
HAL Id: hal-01955902
https://inria.hal.science/hal-01955902

Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Assignment Problem
Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, Giuliano Losa

To cite this version:
Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, Giuliano Losa. The Assignment Problem.
International Conference on Distributed Computing and Networking, ICDCN, 2018, Varanasi, India.
�hal-01955902�

https://inria.hal.science/hal-01955902
https://hal.archives-ouvertes.fr

The Assignment Problem∗

Carole Delporte-Gallet

Université Paris-Diderot

Paris, France

cd@lirif.fr

Hugues Fauconnier

Université Paris-Diderot

Paris, France

hf@irif.fr

Eli Gafni

UCLA

Los Angeles, California, USA

eli@cs.ucla.edu

Giuliano Losa

UCLA

Los Angeles, California, USA

giuliano@cs.ucla.edu

ABSTRACT
In the allocation problem, asynchronous processors must parti-

tion a set of items so that each processor leave knowing all items

exclusively allocated to it. We introduce a new variant of the allo-

cation problem called the assignment problem, in which processors

might leave having only partial knowledge of their assigned items.

The missing items in a processor’s assignment must eventually be

announced by other processors.

While allocation has consensus power 2, we show that the assign-

ment problem is solvable read-write wait-free when k processors

compete for at least 2k−1 items. Moreover, we propose a long-lived

read-write wait-free assignment algorithm which is fair, allocating

no more than 2 items per processor, and in which a slow processor

may delay the assignment of at most n items, where n is the number

of processors.

The assignment problem and its read-write solution may be of

practical interest for implementing resource allocators and work

queues, which are pervasive concurrent programming patterns, as

well as stream-processing systems.

CCS CONCEPTS
• Theory of computation→Distributed algorithms;Concur-
rent algorithms;

KEYWORDS
Assignment, Resource Allocation, Renaming, Wait-Free, Shared-

Memory, Mutual Exclusion

∗
Carole Delporte and Hugues Fauconnier were supported by the Agence Nationale de

la Recherche, project DESCARTES, under grant agreement ANR-16-CE40-0023. This

research was partially supported by Len Blavatnik and the Blavatnik Family foundation.

This material is based upon work supported by the National Science Foundation under

Grant No. 1655166.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Conference’17, July 2017, Washington, DC, USA
© 2017 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. . . $15.00

https://doi.org/10.475/123_4

ACM Reference Format:
Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Giuliano Losa.

2017. The Assignment Problem. In Proceedings of ACM Conference (Confer-
ence’17). ACM, New York, NY, USA, Article 4, 9 pages. https://doi.org/10.

475/123_4

1 INTRODUCTION
We consider the problem of uniquely allocating items to processors

in an asynchronous shared-memory system. This problem is perva-

sive in concurrent and distributed programming, such as in work

queues, where jobs are to be dispatched to several processors, or in

resource allocation systems (e.g. memory allocation, allocation of

process descriptors in an operating system, etc.).

Classical examples of resource-allocation problems include the

dining-philosophers problem [9], the mutual exclusion problem,

and its generalization in the L-exclusion problem [11]. Because

some processors may have acquired all the resources while others

are trying to acquire resources, these problems trivially admit no

wait-free solutions, and they are therefore usually studied under

the assumptions that processors are scheduled fairly. For example,

Peterson’s mutual exclusion algorithm [23] or Lamport’s Bakery

algorithm [17] solve the mutual exclusion problem under fair sched-

uling, but may only progress as fast as the slowest processor in the

system.

The long-lived renaming problem [21] is a relaxed form of allo-

cation in which processors repeatedly acquire and release a single

item each taken among a number of items larger than the number

of processors. Because of the availability of spare items, there is still

possibility for progress even if processors do not release acquired

items.Moreover, given enough spare items, the flexibility processors

have in choosing their items allows to solve the long-lived renam-

ing problem wait-free and using only atomic registers. However,

having spare item may be considered a wasted, as some items are

not allocated to any processor. Nevertheless, read-write wait-free

algorithms are advantageous: wait-freedom provides the highest

degree of fault-tolerance, and atomic registers are implementable

from some of the most unreliable communication primitives, e.g.

safe registers [18].

We ask whether there is a trade-off between long-lived renaming,

which is solvable read-write wait-free but leave some items unallo-

cated, and problems like mutual-exclusion, which allow full alloca-

tion but are only implementable read-write under fair scheduling

of all processors. To simplify our analysis, we start by considering

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

Conference’17, July 2017, Washington, DC, USA Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Giuliano Losa

single-use allocation problems (in which processors try to acquire

items only once and do not release them) in the wait-free model.

In the (single-use) allocation problem, a set of items R numbered

1 to r must be allocated to a set of n = r processors such that

each item is allocated to a single processor. If all we require is that

each processor get at least one item, then the problem is trivial:

we can statically pre-allocate items to processors and solve the

problem without any synchronization. However, we would still

waste items if not all processors participate. We cannot require that

the first processors to come take all items, as this would preclude

every processor getting at least one item. But we can require that

the first processors get the first items, which would help at least

for provisioning items (e.g. if one knows that only k processors

will request items, no need to provision more than k). Formally,

assuming that r ≥ n, we require that when k processors request

items, then exactly the first k items (no more, no less) are allocated.

As we will see in Section 3, the single-use allocation problem cannot

be solved wait-free with registers, and synchronization primitives

such as test-and-set are needed. Can a relaxed allocation problem

be solved read-write wait-free? Single-use renaming [4] can, but

we have seen that it wastes items.

For applications such as work queues or stream processing, it

may be sufficient to give a processor a partial allocation of items,

letting this processor work with its partial allocation before coming

back to get its remaining allocated items. If items are jobs to be

completed, this would allow a processor to start working on a

job before knowing the full set of jobs it has been allocated, and

to come back later when it finishes its first jobs to retrieve its

remaining allocated jobs. If items are resources needed for some

task, a processor may start working with restricted resources while

waiting for its full resource allocation to be revealed.

