that this distinguisher is based on two properties verified by the AES.

1. The AES exhibits two-round subspace trails (defined in Definition 11).

2. The function f(p0, p1) = R(p0) + R(p1) — where R is the round function — restricted to

pairs of inputs (p0, p1) such that p0 + p1 belongs to a certain linear subspace is constant over

well-defined equivalence classes.

Section 1 shows that the second property, unefficiently proved in [7], can be generalized to other

ciphers. We give an example of this fact by applying the distinguisher to another cipher with similar

design, Midori [2], in Section 3. However, Section 2 explains that for the AES, this generalisation

is not helpful for improving the initial distinguisher presented by Grassi et al. in [7] because the

subspace trails from the first property are optimal in some sense. Finally, Section 4 studies the

influences of the components of an AES-like cipher on the existence of subspace trails.

The main problems left open by this report are whether it is possible to find general criteria on

those components to avoid subspace trails and whether subspace trails can lead to other kinds of

attacks, for example by finding a result better than the second property above. I will personnally

continue to work on this subject as a PhD student under the supervision of Anne Canteaut and

Christina Boura.

2

Contents

1 Starting point : Grassi’s distinguisher 3

1.1 Context . 4

1.1.1 Description of the AES . 4

1.1.2 First definitions . 4

1.1.3 The five-round distinguisher . 5

1.2 A better proof . 6

1.3 The influence of the branch number . 9

1.4 A more general proof . 10

2 Study for more rounds 12

2.1 Linear structures in the AES S-box . 12

2.2 Searching for other subspace trails . 13

3 Adapting to Midori 15

3.1 Description of Midori . 15

3.2 Distinguisher on Midori . 16

4 A broader study of subspace trails 16

4.1 Linear structures and subspace trails . 17

4.1.1 Length of the longest subspace trails . 17

4.1.2 Candidate for the longest subspace trail . 17

4.1.3 Infinite trails . 18

4.2 Focus on the linear layer of Midori . 18

5 Conclusion 19

A Proofs of Section 1.4 21

B Algorithms 22

1 Starting point : Grassi’s distinguisher

In [7], Grassi, Rechberger and Rønjom present a structural property of the 5-round AES leading

to a distinguisher on the same number of rounds. The existence of this property strongly relies on

Lemma 2 in [7] which is proved in a very ineffective way. The aim of this section is to give a better

proof of this lemma in order to get a better understanding of the phenomenon that leads to the

property.

Section 1.1 presents some important definitions and properties initially presented in [6] and [7].

Section 1.2 gives a better proof for Lemma 2 of [7] in the case of the AES. Finally, Section 1.4

proves a very similar result for a more general cipher.

3

1.1 Context

1.1.1 Description of the AES

The Advanced Encryption Standard [10] is a Substitution-Permutation network on 128-bit plaintexts.

The master-key size can be 128, 192 or 256 bits and the round-key size is 128 bits. The number of

rounds Nr is respectively 10, 12 or 14. The internal state is represented as a 4× 4 matrix over the

field F28 called the state array. An AES round R is the composition K ◦ L ◦ S where :

• S is the SubBytes operation applying the same invertible S-box to each F28-entry of the state

array.

• L = MC ◦ SR is the linear layer. SR is a cyclic shift of each row to the left and MC is the

left multiplication of the state array by a constant 4 × 4 matrix over F28 denoted MMC and

defined by

MMC =


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 .

• K is the AddRoundKey operation adding to the state array a 128-bit round-key derived from

the master key.

1.1.2 First definitions

Let d be the degree of the extension over F2 on which the S-box operates and K = F2d . For the

AES, d = 8. Let (ei,j)i,j∈J0,3K be the canonical basis of M4(K).

j

↓

ei,j =

 0 · · · 0
... 1

...

0 · · · 0

 ← i

As in [7], we define the following subspaces of M4(K) for i ∈ J0, 3K, with indices computed

modulo 4.

The column spaces : Ci = vectK(e0,i, e1,i, e2,i, e3,i),

The diagonal spaces : Di = vectK(e0,i, e1,i+1, e2,i+2, e3,i+3) = SR−1(Ci),
The anti-diagonal spaces : IDi = vectK(e0,i, e1,i−1, e2,i−2, e3,i−3) = SR(Ci),
The mixed spaces : Mi = MC(IDi).

For example, if x1, x2, x3, x4 ∈ K,
x1 0 0 0

x2 0 0 0

x3 0 0 0

x4 0 0 0

 ∈ C0,


x1 0 0 0

0 x2 0 0

0 0 x3 0

0 0 0 x4

 ∈ D0,


x1 0 0 0

0 0 0 x2

0 0 x3 0

0 x4 0 0

 ∈ ID0,

4


2 · x1 x2 x3 3 · x4

x1 x2 3 · x3 2 · x4

x1 3 · x2 2 · x3 x4

3 · x1 2 · x2 x3 x4

 ∈M0.

If I ⊆ J0, 3K, we then define :

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.

Now that we have vector subspaces of M4(K), we define their cosets as affine subspaces of

M4(K). More precisely, a coset of the vector subspace V ⊆ M4(K) is a set of the form V + a =

{v + a | v ∈ V } where a ∈M4(K).

Here comes the definition of the differential branch number. Understanding this definition will

not be crucial for the rest of this section but we will make reference to it later.

Definition 1 (Differential branch number [4]). Let N ∈ N?, M : KN → KN be a F2-linear function.

The differential branch number of M over KN with respect to K is

min
x∈KN\{0}

(wt(x) + wt(Mx))

where wt(x) = |{i ∈ J0, N − 1K | xi 6= 0}| if x = (x0, . . . , xN−1) ∈ KN .

For example, the AES MixColumns MC has branch number 5.

1.1.3 The five-round distinguisher

We now describe the distinguisher presented in [7] in order to have a complete understanding of

the context in which lies our contribution. We begin with this easy to verify lemma.

