A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, pp.677-689, 2006.

D. T. Butcher, T. Alliston, and V. M. Weaver, A tense situation: forcing tumour progression, Nature reviews Cancer, vol.9, issue.2, pp.108-130, 2009.

M. Basan, T. Risler, J. F. Joanny, X. S. Garau, and J. Prost, Homeostatic competition drives tumor growth and metastasis nucleation, HFSP Journal, vol.3, issue.4, pp.265-272, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00961019

R. M. Sutherland, Cell and environment interactions in tumor microregions: the multicell spheroid model, Science, vol.240, issue.4849, pp.177-84, 1988.

J. P. Freyer and R. M. Sutherland, Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply, Cancer research, vol.46, issue.7, pp.3504-3516, 1986.

. Drasdo and S. Höhme, A single-cell-based model of tumor growth in vitro: monolayers and spheroids, Physical Biology, vol.2, pp.133-147, 2005.

G. Schaller and M. Meyer-hermann, Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model, Phys Rev E, vol.71, issue.5, p.51910, 2005.

G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder, and R. K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids, Nature biotechnology, vol.15, issue.8, pp.778-83, 1997.

G. Cheng, J. Tse, R. K. Jain, and L. L. Munn, Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells, PloS one, vol.4, issue.2, p.4632, 2009.

K. L. Mills, R. Kemkemer, S. Rudraraju, and K. Garikipati, Elastic free energy drives the shape of prevascular solid tumors, PLoS ONE, vol.9, issue.7, 2014.

F. Montel, M. Delarue, J. Elgeti, L. Malaquin, M. Basan et al., Stress Clamp Experiments on Multicellular Tumor Spheroids, Phys Rev Lett, vol.107, issue.18, p.188102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01138973

M. Delarue, F. Montel, D. Vignjevic, J. Prost, J. F. Joanny et al., Compressive Stress Inhibits Proliferation in Tumor Spheroids through a Volume Limitation, Biophysical Journal, vol.107, issue.8, pp.1821-1828, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123922

H. B. Frieboes, J. F. Chuang, Y. L. Wise, S. M. Lowengrub, J. S. Cristini et al., Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis, Journal of theoretical biology, vol.264, issue.4, pp.1254-78, 2010.

C. Y. Chen, H. M. Byrne, and J. R. King, The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids, Journal of Mathematical Biology, vol.43, pp.191-220, 2001.

D. Ambrosi and F. Mollica, The role of stress in the growth of a multicell spheroid, Journal of Mathematical Biology, vol.48, issue.5, pp.477-499, 2004.

M. Chaplain, L. Graziano, and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Mathematical Medicine and Biology, vol.23, issue.3, pp.197-229

P. Mascheroni, C. Stigliano, M. Carfagna, D. P. Boso, L. Preziosi et al.,

, Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model, 2016.

L. Geris, P. Van-liedekerke, B. Smeets, E. Tijskens, and H. Ramon, A cell based modelling framework for skeletal tissue engineering applications, Journal of biomechanics, issue.7, p.43, 2010.

D. Drasdo and S. Hoehme, Modeling the impact of granular embedding media, and pulling versus pushing cells on growing cell clones, New Journal of Physics, vol.14, issue.5, p.55025, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778129

F. Montel, M. Delarue, J. Elgeti, D. Vignjevic, G. Cappello et al., Isotropic stress reduces cell proliferation in tumor spheroids, New Journal of Physics, vol.14, issue.5, p.55008, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01138975

P. Van-liedekerke, M. M. Palm, N. Jagiella, and D. Drasdo, Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results, Computational Particle Mechanics, vol.2, issue.4, pp.401-444, 2015.

P. Van-liedekerke, P. Ghysels, E. Tijskens, G. Samaey, D. Roose et al., Mechanisms of soft cellular tissue bruising. A particle based simulation approach, Soft Matter, vol.7, issue.7, 2011.

P. Van-liedekerke, P. Ghysels, E. Tijskens, G. Samaey, B. Smeets et al., A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates Physical biology, vol.7, 2010.

B. Smeets, T. Odenthal, J. Keresztes, S. Vanmaercke, P. Van-liedekerke et al., Modeling contact interactions between triangulated rounded bodies for the discrete element method, Computer Methods in Applied Mechanics and Engineering, vol.2014, p.227
URL : https://hal.archives-ouvertes.fr/hal-00999663

P. Ghysels, G. Samaey, E. Tijskens, P. Van-liedekerke, and H. Ramon, Roose D Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics, Physical Biology, vol.6, issue.1, 2009.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling et al., Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro, Proceedings of the National Academy of Sciences of the United States of America, vol.110, issue.37, pp.14843-14851, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01356886

D. Drasdo, S. Hoehme, and J. G. Hengstler, How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis, Journal of hepatology, vol.61, issue.4, pp.951-957, 2014.

S. Hoehme, M. Brulport, A. Bauer, E. Bedawy, W. Schormann et al., Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration, Proceedings of the National Academy of Sciences, vol.107, issue.23, pp.10371-10376, 2010.