To capture the intuition above, we propose the assignment prob-

lem. In the single-use version of the assignment problem, each

processor p must announce a set of items D[p] and the correspond-

ing assignment a[p] : D[p] → P describing, for each item i ∈ D[p],
the processor a[p][i] to which i is assigned to. To solve the assign-

ment problem given a non-triviality parameter f : N→ N (where

f is strictly increasing), four conditions must be met:

Fairness: every processorp announces an assignment inwhich

it gets at least one item.

Consistency: if two processors announce an assignment for

item i , then they assign i to the same processor.

Non-Triviality: for every k , if k processors participate, then

(1) only the first f (k) items may be assigned, and

(2) if all k processors terminate, then every item in {1, . . . ,

f (k)} is announced.

In formulating the assignment problem, we hope to obtain a

problem that is solvable read-write wait-free. However, one can

see that this will depend on the non-triviality condition: if the non-

triviality condition stipulates that exactly the first k items must be

allocatedwhenk processors participate, then the allocation problem

and the assignment problem coincide and consensus power 2 will

be needed. Hence the question: under what non-triviality condition

is the assignment problem solvable read-write wait-free?

We can derive a non-triviality lower bound by observing that the

assignment problem offers a solution to the f (k)-adaptive-renaming

problem [4]. As Gafni et al. [12] have shown,

(
2k − ⌈ k

n−1 ⌉
)
-adaptive-

renaming can be used to solve (n − 1)-set-consensus, and is there-

fore impossible to solve read-write wait-free. Therefore, f (k) =

2k − ⌈ k
n−1 ⌉ is a lower bound under which the assignment problem

is not solvable read-write wait-free. As wewill see, this lower bound

is tight. Moreover, given this bound, the best we can hope for in

terms of fairness of the assignment is that each processor get at

most two items. Surprisingly, this is also achievable. The assign-

ment problem and its read-write wait-free solution are presented

in Section 4.

Finally, in Section 5, we extend our investigation to a long-lived

version of the assignment problem, in which processors repeatedly

come back to get new items from an infinite stream of items, and

we propose a read-write wait-free solution based on the single-use

algorithm. We then present an optimized version of the long-lived

algorithm which bounds by a constant the number of items that

may be left unassigned because of a slow processor. In a solution

based on mutual exclusion, e.g. using the Bakery algorithm, a slow

processor can arbitrarily delay the whole system even when the

slow processor is not in its critical section. In contrast, the optimized

long-lived assignment algorithm presented in Section 5 ensures

that a slow processors delays the assignment of at most n items

while the other processors suffer no delay.

All the algorithms presented are formalized in the PlusCal [19]

language, and their properties in a system of 4 processors have

been verified using the TLC model-checker [24]. The full PlusCal

formalizations are available at https://losa.fr/research/assignment.

2 MODEL
We consider a set P of asynchronous processors communicating

through a single-writer multi-reader shared memory and optionally

through tasks and linearizable objects. When P is finite, we write

n for the number of processors. Each processor has a private local

state and a private read-only input. The memory consists in one

register Lp per processor p. A processor can take local steps, read

steps, write steps, object-invocation steps, task input steps, and task

output steps. The next step of a processor is always enabled, i.e. a

processor cannot wait for a condition. In a read-write algorithm,

processors can only take read steps and write steps.

A write operation by processor p writes to register Lp only, and

a read operation returns an atomic snapshot [1] of the entire shared

memory. Objects are sequential state-machines with a transition

relation relating pre-state, operation, response, and post-state; an

object-invocation step, taking an operation as parameter, changes

the object state and returns a response to the invoking processor in

a single step and according to the transition relation of the object.

Let an input vector be a partial function from processor to input,

and an output vector be a partial function from processor to output.

A task is a partial function mapping an input vector to a set of

output vectors which have the same domain as the input vector.

Informally, given the set of participating processors in a run and

their input, a task describes the allowed outputs of those processors.

A task input step does not return any response to a processor, while

a task output step non-deterministically produces a response such

that the output vector of the task observed so far can be completed

https://losa.fr/research/assignment

The Assignment Problem Conference’17, July 2017, Washington, DC, USA

to an output vector in relation with the input vector of the task

observed so far.

An algorithm assigns an initial local state and a deterministic

sequential program to every processor (subject to the constraint that

if a processors takes a task input step, then its next step must be the

corresponding task output step). A run of an algorithm consists of

an input vector and an infinite sequence of processor steps, where

each processor starts with the input assigned to it by the input

vector and takes steps according to the algorithm. A processor may

terminate by finishing its program and writing an output in its local

state, in which case it only takes stuttering steps (i.e. steps that do

not change its state) thereafter. An algorithm is wait-free if every

processor that takes infinitely many steps eventually terminates.

We say that a processor p participates in a run if p takes at

least one step. Throughout the paper, we write Q for the set of

participating processors in a run and k for their number (k = |Q |).

An algorithm solves a task ∆ when

(1) the algorithm is safe: in every run in which the input vector is

in the domain of ∆ and all participating processors terminate,

the input vector is related by the task to the output vector

observed in the run, and

(2) the algorithm is wait-free.

Note that in most of the tasks that we define in this paper, a pro-

cessor receives no input. In this case, a task reduces to a relation

between participating sets and output vector.

The consensus number of a task or object type is the maximum

number of processors for which there exists a wait-free algorithm

that solves the consensus task using registers and instances of

the task or object type. By convention, every task or object has

consensus number at least 1. Consensus is impossible to solve with

registers even for two processors [20], therefore registers have

consensus number 1.