Lemma 1 ([6]). Let I ⊆ J0, 3K and a1, a2, a3 ∈M4(K). There exist b1, b2, b3 ∈M4(K) such that

• R(DI + a1) = CI + b1;

• R(CI + a2) =MI + b2;

• R2(DI + a3) =MI + b3.

Now comes a more subtle lemma which is the keystone of Theorem 1. For any set E , we denote

by P2(E) the set of pairs of elements from E , {{a, b} | a, b ∈ E}.

Lemma 2 ([7]). Let a ∈M4(K), i ∈ J0, 3K, J ⊆ J0, 3K. We define

n = #{ {p0, p1} ∈ P2(Mi + a) | R(p0) +R(p1) ∈ DJ}.

Then n ≡ 0 mod 8.

Lemma 2 has a five-page-long proof in Section 6 of [7]. Section 1.2 gives an alternative proof of

this result.

5

Theorem 1 ([7]). Let a ∈M4(K), i ∈ J0, 3K, J ⊆ J0, 3K. We define

n = #{ {p0, p1} ∈ P2(Di + a) | R5(p0) +R5(p1) ∈MJ}.

Then n ≡ 0 mod 8.

Proof. We know by Lemma 1 that there exists b ∈M4(K) such that R2 is bijective rom Di + a to

Mi + b. Moreover, Lemma 2 asserts that the number of pairs of state arrays from Mi + b whose

respective images after one round belong to the same coset of DJ is a multiple of 8, i.e.

#{ {p0, p1} ∈ P2(Mi + b) | R(p0) +R(p1) ∈ DJ} ≡ 0 mod 8.

Hence with our first observation,

#{ {p0, p1} ∈ P2(Di + a) | R3(p0) +R3(p1) ∈ DJ} ≡ 0 mod 8.

Again by Lemma 1, we know that the images by R2 of two state arrays from the same coset of DJ ,

for example R3(p0) and R3(p1) if {p0, p1} ∈ P2(Di + a), always belong to the same coset of MJ .

Finally,

#{ {p0, p1} ∈ P2(Di + a) | R5(p0) +R5(p1) ∈MJ} ≡ 0 mod 8.

Theorem 1 directly provides a distinguisher for five rounds of the AES independent of the secret

key. Indeed, given an oracle simulating either five rounds of the AES, either a random permutation,

one can compute the number n from Theorem 1 with only the 232 plaintexts belonging to the same

coset of Di . This distinguisher is fully described in [7] and we provide an implementation in [1].

1.2 A better proof

Now that the context of Lemma 2 in [7] (Lemma 2 here) is clear, we provide in this section a proof

of this lemma which is no more than a much more concise version of the five-page-long proof given

in [7]. This proof is in fact a formal proof of the generalisation of Lemma 2 in [7] only sketched in

Appendix A in [7] through five other pages. Let us begin with two custom definitions.

In the following, we fix a ∈ M4(K), I ⊆ J0, 3K and J ⊆ J0, 3K. Here it might help to remind

that

IDI = vectK(ek,i−k | k ∈ J0, 3K, i ∈ I) = vectK(ei−k,k | k ∈ J0, 3K, i ∈ I),

MI = MC(IDI) = vectK(MC(ei−k,k) | k ∈ J0, 3K, i ∈ I).

Definition 2. Let {p0, p1} be a pair of state arrays from MI + a. There exists a unique pair

x ∈ K|I|×4 and y ∈ K|I|×4 such that

p0 =

3∑
k=0

∑
i∈I

xi,kMC(ei−k,k) + a and p1 =

3∑
k=0

∑
i∈I

yi,kMC(ei−k,k) + a.

We then define the information set K of the pair {p0, p1} as {k ∈ J0, 3K | ∃i ∈ I : xi,k 6= yi,k}.

Definition 3. Let P = {p0, p1}, Q = {q0, q1} ∈ P2(MI + a). We say that P ∼ Q if :

6

• K is the information set of P ⇒ K is the information set of Q.

• ∀k ∈ K,∃b ∈ {0, 1} : ∀i ∈ I, q0
i,k = pbi,k and q1

i,k = p1−b
i,k .

∼ is an equivalence relation on P2(MI + a) and we denote

Π : P2(MI + a) −→ P2(MI + a)
/
∼

the canonical surjection.

Proposition 1. Let C be an equivalence class with information set K. The cardinality of C is

#C = 2|K|−1+d|I|(4−|K|).

It is always a multiple of 8.

Proof. Since for a given pair {p0, p1} with information set K, we have that ∀k 6∈ K,∀i ∈ I, p0
i,k =

p1
i,k, we have (2d)|I|×(4−|K|) choices for the shared coordinates in a pair of C. Those coordinates

fixed, we have to make for all k ∈ K the choice b = 0 or b = 1, i.e. 2|K| choices. Since we are

counting pairs and not tuples, we have 2|K|−1+d|I|(4−|K|) pairs in C.

|K| − 1 + d|I|(4− |K|) is minimal for |K| = 4. Hence #C ≡ 0 mod 8.

Now that we have the right definitions, we can state and prove a key lemma before proving a

generalised version of Lemma 2.

Lemma 3. The function

f : P2(MI + a) −→ M4(K)

{p0, p1} 7−→ R(p0) +R(p1)

is constant over the equivalence classes for ∼.

Proof. Let P = {p0, p1}, Q = {q0, q1} ∈ P2(MI + a) such that P ∼ Q. We write as in Definition 2

p0 =
3∑

k=0

∑
i∈I

p0
i,kMC(ei−k,k) + a and p1 =

3∑
k=0

∑
i∈I

p1
i,kMC(ei−k,k) + a.

We also write the MixColumns matrix MMC = (m`,k)(`,k)∈J0,3K2 . Hence

p0 =
∑
k,`

∑
i∈I

p0
i,km`,i−ke`,k + a =

∑
k,`

(∑
i∈I

p0
i,km`,i−k + a`,k

)
e`,k.