N. Jagiella, B. Müller, M. Müller, I. E. Vignon-clementel, and D. Drasdo, Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data, PLoS computational biology, vol.12, issue.2, p.1004412, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01244593

F. Delgado, F. Cermak, N. Hecht, V. C. Son, S. Li et al., Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells, PloS one, vol.8, issue.7, p.67590, 2013.

V. Cristini, J. Lowengrub, and . Multiscale, Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, 2010.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani et al., Cells respond to mechanical stress by rapid disassembly of caveolae, Cell, vol.144, issue.3, pp.402-413, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00821331

M. Aragona, T. Panciera, A. Manfrin, S. Giulitti, F. Michielin et al., A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors, Cell, vol.154, issue.5, pp.1047-59, 2013.

T. P. Neufeld and B. A. Edgar, Connections between growth and the cell cycle, Current Opinion in Cell Biology, vol.10, pp.784-790, 1998.

A. Tzur, R. Kafri, V. S. Lebleu, G. Lahav, and M. W. Kirschner, Cell Growth and Size Homeostasis in Proliferating Animal Cells, Science, vol.325, issue.5937, pp.167-171, 2009.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir et al., Optical measurement of cycle-dependent cell growth, Proceedings of the National Academy of Sciences, 2011.

R. Kafri, J. Levy, M. B. Ginzberg, S. Oh, G. Lahav et al., Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle, Nature, vol.494, issue.7438, pp.480-483, 2013.

B. I. Shraiman, Mechanical feedback as a possible regulator of tissue growth, Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.9, pp.3318-3323, 2005.

A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal et al., Collective and single cell behavior in epithelial contact inhibition, Proceedings of the National Academy of Sciences of the United States of America, vol.109, issue.3, pp.739-783, 2012.

D. Morgan, The Cell Cycle: Principles of Control, 2007.

L. Wolpert, C. Tickle, and A. M. Martinez, Principles of development, vol.41, p.44, 2015.

J. Y. Tinevez, U. Schulze, G. Salbreux, J. Roensch, J. F. Joanny et al., Role of cortical tension in bleb growth, Proceedings of the National Academy of Sciences of the United States of America, vol.106, issue.44, pp.18581-18587, 2009.

M. Delarue, J. F. Joanny, F. Jülicher, and J. Prost, Stress distributions and cell flows in a growing cell aggregate. Interface focus, vol.4, p.20140033, 2014.

L. Lin, A. Liu, Y. Yu, and C. Zhang, Cell compressibility studies utilizing noncontact hydrostatic pressure measurements on single living cells in a microchamber, Applied Physics, vol.92, issue.23, 2008.

J. Galle, M. Loeffler, and D. Drasdo, Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro, Biophysical journal, vol.88, issue.1, pp.62-75, 2005.

P. Buske, J. Galle, N. Barker, G. Aust, H. Clevers et al., A Comprehensive Model of the Spatio-Temporal Stem Cell and Tissue Organisation in the Intestinal Crypt, PLoS Comput Biol, vol.7, issue.1, p.1001045, 2011.

P. Marmottant, A. Mgharbel, J. Käfer, B. Audren, J. P. Rieu et al., The role of fluctuations and stress on the effective viscosity of cell aggregates, Proceedings of the National Academy of Sciences of the United States of America, vol.106, issue.41, pp.17271-17276, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00524596

, The Cellular Capsules technology And its applications to investigate model tumor. UPMC, 2013.

S. Hoehme and D. Drasdo, Mathematical Population Studies : An International Journal of Mathematical Biomechanical and Nutrient Controls in the Growth of Mammalian Cell Populations, vol.17, pp.37-41, 2010.

Y. S. Chu, S. Dufour, J. P. Thiery, E. Perez, and F. Pincet, Johnson-Kendall-Roberts Theory Applied to Living Cells, Physical Review Letters, vol.94, issue.2, p.28102, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00009431

D. D. , Coarse Graining in simulated cell populations, Advances in Complex Systems, vol.08, issue.02n03, pp.319-363, 2005.

D. S. Von-mikroorganismen-und-zellkulturen, Deutsche Sammlung von Mikroorganismen und Zellkulturen, 2000.

D. Drasdo, S. Hoehme, and M. Block, On the Role of Physics in the Growth and Pattern Formation of Multi-Cellular Systems: What can we Learn from Individual-Cell Based Models, Journal of Statistical Physics, vol.128, pp.287-345, 2007.

G. M. Odell, G. Oster, P. Alberch, and B. Burnside, The mechanical basis of morphogenesis. I. Epithelial folding and invagination, Developmental biology, vol.85, issue.2, pp.90276-90277, 1981.

N. Wang, J. P. Butler, and D. E. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science, vol.260, issue.5111, pp.1124-1127, 1993.