Throughout the paper, we make use of solutions to the following

three input-less tasks. In the test-and-set task, exactly one partic-

ipant must output 1 while all others must output 0. Test-and-set

has consensus number 2, therefore it has no read-write wait-free

solution. However, test-and-set can be solved using 2-processors

consensus.

In the immediate-snapshot task [6], each participating processor

p must output a set of participating processors is[p] such that p ∈

is[p] and, for every two processors p and q, is[p] ⊆ is[q] or is[q] ⊆
is[p], and if p ∈ is[q] then is[p] ⊆ is[q]. The immediate-snapshot

task is solvable read-write wait-free.

In the (2k−1)-adaptive-renaming task [5], each participating pro-

cessorpmust output a unique integer name[p], calledp’s name, such

that, for every k , when k processors participate, 1 ≤ name[p] ≤
2k − 1. The (2k − 1)-adaptive-renaming task are solvable read-write

wait-free.

In a long-lived problem, a processor receives a new input each

time it produces an output, and must match the new input with an

output. We consider long-lived problems that can be specified as

tasks for infinitely many processors, i.e. such that there is a task

∆ for infinitely many processors such that a solution to ∆ can be

transformed into a solution to the long-lived problem by having

each processor pick a fresh identifier for itself each time it receives

a new input (e.g. by using identifiers of the form ⟨p, i⟩ where i is
an integer incremented each time a fresh identifier is needed).

Note that this class of long-lived problem excludes problems

in which a processor operation is constrained by the operations

it performed before. An example of task that is outside the class

is the long-lived renaming problem [22], in which a process can

release a name only if it previously acquired it. Also note that in

a long-lived problem for n processors, the number of concurrent

processors is trivially bounded by n. Therefore, since we consider
tasks for infinitely many processors only as a model of long-lived

problems, we will assume that the number of processors active

at any given moment (i.e. the number of participants minus the

number of processors that terminated) is always bounded by n.

3 THE ALLOCATION PROBLEM
Consider a set R of r ≥ n items numbered 1 to r to allocate to the

processors. In the allocation problem, we would like each processor

p ∈ P to output a set D[p] ⊆ R such that {D[p] | p ∈ P} is a

partition of R. We require that if k processors participate, then the

allocation forms a partition of the first f (k) items, for some strictly

increasing function f : N → N such that f (0) = 0 and f (n) = r
(hence there are at least as many items as participants, and all items

are allocated if all processors participate). We also require that each

processor get at least one item.

Definition 3.1. In the allocation task, processors have no input

and each processorpmust output a setD[p] ⊆ R such that:D[p] , ∅,

and if a set Q of k processors participate then {D[p] | p ∈ Q} must

be a partition of {1, 2, . . . , f (k)}.

Given a solution to allocation, 2 processors can solve the con-

sensus problem as follows. A processor p first posts its consensus

proposal to shared-memory, and then participates in allocation and

obtains an output D[p]. If 1 ∈ D[p] then p decides its own proposal.

Otherwise, p decides the proposal of the only other processor q.
Observe that when a processor p is the only participant, p must

necessarily obtain 1 ∈ D[p] because, according to the definition of

allocation, we must have D[p] = {i | 1 ≤ i ≤ f (1)}. Therefore, if a
processor p sees 1 < D[p], then there must be another participant,

and its proposal must be posted to shared-memory. In the case of a

system of 2 processors, the other participant q is determined, and

it must see 1 ∈ Dq , because {D[p],D[q]} must be a partition of

{i | 1 ≤ i ≤ f (2)}, and therefore decide its own value. Therefore

both participants decide the same value. This shows that allocation

has consensus power at least 2.

Adaptive allocation can be solved for any f using an array of n
test-and-set objects {T [i] | 1 ≤ i ≤ n}. To solve allocation, a pro-

cessor p accesses the test-and-set objects one-by-one, in order, and

stops at the first test-and-set object T [i] that it wins, returning the

set of items D[p] = {j | f (i − 1) < j ≤ f (i)}. This algorithm is pre-

sented in the PlusCal language in Figure 1. Since allocation is solv-

able using test-and-set, which is implementable from 2-processors

consensus, it has consensus power at most 2.

Theorem 3.2. Adaptive allocation has consensus power 2.

Conference’17, July 2017, Washington, DC, USA Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Giuliano Losa

11 --algorithm AdaptiveAlloc{
12 variables

the outputs of the processors:

22 D = [p ∈ P 7→ Bot] ;

return value of TestAndSet procedure:

26 ret = [p ∈ P 7→ Bot] ;
45 process (p ∈ P) variables j = 1 ; {
49 l1: while (j ≤ N) {
50 call TestAndSet(j) ;
51 l2: if (ret [self]) {
52 if (j = 1) D [self] := 1 . . f [1]
53 else D [self] := (f [j − 1] + 1) . . f [j] ;
54 goto “Done” }
55 else j := j + 1 } } }

Figure 1: Algorithm for solving allocation.

4 SINGLE-USE ASSIGNMENT
Given a function f : N → N, we formally define the assignment

task as follows.

Definition 4.1. In the assignment task, each processor must out-

put a function a[p] : D[p] → P whose domain D[p] is a set of items

and such that:

Fairness: For every processor p, there is r ∈ D[p] such that

a[p][r] = p.

Consistency: For every processors p and q, if r ∈ D[p] and
r ∈ D[q] then a[p][r] = a[q][r].

Non-Triviality: If a set Q of k processors participate, then

(1) for every p ∈ Q , D[p] ⊆ {1, . . . , f (k)} and a[p] ranges
over Q , and

(2) for every item i ∈ {1, . . . , f (k)}, there is a processor p ∈ Q
such that i ∈ D[p].