Then S(p0) =
∑

k,` S-box
(∑

i∈I p
0
i,km`,i−k + a`,k

)
e`,k and

S(p0) + S(p1) =
∑
k,`

[
S-box

(∑
i∈I

p0
i,km`,i−k + a`,k

)
+ S-box

(∑
i∈I

p1
i,km`,i−k + a`,k

)]
e`,k (1)

7

It is now clear with Definition 3 and Equation (1) that S(p0) + S(p1) and S(q0) + S(q1) are

equal in M4(K). Indeed, with K the information set of P and Q,

S(q0) + S(q1) =
∑
k,`

[
S-box

(∑
i∈I

q0
i,km`,i−k + a`,k

)
+ S-box

(∑
i∈I

q1
i,km`,i−k + a`,k

)]
e`,k

=
∑

k∈K,`∈J0,3K

[
S-box

(∑
i∈I

q0
i,km`,i−k + a`,k

)
+ S-box

(∑
i∈I

q1
i,km`,i−k + a`,k

)]
e`,k

=
∑

k∈K,`∈J0,3K

[
S-box

(∑
i∈I

q
b(k)
i,k m`,i−k + a`,k

)
+ S-box

(∑
i∈I

q
1−b(k)
i,k m`,i−k + a`,k

)]
e`,k

=
∑

k∈K,`∈J0,3K

[
S-box

(∑
i∈I

p0
i,km`,i−k + a`,k

)
+ S-box

(∑
i∈I

p1
i,km`,i−k + a`,k

)]
e`,k

= S(p0) + S(p1)

Therefore,

f(P) = R(p0) +R(p1)

= K ◦ L ◦ S(p0) +K ◦ L ◦ S(p1)

= L(S(p0) + S(p1)) by characteristic 2 and linearity of L;

= L(S(q0) + S(q1)) by our previous observation;

= f(Q).

Now comes Lemma 4, which generalizes Lemma 2 in the sense that we are not restricted to the

case |I| = 1 as in Lemma 2.

Lemma 4. If n = #{ {p0, p1} ∈ P2(MI + a) | R(p0) +R(p1) ∈ DJ}, then n ≡ 0 mod 8.

Proof. The function f from Lemma 3 is constant on the equivalence classes of P2(MI + a). This

justifies the existence of a function f̃ : P2(MI + a)
/
∼ →M4(K) such that f = f̃ ◦ Π. Since the

equivalence classes form a partition of P2(MI + a), we have that

n = #f−1(DJ)

=
∑

C∈P2(MI+a)
/
∼

#(f−1(DJ) ∩ C)

=
∑

C∈P2(MI+a)
/
∼

1f̃(C)∈DJ
#C

≡ 0 mod 8 since from Proposition 1 all equivalence classes have a cardinality divisible by 8.

8

1.3 The influence of the branch number

In [7], the proof of Lemma 2 (also Lemma 2 here) uses the fact that the differential branch number

of MC denoted by b is 5 but as we have seen, the branch number b does not seem to be of any

importance for this lemma. However, it does have some influence and to show this, we begin with

this proposition from [6].

Proposition 2 ([6]). Let I, J ⊆ J0, 3K and b be the differential branch number of MC. Then

|I|+ |J | < b ⇒ DI ∩MJ = {0} and IDI ∩MJ = {0}.

Proof. Let u ∈ DI ∩MJ . There exists x ∈ M4(K) such that its nonzero entries are on the rows

indexed by I and such that:

u =
3∑

k=0

∑
i∈I

xi,kek,i+k.

There also exists y ∈ M4(K) such that its nonzero entries are on the rows indexed by J and such

that:

u =
3∑
`=0

∑
j∈J

yi,`MC(e`,j−`).

On column c ∈ J0, 3K we get∑
i∈I

xi,c−iec−i,c +
∑
j∈J

yj,j−cMC(ej−c,c) = 0.

We can write this equation as

(
MMC

∣∣∣ I4

)
×



yc,0
...

yc+3,3

xc,0
...

xc−3,3


= 0

where yc+`,` = 0 if c + ` 6∈ J and xc−`,` = 0 if c − ` 6∈ I. Hence, since |I| + |J | < b, the K-vector

on the right has weight at most b − 1. Moreover,
(
MMC

∣∣ I4

)
is a parity-check matrix for

the code C⊥MC whose minimal distance is b by definition of the differential branch number. Hence,

x = y = 0, u = 0 and finally, DI ∩MJ = {0}.
The proof for IDI ∩MJ = {0} is very similar.

Now, if we go back to the proof of Lemma 4, we have:

n =
∑

C∈P2(MI+a)
/
∼

1f̃(C)∈DJ
#C

=

4∑
h=0

∑
C:|K(C)|=h

1f̃(C)∈DJ
#C

9

Let C be such that its information set K(C) has size h < b− 1− |J |. If {p0, p1} ∈ C, it is clear that

p0 + p1 =
3∑

k=0

∑
i∈I

(xi,k + yi,k)MC(ei−k,k) ∈ CK(C).

After one round, by Lemma 1, R(p0) + R(p1) ∈ MK(C). Since p0 6= p1 and by Proposition 2

MK(C) ∩ DJ = {0} then R(p0) +R(p1) 6∈ DJ and we finally have that 1f̃(C)∈DJ
= 0.

We can then express the influence of the branch number on n with the formula

n =
4∑

h=b−|J |

∑
C:|K(C)|=h

1f̃(C)∈DJ
#C.

1.4 A more general proof

This section is very similar to Section 1.2. It aims to state a more general version of Lemma 2 for

a more general SPN cipher than the AES. We fix N ∈ N?. The proofs, very similar to the ones of

Section 1.2 can be found in appendix A.

Our general SPN cipher is composed of an arbitrary number of rounds, the round keys and the

internal states are represented as vectors in KN , not as matrices. A round R is the composition

K ◦ L ◦ S where :

• S is the SubBytes operation applying the same invertible S-box : K→ K to each coordinate

of the internal state in a certain basis (fi)i∈J0,N−1K of KN . It is important to notice that we

define S and (fi)i∈J0,N−1K together.