D. Stamenovic and N. Wang, Engineering approaches to cytoskeletal mechanics, J Appl Physiol, vol.89, pp.2085-2090, 2000.

J. Xu, Y. Tseng, and D. Wirtz, Strain Hardening of actin filament networks regulation by the dynamic cross-linking protein ?-actinin, Journal of Biological Chemistry, vol.275, issue.46, pp.35886-35892, 2000.

D. Boal, Mechanics of the Cell, 2012.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke et al., Optical Rheology of Biological Cells. Physical Review Letters, vol.94, p.98103, 2005.

S. A. Sandersius, C. J. Weijer, and T. J. Newman, Emergent cell and tissue dynamics from subcellular modeling of active biomechanical processes, Physical Biology, vol.8, p.45007, 2011.

S. Tanaka, D. Sichau, and D. Iber, LBIBCell: a cell-based simulation environment for morphogenetic problems, Bioinformatics, 2015.

P. Pathmanathan, J. Cooper, A. Fletcher, G. Mirams, L. Montahan et al., A computational study of discrete mechanical tissue models, Physical Biology, vol.6, issue.3, p.36001, 2009.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln et al., Quantifying the contribution of actin networks to the elastic strength of fibroblasts, Journal of Theoretical Biology, vol.242, issue.2, pp.502-516, 2006.

L. D. Landau, L. P. Pitaevskii, E. M. Lifshitz, and A. M. Kosevich, Theoretical Physics). Butterworth-Heinemann, vol.7, 1986.

C. Wei and P. M. Lintilhac, Loss of Stability: A New Look at the Physics of Cell Wall Behavior during Plant Cell Growth, Plant Physiology, vol.145, issue.3, pp.763-772

M. Delarue, F. Montel, O. Caen, J. Elgeti, J. M. Siaugue et al., Mechanical Control of Cell flow in Multicellular Spheroids, Phys Rev Lett, vol.110, issue.13, p.138103, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01138971

D. A. Beysens, G. Forgacs, and J. A. Glazier, Cell sorting is analogous to phase ordering in fluids, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.9467-9471, 2000.

P. Van-liedekerke, B. Smeets, T. Odenthal, E. Tijskens, and H. Ramon, Solving microscopic flow problems using Stokes equations in SPH, Computer Physics Communications, vol.184, pp.1686-1696, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00802400

D. A. Fedosov, B. Caswell, and G. E. Karniadakis, Systematic coarse-graining of spectrin-level red blood cell models, Computer Methods in Applied Mechanics and Engineering, vol.199, pp.1937-1948, 2010.

T. Odenthal, B. Smeets, P. Van-liedekerke, E. Tijskens, H. Van-oosterwyck et al., Analysis of Initial Cell Spreading Using Mechanistic Contact Formulations for a Deformable Cell Model, PLoS Computational Biology, vol.9, issue.10, p.1003267, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00909485

P. Van-liedekerke, E. Tijskens, H. Ramon, P. Ghysels, G. Samaey et al., Particle-based model to simulate the micromechanics of biological cells, Physical Review E, vol.81, issue.6, pp.61906-61915, 2010.

M. Buenemann and P. Lenz, Elastic properties and mechanical stability of chiral and filled viral capsids, Physical Review E, vol.78, issue.5, p.51924, 2008.

M. Basan, J. Prost, J. F. Joanny, and J. Elgeti, Dissipative particle dynamics simulations for biological tissues: rheology and competition, Physical biology, vol.8, issue.2, p.26014, 2011.

J. Chen, D. Weihs, V. Dijk, M. , V. Fred et al., A phenomenological model for cell and nucleus deformation during cancer metastasis, Biomechanics and Modeling in Mechanobiology, 2018.

F. J. Vermolen and A. Gefen, A semi-stochastic cell-based formalism to model the dynamics of migration of cells in colonies, Biomechanics and Modeling in Mechanobiology, vol.11, issue.1, 2012.

M. Paszek, N. Zahir, K. Johnson, J. N. Lakins, G. Rozenberg et al., Tensional homeostasis and the malignant phenotype Cancer Cell, vol.8, 2005.

A. Karolak, D. Markov, L. Mccawley, and K. A. Rejniak, Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues, Journal of The Royal Society Interface, vol.2018, issue.138, p.15

S. Monnier, M. Delarue, B. Brunel, M. E. Dolega, A. Delon et al., Effect of an osmotic stress on multicellular aggregates, Methods, vol.94, pp.114-119, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01214623

Y. Guyot, B. Smeets, T. Odenthal, R. Subramani, F. Luyten et al., Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors, PLoS computational biology, vol.9, issue.12, p.1005108, 2016.

D. C. Koppenol and F. J. Vermolen, Biomedical implications from a morphoelastic continuum model for the simulation of contracture formation in skin grafts that cover excised burns, Biomechanics and modeling in mechanobiology, vol.16, 2017.

E. Ban, J. M. Franklin, N. S. Smith, L. R. Wang, H. Wells et al., Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces, Biophysical Journal, vol.114, issue.2, pp.450-61, 2018.