When a processor p terminates with output a[p] : D[p] → P
we say that p announces the items in D[p]. This definition is a

formalization of the intuitive definition given in the introduction,

and restarted below.

Fairness: every processorp announces an assignment inwhich

it gets at least one item.

Consistency: if two processors announce an assignment for

item i , then they assign i to the same processor.

Non-Triviality: for every k , if k processors participate, then

(1) only the first f (k) items may be assigned, and

(2) if all k processors terminate, then every item in {1, . . . ,

f (k)} is announced.

We now present an algorithm for solving the assignment task

assuming that f (k) = 2k − 1 and |R | = 2n − 1. As noted in the

introduction, this matches a lower bound obtained by reducing

the renaming problem to the assignment problem. The algorithm

uses immediate snapshot and adaptive-renaming sub-routines. A

formalization of the algorithm in PlusCal appears in Figure 2.

A processor p first writes in shared-memory that it participates,

and then takes an immediate snapshot (label l1). Then p invokes

an instance of adaptive renaming in which only the members of

p’s immediate snapshot participate, obtaining the output Name(p)
(label l2). Processor p then considers the item number 2

��is[p]�� −
Name(p) assigned to itself and writes it to shared memory in the

variable firstItem[p] (label l3). At this point we say that p posted its

first item; moreover, if firstItem[q] = i for some q ∈ P and i ∈ R,
then we say that i has been posted. Finally, at label l4, p checks

whether there is a participant that did not post its first item. If

this is the case, then p announces only its first assigned item, i.e. it

outputs a[p] = [firstItem[p] 7→ p].
Otherwise, when all the k participants posted their first item, p

announces the assignment of all first 2k − 1 items as follows. Let

us say that an item among the first 2k − 1 is free if it has not been

posted. Processor p assigns every posted item i to the processor q
that posted firstItem[q] = i (this processor is unique by Lemma 4.2

below), and p assigns the ith free item to the processor q that posted
the ith biggest item (also unique by Lemma 4.2).

To show that Figure 2 solves the assignment task, we need the

following definitions. Consider a run of the algorithm in which a set

Q of k processors participate, and consider the immediate snapshots

IS1, . . . , ISm obtained by the participants, ordered by inclusion, and

let IS0 = ∅. Define the sequence of sets of processors G1, . . . ,Gm
where Gi = ISi \ ISi−1, and let G0 = ∅. Finally, define the sequence

of intervals I1, . . . , Im where Ii = {2|ISi−1 |+1, . . . , 2|ISi | −1}. Note

that if i < j then Max (Ii) ≤ Min
(
Ij
)
, and that |Ii | = 2|Gi | − 1.

Those definitions are best understood by considering the following

lemmas.

Lemma 4.2. For every i ∈ {1, . . . ,m}, the members of Gi obtain
unique first items in the interval Ii , and only processors in Gi obtain
items in Ii .

Proof. By definition of immediate snapshot, a processor obtains

the immediate snapshot ISi if and only if it belongs to Gi . More-

over, by definition of the algorithm, only the members ofGi ever

access the adaptive-renaming instance for the set of processors Ii .
Therefore, by property of adaptive renaming, the members of Gi
obtain unique names in {1, . . . , 2|Gi |−1}, and only processors inGi
obtain items in Ii = {2|Ii−1 | + 1, . . . , 2|Ii | − 1}. Thus, by definition

of the algorithm at label l3, the members ofGi obtain unique first

items in Ii , and only processors in Gi obtain items in Ii . □

Note that Lemma 4.2 implies that every processor gets a unique

first item. Let PostedBy(i) = p if i is posted by processor p in

the run under consideration and PostedBy(i) = ⊥ < P otherwise.

By Lemma 4.2, PostedBy(i) is well-defined.

Lemma 4.3. Every processor p that takes the else branch at label
l4 does so with Participant = ISi for some i ∈ {1, . . . ,m}.

Proof. By definition of the algorithm, when p takes the else

branch at label l4, every processor invoked and returned from im-

mediate snapshot at label l1. Therefore, by definition of immediate

snapshot, at least one processor obtained an immediate snapshot

containing all the participants. □

Lemma 4.4. Ifp announces i and PostedBy(i) = q, then a[p][i] = q.

Proof. First, since PostedBy(i) = q whenp announces its output,
note that q posted its item before p reached l4. Consider two cases.

First, suppose p = q. Therefore, if p takes the if branch at l4, then

The Assignment Problem Conference’17, July 2017, Washington, DC, USA

11 --algorithm SingleUseAssignment{
12 variables
13 participating = [p ∈ P 7→ false] ;
14 firstItem = [p ∈ P 7→ Bot] ; variable to post first item to shared memory.

15 is = [p ∈ P 7→ Bot] ; immediate snapshot output.

16 name = [i ∈ subset P 7→ [p ∈ P 7→ Bot]] ; renaming instances output.

17 a = [p ∈ P 7→ Bot] ; processor outputs

21 define {
63 Name(p)

∆
= name[is[p]][p]

64 Assign(Participant)
∆
=

65 let Posted
∆
= {i ∈ Item : ∃ p ∈ Participant : firstItem[p] = i}

66 Domain
∆
= 1 . . 2 ∗ Cardinality(Participant)− 1

67 Free
∆
= Domain \Posted

The free item i has position k when it is the kth smallest free item:

72 Position(i)
∆
= Cardinality({j ∈ Free : j ≤ i})

A processor has rank i when its first item is the ith smallest posted item:

77 Rank(p)
∆
= Cardinality({q ∈ Participant : firstItem[q] ≤ firstItem[p]})

78 in [i ∈ Domain 7→ if i ∈ Posted
79 then choose p ∈ Participant : firstItem[p] = i
80 else choose p ∈ Participant : Rank(p) = Position(i)] }
96 fair process (proc ∈ P) {
97 l1: participating [self] := true ;
98 call ImmediateSnapshot() ;
99 l2: call Renaming(is[self]) ;

100 l3: firstItem[self] := 2 ∗ Cardinality(is[self])−Name(self) ;
101 l4: with (Participant = {p ∈ P : participating [p]})
102 if (∃ p ∈ Participant : firstItem[p] = Bot) a[self] := [i ∈ {firstItem[self]} 7→ self]
103 else a[self] := Assign(Participant) ; } }

Figure 2: Read-write algorithm solving single-use assignment.

it announces [i 7→ p] and we are done. If p takes the else branch,

then by definition of the Assign operator, we have a[p][p] = i , and
we are done.