• L is the linear layer, a bijective K-linear map of KN .

• K is the AddRoundKey operation adding to the internal state a round-key of same size.

Definition 4. Let V be a subspace of KN . We say that V is compatible with S if it has a basis

such that its elements written in the basis (fi)i∈J0,N−1K of KN form a block-diagonal matrix of any

size blocks. More formally, V is compatible with S if there exists h ∈ J1, NK such that :

∃(i0, . . . , ih−1) ∈ Nh :

h−1∑
k=0

ik = dimV,

∃(j0, . . . , jh) ∈ Nh+1 : j0 = 0 and jh ≤ N,
∃(gk,i)k<h,i<ik ∈ (KN)dimV : V = vectK(gk,i | k < h, i < ik),

and ∃(λk,`,i) ∈ K3N : ∀k ∈ J0, h− 1K, ∀i ∈ J0, ik − 1K, gk,i =

jk+1−jk−1∑
`=0

λk,`,ifjk+`.

We call such a basis of V a compatibility basis. Written as a collection of column vectors written

in the basis f , the compatibility basis looks like this :

10



∗ · · · ∗
... λ0,`,i

... 0 0

∗ · · · ∗
∗ · · · ∗

0
... λk,`,i

... 0

∗ · · · ∗
∗ · · · ∗

0 0
... λh−1,`,i

...

∗ · · · ∗
0 0 0



← j0 + `

← jk + `

← jh−1 + `

↑ ↑ ↑
g0,i gk,i gh−1,i

i < i0 i < ik i < ih−1

Example 1. If N = 16, I ⊆ J0, 3K, MI is compatible with the AES S-box layer (denoted by

SAES). Indeed, we consider the basis f of K16 defined by f4j+i = ei,j then we take h = 4, i0 =

. . . = i3 = |I|, φ : J0, |I| − 1K → I a bijection, jk = 4k for all k ≤ 4 and for all k ≤ 4, i < |I|,
gk,i = MC(eφ(i)−k,k). Hence

MI = vectK(gk,i) and ∀k, i, gk,i =

3∑
`=0

m`,φ(i)−ke`,k =

jk+1−jk−1∑
`=0

m`,φ(i)−kfjk+`.

Example 2. If I ⊂ J0, N −1K, V = vectK(fi | i ∈ I) is compatible with S. Indeed, we have h = |I|
and ∀k, ik = 1, jk = k and gk,0 = fφ(k) where φ : J0, h− 1K→ J0, N − 1K is a bijection.

From now on, we fix a ∈ KN and a subspace V compatible with S with compatibility basis g.

Definition 5. Let {p0, p1} be a pair of states from V + a. There exists a unique pair x ∈ KdimV

and y ∈ KdimV such that

p0 =
h−1∑
k=0

∑
i∈Ik

xi,kgi,k + a and p1 =
h−1∑
k=0

∑
i∈Ik

yi,kgi,k + a.

We define the information set K of the pair {p0, p1} as {k ∈ J0, h− 1K | ∃i < ik : xi,k 6= yi,k}.

Definition 6. Let P = {p0, p1}, Q = {q0, q1} ∈ P2(V + a). We say that P ∼ Q if :

• K is the information set of P ⇒ K is the information set of Q.

• ∀k ∈ K,∃b ∈ {0, 1} : ∀i < ik, q
0
i,k = pbi,k and q1

i,k = p1−b
i,k .

∼ is an equivalence relation on P2(V + a) and we denote

Π : P2(V + a) −→ P2(V + a)
/
∼

the canonical surjection

11

Proposition 3. Let C be an equivalence class with information set K. The cardinality of C is

#C = 2|K|−1+d
∑

k 6∈K ik .

It is always a multiple of 2h−1.

Lemma 5. The function

f : P2(V + a) −→ KN

{p0, p1} 7−→ R(p0) +R(p1)

is constant over the equivalence classes for ∼.

Now comes the most general result we managed to obtain on this subject.

Lemma 6. Let E be any subset of KN . We define

n = #{ {p0, p1} ∈ P2(V + a) | R(p0) +R(p1) ∈ E}.

Then n ≡ 0 mod 2h−1.

The initial distinguisher relies on the combination of two properties respectively given by

Lemma 1 and Lemma 4. This subsection only generalises Lemma 4 and the aim of the next section

will be to replace Lemma 1 to obtain a full generalisation of the distinguisher. In particular, it

aims at finding a property similar to Lemma 1 that holds for strictly more rounds than two in the

case of the AES.

2 Study for more rounds

Lemma 1 gives a property that links the subspaces DI and MI over two rounds, i.e. gives a

two-round subspace trail (see Definition 11). This property and the one-round property of Lemma

4 allow to build a five-round distinguisher. If we could find a property similar to the one of Lemma

1 over strictly more than two rounds, it would directly yield a distinguisher over more rounds of the

AES. However, Leander, Tezcan and Wiemer showed in [9] that we cannot find any better subspace

trail than the one exhibited in [6].

Subsection 2.1 shows that the AES S-box has no non-linear structure, which is useful for

Subsection 2.2 that shows like in [9] that the two-round subspace trails presented in [6] are optimal.

This whole section sums up the parts of [9] that apply to the AES.

2.1 Linear structures in the AES S-box

In this section, we are going to focus on the notion of linear structures with basic definitions and

properties. We fix m and n in N.

Definition 7. Let F : Fn2 → Fm2 and a ∈ Fn2 . The derivative of F in direction a is defined as

∆a(F) : Fn2 → Fm2
x 7→ F (x) + F (x+ a).

12

Definition 8 ([9]). Let f : Fn2 → F2 . The set of linear structures of f is

LS(f) = {a ∈ Fn2 | ∃ca ∈ F2 : ∀x,∆a(f)(x) = ca}.

