## Quantum Cryptanalysis of AES

Xavier Bonnetain, María Naya-Plasencia, André Schrottenloher

Inria de Paris, SECRET

October 8, 2018







## **Outline**

- Cryptographic Context
- 2 How to (Simply) Write a Quantum Attack
- 3 Quantum DS-MITM attack on 8-round AES-256

# **Cryptographic Context**

# Our situation (symmetric)

Alice and Bob share a secret key k and communicate with a block cipher  $AES_k: \{0,1\}^n \to \{0,1\}^n$ , n=128.



## Our situation (symmetric)

Alice and Bob share a secret key k and communicate with a block cipher  $AES_k$ :  $\{0,1\}^n \to \{0,1\}^n$ , n = 128.



#### An adversary attacks!

He wants to recover the key.

## Key-recovery attack on a block cipher

#### Generic (ideal cipher)

...try all keys!

Exhaustive search of k: costs  $2^{|k|}$ .

#### Cryptanalysis

- How to trust a cipher?
- If an attack is found, the cipher is broken!
- We try to attack the highest number of rounds.

## The adversary becomes quantum



#### Grover's algorithm

- $f: \{0,1\}^n \rightarrow \{0,1\}$  is a test function.
- We look for x such that f(x) = 1 (there are  $2^t$  solutions).
- We implement f as a quantum circuit.
- With Grover:  $O(2^{(n-t)/2})$  calls to f instead of  $2^{n-t}$  classically.

## Quantum key-recovery attack on a block cipher

#### Generic (ideal cipher)

... Grover all keys!

Exhaustive quantum search of k: costs  $2^{|k|/2}$ .



 Common security measure: double the key size.

## Quantum key-recovery attack on a block cipher

#### Generic (ideal cipher)

... Grover all keys!

Exhaustive quantum search of k: costs  $2^{|k|/2}$ .



• Common security measure: double the key size.

#### Cryptanalysis

What about quantum cryptanalysis?

#### The AES

Blocks are 128 bits, divided in  $4 \times 4$  bytes.

#### **AES** round function

AddRoundKey (ARK): XOR the round key;

SubBytes (SB): Apply the AES S-Box to each byte;

**ShiftRows** (**SR**): Shift the *i*-th row by *i* bytes left;

MixColumns (MC): Multiply each column by the AES MDS matrix.



# Classical cryptanalysis of AES (secret-key)

The adversary accesses an encryption and a decryption black-box and tries to guess the key.



## Our quantum attacks

The adversary accesses classically an encryption black-box.



## Our Results

We found quantum attacks on reduced-rounds AES: key-recovery below Grover's exhaustive search.

|         | Classical |               | Quantum  |         |
|---------|-----------|---------------|----------|---------|
| Version | Rounds    | Method        | Rounds   | Method  |
|         | attacked  |               | attacked |         |
| AES-128 | 7         | ID or DS-MITM | 6        | Square  |
| AES-192 | 8         | DS-MITM       | 7        | Square  |
| AES-256 | 9         | DS-MITM       | 8        | DS-MITM |

How to (Simply) Write a Quantum Attack

## Correspondence principle

Classical exhaustive search ⇔ Quantum exhaustive search

Nested exhaustive search ⇔ Nested quantum exhaustive search





**Example:** find  $x \in S_1$  such that  $P_1$  (prob.  $p_1$ , cost  $cc_1$ ) and (there exists  $y \in S_2$  such that  $P_2$  (prob.  $p_2$ , cost  $cc_2$ )).

$$\underbrace{\frac{1}{p_1}}_{\text{Outer search}} \left( \underbrace{\frac{1}{p_2}}_{\text{Inner search}} cc_2 + cc_1 \right)$$

$$\underbrace{\frac{1}{\sqrt{p_1}}}_{\text{Outer search}} \left( \underbrace{\frac{1}{\sqrt{p_2}}}_{\text{Inner search}} cc_2 + cc_1 \right)$$

## A quantum attack recipe

- Write a search / nested search procedure
- Compute the classical complexity (depending on success probabilities)
- 3 Replace all success probabilities by their square roots
- 4 You are (almost) done!



## Grover's "soufflé" property

We get closer to the solutions...until we start moving away from it!



- The size of the solution space should be know at runtime (otherwise, the soufflé strikes back).
- This is not always the case with Grovers within Grovers...

# Quantum DS-MITM attack on 8-round AES-256

#### The middle rounds

If a  $\boxtimes \to \boxtimes$  differential is ensured, encryption of some differences in  $\boxtimes$  produces a specific result in  $\boxtimes$ .



#### Main Property

If we make the difference in  $\boxtimes$  take some arbitrary values ( $\delta$ -sequence) and collect the sequence of output differences in  $\boxtimes$ , there are only  $2^{192}$  (24 byte-conditions) possibilities.

The classical attack tabulates the middle rounds... we don't.



## Attack layout

- Query the AES black-box and find enough  $(2^{48})$  input-output pairs satisfying the  $\boxtimes$  conditions
- 2 First search level: 10 key bytes

#### Testing a guess of key bytes

- ullet Find a pair which gives  $\boxtimes \to \boxtimes$
- Using some queries, compute the output sequence in

## A classical attack

The number of "degrees of freedom" to search through:

$$\underbrace{10}_{\text{Key bytes}} + \underbrace{24}_{\text{Middle state bytes}} - \underbrace{4}_{\text{Key schedule relations}} = 30$$

- A middle-rounds encryption of a sequence is approx. 5 times an AES encryption
- We have  $2^{30\times8}=2^{240}$  such sequences to evaluate
- Only 2<sup>250.3</sup> S-Boxes against 2<sup>263.8</sup> for exhaustive search
- Now for a quantum attack: "take the square root"

# Working out the details

- We need 3 Grover levels: uncomputation factors;
- Grover's soufflé strikes back: S-Box differential equations give some errors.



 We lose some bits but still win: 2<sup>136.3</sup> S-Boxes against Grover's 2<sup>137.45</sup>.

## Conclusion

## Conclusion

- We analyzed existing attacks and found some quantum ones (Square, DS-MITM)
- We wrote our attacks in a unifying framework
- We showed how to quantumly exploit the S-Box
- We reached an 8-round attack on AES-256
- We found new trade-offs for classical DS-MITM attacks (9 rounds of AES-256 in data 2<sup>113</sup>, time 2<sup>210</sup> and memory 2<sup>194</sup>).







Thank you.