Second, suppose that p , q. If p takes the if branch at l4, then it

announces [j 7→ p] where PostedBy(j) = p. By Lemma 4.2, we must

have i , j, and we are done. If p takes the else branch at l4, then
by Lemma 4.3 there is j ∈ {1, . . . ,m} such that a[p] = Assign(ISj),
ISj is exactly the set of participants at this point, and all members of

ISj posted their first item. Therefore either (a) q did not participate

yet and q < ISj , or (b) q ∈ ISj and q posted its first item.

In case (a), q ∈ Gl for l > j; therefore, by Lemma 4.2, item i
is strictly greater than Max(Ii). Moreover, the domain of a[p] =
Assign(ISj) is Ij by definition of the Assign operator. Thus i < a[p]
and p does not announce i , a contradiction.

In case (b) we have a[p][q] = i , by definition of the Assign oper-

ator, and we are done. □

Lemma 4.5. If p takes the else branch at l4 before q takes the same
else branch, then for every item i announced by p, i ∈ D[q] and
a[q][i] = a[p][i].

Proof. By Lemma 4.3, there are j < k ∈ {1, . . . ,m} such that

all members of ISk posted their first item by the time q takes the

else branch at l4, and a[p] = Assign(ISj and a[q] = Assign(ISk).
Note that at the time p takes the else branch at l4, all members

of ISj posted their first item. Therefore, by definition of the Assign

operator, the rank of a processors p ∈ ISj is the same in the def-

inition of Assign(ISj) and in the definition Assign(ISk). Moreover,

by Lemma 4.2, the free items in the range {1, . . . , 2|Ij | − 1} do not

change after p takes the else branch at l4. Thus, by definition of the

Assign operator, if i is announced by p then a[q][i] = a[p][i]. □

Lemma 4.6. At least one participant pl finds at label l4 that all
participants posted their first item.

Proof. The last participant to post its first item finds at l4 that
all participants posted their first item. □

Theorem 4.7. The single-use assignment algorithm of Figure 2
solves the assignment task using only registers.

Proof. The algorithm clearly uses only registers, and so does

its immediate-snapshot and adaptive-renaming sub-routines. More-

over, its immediate snapshot and its adaptive-renaming sub-routines

are wait-free, and every processor performs at most 4 atomic steps

in the algorithm, therefore the algorithm is wait-free. It remains to

show that outputs satisfy the assignment task.

Notice that every processor announces at least the item that it

posted. Therefore, the Fairness property of the assignment task is

satisfied.

To show the Consistency property, consider two processors p
and q that both announce item i . If both p and q take the if branch at
label l4, then by Lemma 4.2 they cannot both announce i . Therefore,

Conference’17, July 2017, Washington, DC, USA Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Giuliano Losa

without loss of generality, either p takes the if branch and q takes

the else branch, or both take the else branch at label l4. Suppose
p takes the if branch and q takes the else branch. Then, i must be

the item posted by p, and by Lemma 4.4 both p and q announce the

same assignment for i , and we are done. Suppose both p and q take

the else branch at label l4, and, without loss of generality, that p
does so before q. Then, by Lemma 4.5, if i is in the domain of a[p],
then a[q][i] = a[p][i], and we are done.

Part (a) of the Non-Triviality property follows from Lemma 4.2

because for every i ∈ {1, . . . ,m}, Ii ⊆ {1, . . . , 2k − 1}. Part (b)

follows from Lemma 4.6: the last participant to post its item, pl ,
sees all k participants and takes the else branch at l4; therefore,
by the definition of the Assign operator, pl announces all the first
2k − 1 items. □

Note that the algorithm is as fair as can be: it guarantees that a

processor gets at least one item and at most 2. Since 2k − 1 items

are assigned when k processors participate, this is optimal.

Finally, note that we can modify the algorithm to work with

any function f such that f (1) ≥ 1 and f (k) − f (j) ≥ 2(k − j) − 1

for every k > j ∈ N. For this, we first change the first item of a

processor p to be the item number f (
��IS(p)��) − Name(p) (at label

l3), and we change how a processor p, that sees all the renaming

output of the participants (at label l4, else branch), allocates the
remaining items. Let k be the number of participants that p sees

when it takes its step at label l4. Processor p uses a larger domain

{i | 1 ≤ i ≤ f (k)}, and, for every j from 1 to k , p allocates the

next f (j + 1) − f (j) − 1 free items to the processor of rank j (when
j = k , there may not remain enough items, and in this case only

the remaining free items are assigned).

5 LONG-LIVED ASSIGNMENT
We now consider solving the assignment task for infinitely many

processors, assuming that the number of concurrently active pro-

cessors is bounded by a constant. As explained in Section 2, when

the set of processors is fixed, this allows processors to repeatedly

invoke the task by picking a fresh identifier for each new invocation.

The definition of the task is the same as in the single-use case,

except that the set of processors P is infinite and the set of items

R is also infinite. Items and processors are numbered 1, 2, . . . , and

we assume that f : N→ N is such that f (k) = 2k − 1.