Let F : Fn2 → Fm2 . The set of linear structures of F is

LS(F) = {(b, a) ∈ Fm2 × Fn2 | ∃cb,a ∈ F2 : ∀x, 〈b|∆a(F)(x)〉 = cb,a}.

For example, the set of trivial linear structures is ({0}×Fn2)∪ (Fm2 ×{0}) ⊂ LS(F). Now, given

a function F , we want to find if it has any non-trivial linear structures. In order to do this, we will

need the Walsh transform.

Definition 9. Let φ : Fn2 → Z. The Walsh transform of φ is the function

W(φ) : Fn2 → Z
a 7→

∑
x∈Fn

2
(−1)〈a|x〉φ(x).

The entire table of the Walsh transform can be efficiently computed from the entire table of φ

in O(n2n) operations in Z ∩ [−2n, 2n]. To exhibit the link between the Walsh transform and the

linear structures, we now define the autocorrelation of a Boolean function f and we give easy to

verify properties.

Definition 10. Let f : Fn2 → F2 . The autocorrelation of f is the function

A(f) : Fn2 → Z
a 7→

∑
x∈Fn

2
(−1)∆a(f)(x).

Proposition 4. Let f : Fn2 → F2. Then W(W(x 7→ (−1)f(x))2) = 2nA(f).

Proposition 5. Let f : Fn2 → F2. Then f has no non-trivial linear structures if and only if

∀a ∈ Fn2\{0}, |A(f)(a)| < 2n.

Proposition 6. Let F : Fn2 → Fm2 . Then F has no non-trivial linear structures if and only if all

its non-zero components have no non-trivial linear structures, i.e. for all b ∈ Fn2\{0}, the Boolean

function x 7→ 〈b|F (x)〉 has no non-trivial linear structures.

Finally, to check whether a function F has non-trivial linear structures, we can check for all

its components whether they have non-trivial linear structures by computing their autocorrelation

with two Walsh transforms and by comparing the autocorrelation values with 2n. This yields a

simple algorithm — Algorithm B — running in O(n2n+m) operations in Z ∩ [−22n, 22n]. Running

this algorithm on the AES S-box with n = m = 8 answers that the AES S-box has no non-trivial

linear structures.

2.2 Searching for other subspace trails

Definition 11 (Subspace trail [9]). Let F : KN → KN be any map. F2-linear subspaces U, V ⊆ KN

are called a (one-round) F-subspace trail if

∀a ∈ KN , ∃b ∈ KN : F(U + a) ⊆ V + b,

which is denoted by U ⇒F V . The negation is denoted by U 6⇒F V . An (r+ 1)-tuple of subspaces

(U0, . . . , Ur) is called a subspace trail (over r rounds) if

∀i ∈ J0, r − 1K, Ui ⇒F Ui+1.

13

For example, we have the trivial subspace trails {0} ⇒F {0} and U ⇒F KN and this trivial

lemma.

Lemma 7 ([9]). If U ⇒F V then ∀u ∈ U, Im(∆u(F)) ⊆ V .

Moreover, if U ⇒F V , then for all U ′ ⊆ U and V ′ ⊇ V , U ′ ⇒F V ′. Therefore, in order to

search for subspace trails, it is sufficient to stick to essential subspace trails which correspond to

optimal subspace trails with respect to inclusion.

Definition 12 (Essential subspace trail [9]). Let U, V ⊆ KN be a F-subspace trail. If

∀U ′ ⊃ U, U ′ 6⇒F V
and ∀V ′ ⊂ V, U 6⇒F V ′,

then (U, V) is called an essential F-subspace trail.

In the following, if I ⊆ J0, N − 1K, we will denote vectK(ei | i ∈ I) as EI .

Lemma 8 (Prop. 2 in [9]). Let U, V ⊆ KN be an essential S-subspace trail. If the S-box has no

non-trivial linear structures, then

∃I ⊆ J0, N − 1K : U = V = EI .

Lemma 9. Let U, V ⊆ KN . Then we have that:

1. U ⇒S V if and only if U ⇒R L(V).

2. U ⇒S V is essential if and only if U ⇒R L(V) is essential.

Proof. First, we consider the trail U ⇒S V . Let a ∈ KN , there exists b ∈ KN such that

S(U + a) ⊆ V + b

⇒ L ◦ S(U + a) ⊆ L(V) + L(b)

⇒ R(U + a) ⊆ L(V) +K ◦ L(b),

which shows that we consequently have U ⇒R L(V). Similarly, if U ⇒R L(V) we can show that

U ⇒S V .

We now assume that U ⇒S V is essential. If U ′ ⊇ U and U ′ ⇒R L(V), the first point shows

that we also have U ′ ⇒S V . Since U ⇒S V is essential, we get U = U ′. Moreover, if V ′ ⊆ L(V)

is such that U ⇒R V ′, we have that U ⇒S L−1(V ′). Again, since U ⇒S V is essential, we get

V = L−1(V ′) and V ′ = L(V). Finally, U ⇒R L(V) is essential.

The converse can be shown in the same way.

Theorem 2. Let U, V ⊆ KN be an essential R-subspace trail. If the S-box has no non-trivial linear

structures, then

∃I ⊆ J0, N − 1K : U = EI and L(U) = V.

Proof. We have by Lemma 9 the trail U ⇒S L−1(V) and the fact that this trail is essential. By

Lemma 8, ∃I ⊆ J0, N − 1K : U = L−1(V) = vectK(ei|i ∈ I).

14

We now want to find two-round subspace trails. We then consider the trail U ⇒R V ⇒R W

decomposed in the essential subspace trails

U ⇒R V
′, V ′ ⊆ V, V ⇒R W

We know with Theorem 2 that there exist I, J ⊆ J0, N − 1K such that

1. U = EI

2. V = EJ

3. V ′ = L(U) ⊆ V and W = L(V).

The subspace trails we want to find must allow us to build a distinguisher and then the subspace

W should not be the entire set KN . Equivalently, the subspace V should not be equal to KN , which

adds a fourth constraint.