Note that we do not consider releasing items already assigned,

but only assigning new items from an infinite stream of items. The

non-triviality condition of the assignment task ensures that only the

first 2k − 1 items may be assigned when k processors participate.

In the long-lived setting, this means that processors cannot get

items arbitrarily far in the stream: ifm is the number of times that

processors invoked the task, then only the first 2m − 1 items may

be assigned.

Obtaining a long-lived assignment algorithm is simple: it suf-

fices to replace the immediate-snapshot subroutine in the algorithm

of Section 4 by an immediate snapshot for infinitely many proces-

sors (but bounded concurrency), as provided, e.g., by Afek et al. [3].

Note that, in the long-lived setting, if processors progress at the

same speed then the stream of items will be consumed without

leaving holes. If not, some items may be left unassigned while

more and more items farther in the stream are assigned. In fact, a

processor can arbitrarily delay the allocation of an arbitrary large

number of items: if a processor p, after reaching label l2, delays its
posting of its first item, then after p reached l2, every processor

will only ever get a single item because, at label l4, every processor

will always find that p did not write firstItem[p].
We now present an optimization of the long-lived algorithm in

which a processor that stops can prevent the allocation of at most

n items, where n is the fixed number of processors that repeatedly

invoke the algorithm. To achieve this property, we first introduce

a new label l1b, immediately after l1, where a processor posts to
shared memory the immediate snapshot it obtained at label l1. Sec-
ond, we modify the code at label l4 as follows: a processor p at label

l4 first checks whether it can find two immediate snapshots IS1 and
IS2 that have been posted to shared memory such that (1) p ∈ IS2,
(2) p < IS1, and (3) all members of IS2 \ IS1 have written their first

item to shared memory. Two immediate snapshots ⟨IS1, IS2⟩ with
those properties are called a complete frame for p. If p cannot find

such a complete frame ⟨IS1, IS2⟩, then it terminates with the output

a[p] = [firstItem[p] 7→ p]. Otherwise, p picks ⟨IS1, IS2⟩ satisfying
conditions (1), (2), and (3) and such that IS2 \ IS1 is maximal among

the complete frames for p. Finally, p uses the same ranking mech-

anism as in the single-use case to compute its output, using the

Assign(IS1, IS2) operator, except that it restricts the domain of its

output to the items in the range {2
��IS1�� + 1 . . . 2��IS2�� − 1}. A Plus-

Cal formalization of the optimized long-lived algorithm appears

in Figure 3. The algorithm correctness relies on essentially the same

arguments as Theorem 4.7:

Theorem 5.1. The long-lived assignment algorithm of Figure 3
solves the long-lived assignment task using only registers.

Theorem 5.2. When at most n processors can be active at the same
time, the long-lived assignment algorithm of Figure 3 ensures that a
processor that stops prevents the allocation of at most n items.

Proof. A processor can block the assignment of some items

only if it stops after its first step but before it posts its first item.

Consider a run in which p does so. Consider the immediate snap-

shots IS1, . . . , ISm obtained by the participants, ordered by inclu-

sion. Let ISi , i ∈ {1, . . . ,m}, be the biggest immediate snapshot

in the run such that p < ISi . By the definition of the algorithm at

label l4, processor p prevents the allocation of all items in Ii+1 =
{2|ISi | + 1, . . . , 2|ISi+1 | − 1} that are not posted by any processor.

By property of immediate snapshot, at worse, ISi+1 − ISi = n, thus
|Ii+1 | ≤ 2n − 1. Among those, n − 1 will be posted if only p stops,

and therefore p can prevent the allocation of n items at most. □

6 CONCLUSION AND RELATEDWORK
We have shown that allocating items to asynchronous processors

requires primitives of consensus power 2, but that a new variation

on the allocation problem, the assignment problem, is solvable

read-write wait-free. Moreover, we have presented a long-lived

assignment algorithm in which a failed processor can only prevent

the allocation of a constant number of items. Long-lived assignment

can readily be solved using a mutual exclusion algorithm such as

Lamport’s Bakery algorithm [17]. However, in the Bakery algorithm,

a slow processor can arbitrarily delay the whole system even when

the slow processor is not in its critical section. In contrast, the

The Assignment Problem Conference’17, July 2017, Washington, DC, USA

14 --algorithm LongLivedAssignment{
15 variables
16 name = [i ∈ subset P 7→ [p ∈ P 7→ Bot]] ; return values from renaming.

17 is = [p ∈ P 7→ Bot] ; return values from immediate snapshot.

18 postedIS = [p ∈ P 7→ Bot] ;
19 firstItem = [p ∈ P 7→ Bot] ;
20 a = [p ∈ P 7→ Bot] ; processor outputs

24 define {
65 Name(p)

∆
= name[is[p]][p]

A frame for p consists of two immediate snapshots IS1 and IS2 such that p is in IS2 but

not in IS1

70 Frame(p, PostedIS)
∆
= let IS

∆
= PostedIS ∪ {{}}in

71 {〈IS1, IS2〉 ∈ IS × IS : p ∈ IS2 ∧ p /∈ IS1}
72 MaxFrame(F)

∆
= choose 〈IS1, IS2〉 ∈ F : ∀ I ∈ F : IS1 ⊆ I [1] ∧ I [2] ⊆ IS2

Computing the assignment on an frame 〈Low , High〉:

76 Assign(Low , High)
∆
=

77 let ItemsPosted
∆
= {i ∈ Item : ∃ p ∈ High \Low : firstItem[p] = i}

78 Domain
∆
= 2 ∗ Cardinality(Low) + 1 . . 2 ∗ Cardinality(High)− 1

79 Free
∆
= Domain \ ItemsPosted

80 Position(i)
∆
= Cardinality({j ∈ Free : j ≤ i})

81 Rank(p)
∆
= Cardinality({q ∈ High \Low : firstItem[q] ≤ firstItem[p]})

82 in [i ∈ Domain 7→ if i ∈ ItemsPosted
83 then choose p ∈ High \Low : firstItem[p] = i
84 else choose p ∈ High \Low : Rank(p) = Position(i)]
85 }

102 fair process (proc ∈ P) {
103 l1: call ImmediateSnapshot() ;
104 l1b : postedIS [self] := is[self] ;
105 l2: call Renaming(is[self]) ;
106 l3: firstItem[self] := 2 ∗ Cardinality(is[self])−Name(self) ;
107 l4: with (PostedIS = {postedIS [p] : p ∈ P} \ {Bot})
108 if (∀F ∈ Frame(self , PostedIS) : ∃ p ∈ F [2] \F [1] : firstItem[p] = Bot)
109 a[self] := [i ∈ {firstItem[self]} 7→ self]
110 else with (Complete = {F ∈ Frame(self , PostedIS) : ∀ p ∈ F [2] \F [1] : firstItem[p] 6= Bot},
111 MaxF = MaxFrame(Complete))
112 a[self] := Assign(MaxF [1], MaxF [2])
113 }
114 }

Figure 3: Read-write algorithm solving assignment for infinitely many processors when at most n are concurrent. The number
of items blocked by a slow processor is bounded by n.

optimized long-lived assignment algorithm presented in Section 5

ensures that a slow processors delays the assignment of at most

n items while the other processors suffer no delay. The long-lived

assignment problem and its solution may therefore be of interest to

implement resource allocators, work queues, and stream processing

systems.

Below we briefly survey related work on resource allocation and

on the adaptive-renaming problem, whose solution we rely on in

solving read-write assignment.

In the dining-philosophers problem [9] or the mutual-exclusion

problem, a number of resources are to be acquired to perform a

task and then released, but there are not enough resources for all

processor to perform their task at the same time. In the dining

philosophers problem, processors are placed in a ring with one

resource between each neighboring pair of processors; a processor

contends for the two resources immediately adjacent to it in the ring.

In the mutual-exclusion problem, processors share a single resource

that they all contend for. Under the assumption that all processors

progress fairly, solutions to those problems must guarantee that

no processor starve. The specification of the problem does not

leave room for failures, as it becomes trivially unsolvable when

some resources are not released. Failures complicate allocation and

increase the number of resources necessary to make the problem

solvable. At the very least, enough resources should be available to

satisfy one processor should all others fail when holding resources.

The L-exclusion [11] problem is a generalization of mutual exclu-

sion in which at most L < n processors can be the critical section

Conference’17, July 2017, Washington, DC, USA Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Giuliano Losa

simultaneously. Here, the failure of L processors in the critical sec-

tion trivially halts the system, but the algorithm presented in [11]

may also deadlocks if L processors fail when trying to enter the

critical section.

In them-renaming problem [4], n processors must exclusively

acquire a name between 1 andm, under one of two non-triviality

conditions: either the initial identifiers of the processors are as-

sumed to come from an unbounded namespace, or, in adaptive

renaming, the range of names used must depend on the set of

processors that participate. The adaptive renaming problem is not

solvable read-write wait-free when k processors out of n must per-

form renaming using the first 2k − ⌈k/(n − 1)⌉ names [12]. With

2k − 1 names, several wait-free adaptive renaming algorithms are

known [4, 6], as well as long-lived wait-free adaptive renaming

algorithms in which names can be released by their owner [21, 22].

The musical chairs problem [2] is a variant of renaming in which

processors come with preferences and must rename themselves

such that a processor gets his preferred name if no other participant

has the same preference. The musical chairs problem is equivalent

to renaming. The assignment problem defined in this paper differs

from renaming or musical chairs in that all items must be assigned

to some processor; long-lived assignment differs from the long-lived

version of renaming in that, instead of releasing items, processors

consume items from an infinite stream.

Castaneda et al. [8] study single-use assignment under prefer-

ences and constraints. The problem they study is a generalization

of the renaming and musical chairs [2] problems, where processors

must choose names subject to preferences that must be satisfied in

the absence of conflict, and subject to constraints that precludes

certain assignments. As in the renaming problem, the problem they

formulate has no requirements to assign all the items. While the

algorithms presented in this paper rely on renaming, Castaneda

et al. exhibit instances of the coordination task under preferences

and constraints in which renaming-based solutions may not be

optimal.

L-assignment (or “distinct CS”) [5, 7] is a variant of L-exclusion in
which processors entering the critical section must additionally be

assigned a unique slot out of a number L of slots. The At-Most-Once

problem of Kentros et al. [16] is closely related to L-assignment and

renaming. It is a single-use allocation problem in which some items

may be left unallocated. Kentros et al. give bounds on the number

of items that can be allocated read-write out of the total number

of items (called the efficiency of an algorithm), depending on the

number of processor failures. In contrast to our work, Kentros

et al. do not consider the possibility for a processor to leave with a

partial allocationwhosemissing itemswill be revealed later by other

processors. In follow-up work, Kentros et al. study deterministic

solutions to the At-Most-Once problem that minimize the work that

processors have to perform [15], as well as randomized solutions

under fair scheduling assumptions [14].

TheWrite-All problem [13], introduced byKanellakis and Schwarz-

mann, all positions in a shared array must be set using the minimal

amount of work (as measured in number of steps). The Write-All

problem differs from the allocation problem in that some positions

in the array may be set by multiple processors, while an item in the

allocation and assignment problems must be allocated exclusively

to one processor. In the terminology of this paper, the Write-All

problem requires each item to be allocated at least once, while the

allocation and assignment problems requires each item to be allo-

cated at most once. Dwork et al. study the Do-All problem [10], a

variant of the Write-All problem in message-passing systems.