4. V 6= KN .

The exhaustive search over I checking whether the smallest J such that L(EI) ⊆ EJ has cardinality

N then provides a very simple algorithm — Algorithm B — to find interesting two round subspace

trails. For the AES, this algorithm answers that the only possibilities for U are the diagonals

defined in Section 1.1 and that the length cannot be strictly longer than two rounds. For other

versions of Rijndael (the AES is a special instance of a more general cipher called Rijndael [5]),

this algorithm also answers that it is not possible to find a trail strictly longer than two rounds.

3 Adapting to Midori

Midori is a recent SPN cipher designed by Banik et al. and presented at Asiacrypt 2015 [2]. It is

designed to be lightweight in the sense that an encryption/decryption consumes much less energy

when implemented in hardware than the AES.

3.1 Description of Midori

The notation here is the same as the one in Section 1.4. As for the AES, for Midori N = 16 and the

internal state is represented as a state array. There are two different versions of Midori: Midori64

has d = 4 and hence K = F24 and for Midori128, d = 8 like for the AES. The round function R for

both versions is the composition of:

• S, the parallel operation of the S-boxes. For Midori64, the S-box is always the same and

given in Table 1 whereas for Midori128, the S-box depends on the row of the nibble.

• L = MC ◦ SC where SC is the ShuffleCell operation, a permutation of the K-entries of the

state array given by Table 2 and ∀i ∈ J0, N − 1K,SC(s)Π(i) = si. MC is the left multiplication

of the state array by a constant 4× 4 binary matrix denoted by MMC.

MMC =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


15

• K, the classical AddRoundKey operation.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S-box(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Table 1: Midori64 S-box in hexadecimal form

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Π(i) 0 7 14 9 5 2 11 12 15 8 1 6 10 13 4 3

Table 2: Midori ShuffleCell

3.2 Distinguisher on Midori

It is obvious that Midori fits into our general cipher description of Section 1.4. Moreover, as in

Section 1.1, we define the following subspaces :

Ci = vectK(e0,i, e1,i, e2,i, e3,i),

D′i = SC−1(Ci),
ID′i = SC(Ci),
M′i = MC(ID′i).

It is also obvious that for all I ⊆ J0, 3K, M′I is compatible with S with h = 4 as in Example 1. We

can then transpose Theorem 1 for Midori thanks to Lemma 4, yielding a distinguisher for five-round

Midori64 and five-round Midori128.

Theorem 3. Let a ∈M4(K), i ∈ J0, 3K, J ⊆ J0, 3K. We define

n = #{ {p0, p1} ∈ P2(D′i + a) | R5(p0) +R5(p1) ∈M′J}.

Then n ≡ 0 mod 8.

As for the AES, we searched for other possible trails to mount a similar distinguisher on more

rounds, but Algorithm B answers that the only interesting two-round trails are D′I
R−→ CI

R−→ M′I
for I ⊆ [0, 3] and that no non-trivial three-round trail with the first and last subspaces having the

same dimension exists.

However, as shown in Section 2.2, Algorithm B performs an exhaustive search if the S-boxes

have no non-trivial linear structures. This observation motivates a deeper study of subspace trails

in Section 4.

4 A broader study of subspace trails

Until now, we have mostly been interested in understanding Grassi’s distinguisher and we have

restricted our view on subspace trails in that purpose. This section aims at giving more details on

subspace trails, starting from the results of [9] before showing some interesting observations.

16

4.1 Linear structures and subspace trails

If an S-box has non-trivial linear structures, both Lemma 8 and Theorem 2 are no longer appliable.

However, Leander et al. gave in [9] an algorithm that gives a bound on the length of the longest

possible subspace trail for a given SPN. We will need the following definition.

Definition 13. Let F : Fn2 → Fm2 and u ∈ Fn2 , then we define for c ∈ F2

Lcu(F) = {α ∈ Fm2 |∀x ∈ Fn2 , 〈α | ∆u(F)(x)〉 = c}

and Lu(F) = L0
u(F) ∪ L1

u(F).

4.1.1 Length of the longest subspace trails

The idea of the algorithm is to avoid performing an exhaustive search on all the possible starting

subspaces by focusing on a class of dimension-1 subspaces. We suppose we have an S-box : K→ K
and we define the set

W = {Wi,α := {0}i−1 × {0, α} × {0}k−i | α ∈ K, i ∈ [1, N]}.

Proposition 7 (Prop. 3 in [9]). If U ⇒S V is a non-trivial subspace trail, and if the S-box satisfies

the common property

∀u ∈ K\{0}, Lu(S-Box) 6= K

then there exists W ∈W such that W ⊆ V .

With Proposition 7, we can see that if we explicitly compute all the trails starting from L(Wi,α)

then the length of the longest trail plus 1 gives an upper bound for the length of the longest subspace

trail. Indeed, let ` be the length of a longest trail, starting from L(Wi,α). We have for example

L(Wi,α) ⇒R W ⇒R · · · , with dimW > 1. There might exist a trail U ⇒S V ⇒L L(V) ⇒R W

where Wi,α ⊆ V . Then the trail starting from U will have length ` + 1, which illustrates why we

have to add 1 to the longest trail length for the bound.

4.1.2 Candidate for the longest subspace trail

A question that naturally arises from the study of the algorithm is how to find a candidate for the

starting subspace leading to the longest subspace trail without explicitly computing trails. Again

from [9], we have this useful property.

Proposition 8 (Lemma 3 in [9]). If U ⇒S V then V ⊥ =
⋂
u∈U L

0
u(S).