The assignment algorithms presented in this paper are inspired

by the adaptive-renaming algorithm of Borowsky and Gafni [6].

In this recursive algorithm, processors use immediate snapshot to

split themselves in disjoint groups that each is implicitly assigned a

unique part of the namespace; then, each group recursively solves

adaptive-renaming among the members of the group. The part of

the namespace allocated to a group is sufficiently big to place the

outputs of the corresponding adaptive-renaming sub-problem in

that part of the namespace. We reuse the idea of using immediate

snapshot to split processors into groups that are implicitly assigned

a unique part of the namespace that is big enough to solve renaming

among the group member.

REFERENCES
[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir

Shavit. 1993. Atomic Snapshots of Shared Memory. J. ACM 40, 4 (Sept. 1993),

873–890.

[2] Y. Afek, Y. Babichenko, U. Feige, E. Gafni, N. Linial, and B. Sudakov. 2014. Musical

Chairs. SIAM Journal on Discrete Mathematics 28, 3 (Jan. 2014), 1578–1600.
[3] Yehuda Afek and Eytan Weisberger. 1999. The instancy of snapshots and com-

muting objects. Journal of Algorithms 30, 1 (1999), 68–105.
[4] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk. 1987. Achiev-

able cases in an asynchronous environment. In 28th Annual Symposium on Foun-
dations of Computer Science, 1987. 337–346.

[5] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reischuk.

1990. Renaming in an asynchronous environment. Journal of the ACM (JACM)
37, 3 (1990), 524–548.

[6] Elizabeth Borowsky and Eli Gafni. 1993. Immediate Atomic Snapshots and Fast

Renaming. In Proceedings of the Twelfth Annual ACM Symposium on Principles of
Distributed Computing (PODC ’93). ACM, 41–51.

[7] J. E. Burns and G. L. Peterson. 1989. The Ambiguity of Choosing. In Proceedings
of the Eighth Annual ACM Symposium on Principles of Distributed Computing
(PODC ’89). ACM, New York, NY, USA, 145–157.

[8] Armando Castañeda, Pierre Fraigniaud, Eli Gafni, Sergio Rajsbaum, and Matthieu

Roy. 2016. Asynchronous Coordination Under Preferences and Constraints. In

Structural Information and Communication Complexity (Lecture Notes in Computer
Science), Vol. 9988. Springer, Cham, 111–126.

[9] E. W. Dijkstra. 1977. Two starvation free solutions of a general exclusion problem,
1978. EWD.

[10] Cynthia Dwork, Joseph Y. Halpern, and Orli Waarts. 1998. Performing work

efficiently in the presence of faults. SIAM J. Comput. 27, 5 (1998), 1457–1491.
[11] Michael J. Fischer, Nancy A. Lynch, James E. Burns, and Allan Borodin. 1989.

Distributed FIFO Allocation of Identical Resources Using Small Shared Space.

ACM Trans. Program. Lang. Syst. 11, 1 (Jan. 1989), 90–114.
[12] Eli Gafni, Michel Raynal, and Corentin Travers. 2007. Test & set, adaptive

renaming and set agreement: a guided visit to asynchronous computability. In

26th IEEE International Symposium on Reliable Distributed Systems, 2007. IEEE,
93–102.

[13] Paris C. Kanellakis and Alex A. Schwarzmann. 1992. Efficient parallel algorithms

can be made robust. Distributed Computing 5, 4 (1992), 201–217.

[14] Sotirios Kentros, Chadi Kari, and Aggelos Kiayias. 2012. The strong at-most-

once problem. In International Symposium on Distributed Computing. Springer,
386–400.

[15] Sotirios Kentros and Aggelos Kiayias. 2012. Solving the at-most-once problem

with nearly optimal effectiveness. In International Conference on Distributed
Computing and Networking. Springer, 122–137.

[16] Sotirios Kentros, Aggelos Kiayias, Nicolas Nicolaou, and Alexander A. Schwarz-

mann. 2009. At-most-once semantics in asynchronous shared memory. In Inter-
national Symposium on Distributed Computing. Springer, 258–273.

[17] Leslie Lamport. 1974. A new solution of Dijkstra’s concurrent programming

problem. Commun. ACM 17, 8 (1974), 453–455.

[18] Leslie Lamport. 1986. On interprocess communication: Part II. Distributed
Computing 1, 2 (June 1986), 86–101.

[19] Leslie Lamport. 2009. The PlusCal Algorithm Language.. In ICTAC, Vol. 5684.
Springer, 36–60.

[20] Michael C. Loui and Hosame H. Abu-Amara. 1987. Memory requirements for

agreement among unreliable asynchronous processes. Advances in Computing

The Assignment Problem Conference’17, July 2017, Washington, DC, USA

research 4, 163-183 (1987), 31.

[21] Mark Moir and James H. Anderson. 1995. Wait-free algorithms for fast, long-lived

renaming. Science of Computer Programming 25, 1 (Oct. 1995), 1–39.

[22] Mark Moir and Juan A. Garay. 1996. Fast, long-lived renaming improved and

simplified. In Distributed Algorithms (Lecture Notes in Computer Science). Springer,
Berlin, Heidelberg, 287–303.

[23] Gary L. Peterson. 1981. Myths about the mutual exclusion problem. Inform.
Process. Lett. 12, 3 (1981), 115–116.

[24] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model checking TLA+

specifications. In CHARME, Vol. 99. Springer, 54–66.

	Abstract
	1 Introduction
	2 Model
	3 The Allocation Problem
	4 Single-Use Assignment
	5 Long-Lived Assignment
	6 Conclusion and Related Work
	References