Moreover, we have that L0
u(S) ⊆ Lu0(S-box)× . . .×LuN−1(S-box). Starting from U = {0, u} of

dimension 1, we want to minimize the dimension of V , or equivalently to maximize the dimension

of L0
u(S) = V ⊥. Since

dimL0
u(S) ≤ dimLu0(S-box) + . . .+ dimLuN−1(S-box),

— with equality for Midori — maximal dimensions for L0
u(S) are obtained for u = (0, . . . , ui, . . . , 0)

where ui is such that the dimension of L0
ui(S-box) is maximal. We can find such ui with the

computation of LS(S-box) presented in Section 2.1.

Unfortunatly, I have not been able to find a good criterion when dimU is bigger than 1.

17

4.1.3 Infinite trails

When the S-box and the linear layer L have been poorly chosen, we might encounter the case of

an infinite subspace trail. Indeed, if we have :

1. S-box such that ∃c ∈ F2 : ∃α ∈ K : ∀x ∈ K, 〈α | S-box(x) + x〉 = c,

2. L such that it only permutes nibbles of KN and XORs the nibbles (which is the case of

Midori),

we consequently have that ∀u, x ∈ K, 〈α | ∆u(S-box)(x)〉 = 〈α | u〉. Hence, if we denote Hα =

ker 〈α | .〉, we get the trail Hα ⇒S-box Hα. In fact having such a trail is equivalent to the first

condition on the S-box. Moreover, the second condition implies that we have a trail HN
α ⇒L HN

α

and finally, HN
α ⇒R HN

α . This one-round trail obviously gives an infinite trail when repeated.

However, the first condition is not likely to be verfied by the S-box of a real SPN cipher. Indeed,

this condition suggests the cipher would be vulnerable to linear attacks, which are well-known by

designers. Hence, designers usually choose the S-box to avoid them.

4.2 Focus on the linear layer of Midori

We have seen in Section 3.2 that, without considering the linear structures of the S-boxes, the

maximum number of Midori rounds for which there exist subspace trails that do not increase

the dimension is 2, as for the AES (see Section 2.2). This is a bit disappointing because the

branch number of Midori’s MixColumns is 4 whereas the AES MixColumns has the maximal

branch number 5. Interestingly, relaxing the condition on same dimension subspaces along the

trail, Algorithm B showed that replacing ShuffleCell by ShiftRows while keeping Midori’s MMC

gives a longer trail.

We give in this section a criterion for the ShuffleCell permutation to avoid having a longer trail

when we keep Midori’s MixColumns. Keeping this MixColumns is interesting because its matrix is

the only 4× 4 binary matrix for which MC has branch number 4, as shown in [8].

To really focus on the linear layer, we will not consider the linear structures of the S-box and

we will use the notation EI as in Section 2.2. The indexes of the nibbles in the state array are

classically given by Figure 1. We then represent EI as a state array with a one at index i for all i


0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15


Figure 1: Indexes of nibbles

in I. For example, E0,5,10,13 and the trail D′0 ⇒R C0 are respectively represented by
1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 0

 and


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⇒R


1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

 .

18

Let us now consider a permutation of indexes Π for the ShuffleCell. Rijmen and Daemen

showed in [5] that Π should be diffusion optimal, which means that the indexes from the same

column should be sent to pairwise distinct columns. We then have this kind of trail for every input

Ei, i ∈ [0, 15].
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⇒S◦R


0 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

⇒SR


0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⇒S◦MC


0 1 1 1

0 1 1 0

0 1 0 1

0 0 1 1


We see here that because of the 0-entries in MMC, a column with three 0 will still have one 0 after

MC, just where the single 1 was before MC. Then, for the next round, we do not want to have

three 0 in the same column before MC, otherwise the trail will be a bit longer. Since there is still

one empty column after two rounds (column 0 in our example), and that after the ShuffleCell the

0-entries of this empty column will be distributed to the four different columns, two 0 from the

other columns (at index 7, 10, 13 in our example) should not be sent to the same column after

SC. In other words, the images by Π of those three indexes should be in pairwise distinct columns.

Moreover, as we have said earlier, those three indexes correspond to the images of indexes from the

same column, which leads to the following criterion.

Proposition 9. For a Midori-like cipher for which the S-box has no non-trivial linear structures

and for which ShuffleCell is diffusion optimal, there exist four-round subspace trails if and only if

the permutation of indices Π verifies :

∃i, j ∈ J0, 15K : i, j belong to the same column and Π2(i) and Π2(j) also belong to the same column.

5 Conclusion

Subspace trails attacks are recent and have given unexpected results on reduced-round AES,

actually the best results so far on five-round AES-128 and seven-round AES-192 [3]. Therefore,

understanding those attacks becomes more relevant than ever in symmetric cryptography and that

was the purpose of the work presented in this report.

First, we have presented a distinguisher of the five-round AES published by Grassi et al. in

2017 [7]. It was one of the first algorithms to reveal the interest to have in subspace trails. It

appeared that this distinguisher relied on two different properties that combined very well for the

AES.

1. The AES exhibits two-round subspace trails (defined in Definition 11).

2. The function f(p0, p1) = R(p0) +R(p1) restricted to pairs of input (p0, p1) such that p0 + p1

belongs to a certain linear subspace is constant over well-defined equivalence classes.

We saw in Section 1 that the second property can be generalized to any SPN cipher, which has

to my knowledge only been proved in this report until now. Furthermore, we gave an example of

this fact in Section 3 by applying nearly the same distinguisher to Midori [2], another SPN cipher.

However, Section 2 explained that algorithms from [9] searching for subspace trails show that the

19

AES has no longer subspace trails than the ones already exhibited by Grassi et al. in [7]. We finally

tried to push our understanding of subspace trails furthur in Section 4 by studying the influences

of the S-box layer and the linear layer. This lead to two modest criteria on each of them to avoid

subspace trails for Midori-like ciphers.

The main problems left open by this report are whether it is possible to find more general

criteria on the S-box layer and on the linear layer to avoid subspace trails and whether subspace

trails can lead to other kinds of attacks, for example by finding a better result than Lemma 6.

Acknowledgements

I would especially like to thank Anne Canteaut for accepting me as an intern in the Project Team

SECRET at Inria Paris and Christina Boura for supervising my work there. I also thank the whole

team SECRET for its warm welcome. I finally thank the Délégation Générale de l’Armement for

its support during this internship.

References

[1] https://github.com/dnlcog/grassi_disting.

[2] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, and T. Akishita. Midori: A block

cipher for low energy. In ASIACRYPT 2015 (2), pages 411 – 436, 2015.

[3] A. Bar-On, O. Dunkelman, N. Keller, E. Ronen, and A. Shamir. Cryptology ePrint Archive,

Report 2018/527, 2018.

[4] J. Daemen. Cipher and hash function design, strategies based on linear and differential

cryptanalysis. PhD thesis, K.U.Leuven, 1995.

[5] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard.

Springer, 2002.

[6] L. Grassi, C. Rechberger, and S. Rønjom. Subspace trail cryptanalysis and its applications to

AES. IACR Trans. Symmetric Cryptol., 2016(2):192–225, 2016.

[7] L. Grassi, C. Rechberger, and S. Rønjom. A new structural-differential property of 5-round

AES. In EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 289–317. Springer, 2017.

[8] I. Landjev and A. Rousseva. The main conjecture for near-MDS codes. In WCC2015 - 9th

International Workshop on Coding and Cryptography 2015, Paris, France, 2015.

[9] G. Leander, C. Tezcan, and F. Wiemer. Searching for subspace trails and truncated

differentials. IACR Trans. Symmetric Cryptol., 2018(1):74–100, 2018.

[10] NIST. Specification for the Advanced Encryption Standard (AES), November 2001. Federal

Information Processing Standard 197.

20

A Proofs of Section 1.4

Proposition 3

Proof. We have
∏
k 6∈K(2d)ik choices for the shared coordinates in a pair of C. Those coordinates

fixed, we have to make for all k ∈ K the choice b = 0 or b = 1, ie 2|K| choices. Since we are counting

pairs and not tuples, we have 2|K|−1+d
∑

k 6∈K ik pairs in C.

|K| − 1 + d
∑

k 6∈K ik is minimal for |K| = h. Hence #C ≡ 0 mod 2h−1.

Lemma 5

Proof. Let P = {p0, p1}, Q = {q0, q1} ∈ P2(V + a) such that P ∼ Q. We have with the notation of

Definition 4

p0 =
h−1∑
k=0

∑
i∈Ik

p0
i,kgi,k + a

=
h−1∑
k=0

∑
`∈Jk

∑
i∈Ik

p0
i,kλi,k,` + ajk+`

 fjk+`.

Then

S(p0) =
h−1∑
k=0

∑
`∈Jk

S-box

∑
i∈Ik

p0
i,kλi,k,` + ajk+`


and

S(p0) + S(p1) =
∑
k,`

S-box

∑
i∈Ik

p0
i,kλi,k,` + ajk+`

+ S-box

∑
i∈Ik

p1
i,kλi,k,` + ajk+`

 fjk+` (2)

It is now clear with Definition 6 and Equation (2) that S(p0) + S(p1) and S(q0) + S(q1) are

equal in KN . Therefore,

f(P) = R(p0) +R(p1)

= K ◦ L ◦ S(p0) +K ◦ L ◦ S(p1)

= L(S(p0) + S(p1)) by characteristic 2 and linearity of L ;

= L(S(q0) + S(q1)) by our previous observation ;

= f(Q).

Lemma 6

Proof. The function f from Lemma 5 is constant on the equivalence classes of P2(V + a). This

justifies the existence of a function f̃ : P2(V + a)
/
∼ → KN such that f = f̃ ◦ Π. Since the

21

equivalence classes form a partition of P2(V + a), we have that

n = #f−1(E)

=
∑

C∈P2(V+a)
/
∼

#(f−1(E) ∩ C)

=
∑

C∈P2(V+a)
/
∼

1f̃(C)∈E#C

≡ 0 mod 2h−1 by proposition 3.

B Algorithms

Algorithm 1 Checks the existence of linear structures

1: procedure Has linear structures(F)

input : oracle access to F (x)i when (x, i) ∈ Fn2 × [0,m− 1].

output : true if F has linear structures, false otherwise.

2: for all b ∈ Fm2 \{0} do

3: W1 ← Walsh transform(−2〈b|F 〉+ 1)

4: W2 ←W1 ×W1

5: A ← |Walsh transform(W2)|/2n

6: for all a ∈ Fn2\{0} do

7: if A(a) == 2n then

8: return true

9: end if

10: end for

11: end for

12: return false

13: end procedure

22

Algorithm 2 Find interesting subspace trails

1: procedure Essential trail(L)

input : Matrix of the linear map L in the basis (ei)0≤i≤N−1.

output : Table indexed by I ⊆ J0, N − 1K whose element J at index I is the smallest set such

that L(EI) ⊆ EJ .

2: Create table Tab indexed by subsets of J0, N − 1K
3: for all I ⊆ J0, N − 1K do

4: J ← ∅
5: for all i ∈ I do

6: x← L(ei)

7: for all j ∈ J such that xj 6= 0 do

8: J ← J ∪ {j}
9: end for

10: end for

11: Tab[I]← J

12: end for

13: return Tab

14: end procedure

15: procedure Find subspace trail(L, r)
input : Matrix of the linear map L in the basis (ei)0≤i≤N−1 and r ≥ 2 the number of rounds.

output : List of sets (I, dI) such that there exists an r-round trail starting from EI ending in a

space of dimension dI < N .

16: Create empty list L

17: Tab ← Essential trail(L)

18: for all {0} ⊂ I ⊂ J0, N − 1K do

19: J ← I

20: for k = 0 to r − 2 do

21: J ← Tab[J]

22: end for

23: if J 6= J0, N − 1K then

24: Append (I, |J |) to L

25: end if

26: end for

27: return L

28: end procedure

23

